Terrestrial modification of the Ivuna meteorite and a reassessment of the chemical composition of the CI type specimen A. J. King1†, K. J. H. Phillips1*, S. Strekopytov2,‡, C. Vita-Finzi1* and S. S. Russell1 1Planetary Materials Group, Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, U.K. 2Imaging and Analysis Centre, Natural History Museum, Cromwell Road, London SW7 5BD, U.K. †Corresponding Author: A. J. King (
[email protected]), Phone: +44 (0)20 7942 6979 ‡Current Address: Inorganic Analysis, LGC, Queens Road, Teddington, Middlesex, TW11 0LY, U. K. *Scientific Associate The rare CI carbonaceous chondrites are the most aqueously altered and chemically primitive meteorites but due to their porous nature and high abundance of volatile elements are susceptible to terrestrial weathering. The Ivuna meteorite, type specimen for the CI chondrites, is the largest twentieth-century CI fall and probably the CI chondrite least affected by terrestrial alteration that is available for study. The main mass of Ivuna (BM2008 M1) has been stored in a nitrogen atmosphere at least since its arrival at the Natural History Museum (NHM), London, in 2008 (70 years after its fall) and could be considered the most pristine CI chondrite stone. We report the mineralogy, petrography and bulk elemental composition of BM2008 M1 and a second Ivuna stone (BM1996 M4) stored in air within wooden cabinets. We find that both Ivuna stones are breccias consisting of multiple rounded, phyllosilicate-rich clasts that formed through aqueous alteration followed by impact processing. A polished thin section of BM2008 M1 analysed immediately after preparation was found to contain sulphate-bearing veins that 1 formed when primary sulphides reacted with oxygen and atmospheric water.