A Tool to Constrain Early Parent Body Hydrothermal Processes

Total Page:16

File Type:pdf, Size:1020Kb

A Tool to Constrain Early Parent Body Hydrothermal Processes Microbeam characterization of volatile-rich clasts - a tool to constrain early parent body hydrothermal processes A Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of Doktor der Naturwissenschaften (Dr. rer. nat.) to the department of Earth Sciences of the Freie Universität Berlin by Robbin Visser Berlin, September 2019 Gutachter: Prof. Dr. Timm John Prof. Dr. Addi Bischoff Disputationsdatum: 08.11.2019 ii Erklärung der Eigenständigkeit Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe; alle Ausführungen, die anderen Schriften wörtlich oder sinngemäß entnommen wurden, kenntlich gemacht sind und die Arbeit in gleicher oder ähnlicher Fassung noch nicht Bestandteil einer Studien- oder Prüfungsleistung war. Berlin, iii Table of contents Summary ..................................................................................................................................... v Zusammenfassung ...................................................................................................................... vii Chapter 1 - Introduction .............................................................................................................. 1 1.1 This thesis in the TRR170 framework .................................................................................................. 2 1.2 Distribution of highly volatile elements during solar system formation ................................................. 3 1.3 Meteoritic breccias ............................................................................................................................... 4 1.4 Volatile-rich clasts ................................................................................................................................ 5 1.5 Aim of the thesis................................................................................................................................... 8 1.6 Scientific chapters ................................................................................................................................. 8 1.7 References .......................................................................................................................................... 10 Chapter 2 - Temperature constraints by Raman spectroscopy of organic matter in volatile-rich clasts and carbonaceous chondrites .................................................................................... 14 Abstract .................................................................................................................................................... 15 2.1 Introduction ....................................................................................................................................... 16 2.2 Methods ............................................................................................................................................. 19 2.3 Results................................................................................................................................................ 26 2.4 Discussion .......................................................................................................................................... 30 2.5 Conclusions ....................................................................................................................................... 39 2.6 Acknowledgements ............................................................................................................................. 40 2.7 References .......................................................................................................................................... 41 Chapter 3 - Sulfur isotope study of sulfides in CI, CM, C2ung chondrites and volatile-rich clasts - evidence for different generations and reservoirs of sulfide formation ................................. 47 Abstract .................................................................................................................................................... 48 3.1 Introduction ....................................................................................................................................... 48 3.2 Methods and samples ......................................................................................................................... 50 3.3 Results................................................................................................................................................ 52 3.4 Discussion .......................................................................................................................................... 58 3.5 Conclusions ....................................................................................................................................... 66 3.6 Acknowledgements ............................................................................................................................. 67 3.7 References .......................................................................................................................................... 67 Chapter 4 - A short-lived 26Al induced hydrothermal alteration event in the outer solar system: Constraints from Mn/Cr ages of carbonates ....................................................................... 71 Abstract .................................................................................................................................................... 72 4.1 Introduction ....................................................................................................................................... 72 4.2 Methods ............................................................................................................................................. 74 4.3 Results................................................................................................................................................ 76 4.4 Discussion .......................................................................................................................................... 79 4.5 Conclusion ......................................................................................................................................... 87 4.6 Acknowledgements ............................................................................................................................. 87 4.7 References .......................................................................................................................................... 87 Chapter 5 - Conclusions ............................................................................................................. 91 Chapter 6 - Outlook ................................................................................................................... 94 Appendix 1 - Thesis-related publications .................................................................................... 96 Appendix 2 - Meteorite list ......................................................................................................... 98 Appendix 3 - Supplement tables and figures .............................................................................. 104 Supplements chapter 2 ........................................................................................................................... 105 Supplements chapter 3 ........................................................................................................................... 106 Supplements chapter 4 ........................................................................................................................... 122 Curriculum Vitae ..................................................................................................................... 130 Acknowledgements ................................................................................................................... 133 iv Summary Meteoritic breccias can contain material that is not yet available in current meteorite collections as individual rocks. These materials can significantly contribute to answering questions related to the formation, environment, and evolution history of planetary bodies. Volatile-rich clasts are a great example of material that occurs in brecciated meteorites and can be used to answer questions related to the above mentioned topics. Volatile-rich clasts in general are characterized by abundant volatile-bearing secondary formed minerals and can be subdivided into two main types: 1) The CM-like type, which contains chondrules with accretionary rims, tochilinite-cronstedtite intergrowths (TCI), carbonates, and Fe-Ni sulfides dispersed in a very fine phyllosilicate matrix. 2) The CI-like type clasts that contain a fine-grained phyllosilicate matrix with embedded magnetite, Fe-Ni sulfides, carbonates, accessory minerals, and very rarely chondrules or fragments of them. The mineralogy of the two types of clasts shows a strong association to the well-known CM and CI chondrites, respectively. However, it is unclear whether the volatile-rich clasts are actually similar to the analogue chondrites or whether they represent material that is not yet present in our meteorite collections. The goal of this thesis is to not only characterize the volatile-rich clasts and investigate the differences between the clasts and the chondrites, but also to obtain a
Recommended publications
  • ABSTRACT Title of Dissertation: WATER in the EARLY SOLAR
    ABSTRACT Title of Dissertation: WATER IN THE EARLY SOLAR SYSTEM: INFRARED STUDIES OF AQUEOUSLY ALTERED AND MINIMALLY PROCESSED ASTEROIDS Margaret M. McAdam, Doctor of Philosophy, 2017. Dissertation directed by: Professor Jessica M. Sunshine, Department of Astronomy This thesis investigates connections between low albedo asteroids and carbonaceous chondrite meteorites using spectroscopy. Meteorites and asteroids preserve information about the early solar system including accretion processes and parent body processes active on asteroids at these early times. One process of interest is aqueous alteration. This is the chemical reaction between coaccreted water and silicates producing hydrated minerals. Some carbonaceous chondrites have experienced extensive interactions with water through this process. Since these meteorites and their parent bodies formed close to the beginning of the Solar System, these asteroids and meteorites may provide clues to the distribution, abundance and timing of water in the Solar nebula at these times. Chapter 2 of this thesis investigates the relationships between extensively aqueously altered meteorites and their visible, near and mid-infrared spectral features in a coordinated spectral-mineralogical study. Aqueous alteration is a parent body process where initially accreted anhydrous minerals are converted into hydrated minerals in the presence of coaccreted water. Using samples of meteorites with known bulk properties, it is possible to directly connect changes in mineralogy caused by aqueous alteration with spectral features. Spectral features in the mid-infrared are found to change continuously with increasing amount of hydrated minerals or degree of alteration. Building on this result, the degrees of alteration of asteroids are estimated in a survey of new asteroid data obtained from SOFIA and IRTF as well as archived the Spitzer Space Telescope data.
    [Show full text]
  • Legacy Image
    NASA SP17069 NASA Thesaurus Astronomy Vocabulary Scientific and Technical Information Division 1988 National Aeronautics and Space Administration Washington, M= . ' NASA SP-7069 NASA Thesaurus Astronomy Vocabulary A subset of the NASA Thesaurus prepared for the international Astronomical Union Conference July 27-31,1988 This publication was prepared by the NASA Scientific and Technical Information Facility operated for the National Aeronautics and Space Administration by RMS Associates. INTRODUCTION The NASA Thesaurus Astronomy Vocabulary consists of terms used by NASA indexers as descriptors for astronomy-related documents. The terms are presented in a hierarchical format derived from the 1988 edition of the NASA Thesaurus Volume 1 -Hierarchical Listing. Main (postable) terms and non- postable cross references are listed in alphabetical order. READING THE HIERARCHY Each main term is followed by a display of its context within a hierarchy. USE references, UF (used for) references, and SN (scope notes) appear immediately below the main term, followed by GS (generic structure), the hierarchical display of term relationships. The hierarchy is headed by the broadest term within that hierarchy. Terms that are broader in meaning than the main term are listed . above the main term; terms narrower in meaning are listed below the main term. The term itself is in boldface for easy identification. Finally, a list of related terms (RT) from other hierarchies is provided. Within a hierarchy, the number of dots to the left of a term indicates its hierarchical level - the more dots, the lower the level (i.e., the narrower the meaning of the term). For example, the term "ELLIPTICAL GALAXIES" which is preceded by two dots is narrower in meaning than "GALAXIES"; this in turn is narrower than "CELESTIAL BODIES".
    [Show full text]
  • Terrestrial Modification of the Ivuna Meteorite and a Reassessment of the Chemical
    Terrestrial modification of the Ivuna meteorite and a reassessment of the chemical composition of the CI type specimen A. J. King1†, K. J. H. Phillips1*, S. Strekopytov2,‡, C. Vita-Finzi1* and S. S. Russell1 1Planetary Materials Group, Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, U.K. 2Imaging and Analysis Centre, Natural History Museum, Cromwell Road, London SW7 5BD, U.K. †Corresponding Author: A. J. King ([email protected]), Phone: +44 (0)20 7942 6979 ‡Current Address: Inorganic Analysis, LGC, Queens Road, Teddington, Middlesex, TW11 0LY, U. K. *Scientific Associate The rare CI carbonaceous chondrites are the most aqueously altered and chemically primitive meteorites but due to their porous nature and high abundance of volatile elements are susceptible to terrestrial weathering. The Ivuna meteorite, type specimen for the CI chondrites, is the largest twentieth-century CI fall and probably the CI chondrite least affected by terrestrial alteration that is available for study. The main mass of Ivuna (BM2008 M1) has been stored in a nitrogen atmosphere at least since its arrival at the Natural History Museum (NHM), London, in 2008 (70 years after its fall) and could be considered the most pristine CI chondrite stone. We report the mineralogy, petrography and bulk elemental composition of BM2008 M1 and a second Ivuna stone (BM1996 M4) stored in air within wooden cabinets. We find that both Ivuna stones are breccias consisting of multiple rounded, phyllosilicate-rich clasts that formed through aqueous alteration followed by impact processing. A polished thin section of BM2008 M1 analysed immediately after preparation was found to contain sulphate-bearing veins that 1 formed when primary sulphides reacted with oxygen and atmospheric water.
    [Show full text]
  • Minerals in Meteorites
    APPENDIX 1 Minerals in Meteorites Minerals make up the hard parts of our world and the Solar System. They are the building blocks of all rocks and all meteorites. Approximately 4,000 minerals have been identified so far, and of these, ~280 are found in meteorites. In 1802 only three minerals had been identified in meteorites. But beginning in the 1960s when only 40–50 minerals were known in meteorites, the discovery rate greatly increased due to impressive new analytic tools and techniques. In addition, an increasing number of different meteorites with new minerals were being discovered. What is a mineral? The International Mineralogical Association defines a mineral as a chemical element or chemical compound that is normally crystalline and that has been formed as a result of geological process. Earth has an enormously wide range of geologic processes that have allowed nearly all the naturally occurring chemical elements to participate in making minerals. A limited range of processes and some very unearthly processes formed the minerals of meteorites in the earliest history of our solar system. The abundance of chemical elements in the early solar system follows a general pattern: the lighter elements are most abundant, and the heavier elements are least abundant. The miner- als made from these elements follow roughly the same pattern; the most abundant minerals are composed of the lighter elements. Table A.1 shows the 18 most abundant elements in the solar system. It seems amazing that the abundant minerals of meteorites are composed of only eight or so of these elements: oxygen (O), silicon (Si), magnesium (Mg), iron (Fe), aluminum (Al), calcium (Ca), sodium (Na) and potas- sium (K).
    [Show full text]
  • Fossils of Cyanobacteria in CI1 Carbonaceous Meteorites: Implications to Life on Comets, Europa, and Enceladus
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/245540356 Fossils of Cyanobacteria in CI1 Carbonaceous Meteorites: Implications to Life on Comets, Europa, and Enceladus Article · January 2011 CITATIONS READS 23 288 1 author: Richard Brice Hoover The University of Buckingham 431 PUBLICATIONS 2,729 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Astrobiology View project Solar Physics View project All content following this page was uploaded by Richard Brice Hoover on 06 November 2018. The user has requested enhancement of the downloaded file. Fossils of Cyanobacteria in CI1 Carbonaceous Meteorites: Implications to Life on Comets, Europa and Enceladus Richard B. Hoover Space Science Office, Mail Code 62, NASA/Marshall Space Flight Center, Huntsville, AL 35812 ABSTRACT Environmental (ESEM) and Field Emission Scanning Electron Microscopy (FESEM) investigations of the internal surfaces of the CI1 Carbonaceous Meteorites have yielded images of large complex filaments. The filaments have been observed to be embedded in freshly fractured internal surfaces of the stones. They exhibit recognizable features (e.g., the size and size ranges of the internal cells and their location and arrangement within sheaths) that are diagnostic of known genera and species of filamentous trichomic cyanobacteria and other trichomic prokaryotes (such as filamentous sulfur bacteria). ESEM and FESEM studies of living and fossil cyanobacteria show features
    [Show full text]
  • Top 200 Rajasthan Gk Question
    TOP 200 RAJASTHAN GK QUESTION Q1. Man Sagar Lake is situated in which city? (a) Udaipur (b) Jodhpur (c) Jaipur (d) Jaisalmer Q2. The Jal Mahal is situated in the middle of which lake? (a) Man Sagar lake (b) Pichola lake (c) Sambher lake (d) None of these Q3. who constructed Man Saher lake? (a) Jai Singh (b) Sardul Singh (c) Man Singh (d) None of these Q4. Man Sagar Lake was constructed in which year? (a) 1610 (b) 1611 (c) 1612 (d) 1609 Q5. The Albert Hall Museum is situated in? (a) Jaisalmer (b) Jaipur (c) Jodhpur (d) Ajmer Q6. The Laxmi Niwas Palace is a former residential palace which located in Bikaner built by? (a) Ganga Singh (b) Man Singh (c) Jai Singh (d) Sardul Singh 1 www.teachersadda.com | www.sscadda.com | www.bankersadda.com | www.adda247.com Q7. Om Birla is an politician who is the 17th and current Speaker of the Lok Sabha belong from which constituency in Rajasthan? (a) Sri Ganganagar (b) Bikaner (c) Kota (d) None of these Q8. Kota is located along the banks of which river? (a) Luni (b) Ghaghaer (c) Chambal (d) Mahi Q9. Kota became independent in? (a) 1580 (b) 1579 (c) 1578 (d) 1577 Q10. Timan Garh is a historical fort situated in? (a) Karauli (b) Bikaner (c) Dosa (d) Bhilwara Q11. Which folk dance of Rajasthan is characteristic dance of the Bhils? (a) Ghoomar (b) Kalbeliya (c) Fire (d) None of these Q12. The women of which community perform the Kalbelia dance? (a) Gurjar Community (b) Meena Community (c) Kalbelia Community (d) None of these Q13.
    [Show full text]
  • Publications
    1 PUBLICATIONS (A. Bischoff; complete list) 1981 1. Bischoff A.: Verhalten von klastischen Feldspäten verschiedener Stoßwellen- metamorphose-Beanspruchungen in der überhitzten Impaktschmelze von Lappajärvi, Finnland. Diploma thesis. Westf. Wilhelms-Universität. Münster (1981). 2. Bischoff A. and Stöffler D.: Thermal metamorphism of feldspar clasts in impact melt rocks from Lappajärvi crater, Finland. Lunar Planet. Sci. XII, 77 - 79, Lunar and Planetary Institute, Houston (1981). 3. Bischoff A. und Stöffler D.: Reaktionen zwischen geschockten Feldspäten und Impaktschmelzen in Gesteinen des Lappajärvi-Kraters, Finnland. 41. Jahrestagung der Deutschen Geophysikalischen Gesellschaft e. V., Heidelberg, 313 (1981). 1982 4. Bischoff A., Keil K., and Stöffler D.: Consolidation of chondrite regolith breccias by grain boundary and localized shock-melting. Meteoritics 17, 183 - 184 (1982) 5. Bischoff A., Stöffler D., and Keil K.: Consolidation and lithification of gas-rich chondrite regolith breccias by grain boundary and localized shock melting. Fortschr. Mineral. 60, 47 - 48 (1982). 1983 6. Bischoff A.: Verfestigung gasreicher chondritischer Regolithbreccien durch Stoßwellen. DFG-Kolloquium "Impaktprozesse auf Planetenoberflächen", Münster (1983). 7. Bischoff A. and Keil K.: Ca-Al-rich chondrules and inclusions in ordinary chondrites. Nature 303, No.5918, 588 - 592 (1983). 8. Bischoff A. and Keil K.: Ca-Al-rich chondrules and inclusions in ordinary chondrites: Evidence for a related genesis of ordinary and carbonaceous chondrites. Lunar Planet. Sci. XIV, 47 - 48, Lunar and Planetary Institute, Houston (1983). 2 9. Bischoff A. and Keil K.: Catalog of Al-rich chondrules, inclusions and fragments in ordinary chondrites. Special Publication No. 22, UNM, Institute of Meteoritics, Albuquerque, 1 - 33 (1983). 10. Bischoff A. and Keil K.: Ca-Al-rich chondrules and inclusions in ordinary chondrites: Evidence for a related genesis of ordinary and carbonaceous chondrites.
    [Show full text]
  • Fossils of Cyanobacteria in CI1 Carbonaceous Meteorites: Implications to Life on Comets, Europa and Enceladus
    Fossils of Cyanobacteria in CI1 Carbonaceous Meteorites: Implications to Life on Comets, Europa and Enceladus Richard B. Hoover Space Science Office, Mail Code 62, NASA/Marshall Space Flight Center, Huntsville, AL 35812 ABSTRACT Environmental (ESEM) and Field Emission Scanning Electron Microscopy (FESEM) investigations of the internal surfaces of the CI1 Carbonaceous Meteorites have yielded images of large complex filaments. The filaments have been observed to be embedded in freshly fractured internal surfaces of the stones. They exhibit recognizable features (e.g., the size and size ranges of the internal cells and their location and arrangement within sheaths) that are diagnostic of known genera and species of filamentous trichomic cyanobacteria and other trichomic prokaryotes (such as filamentous sulfur bacteria). ESEM and FESEM studies of living and fossil cyanobacteria show features similar to the filaments found in the meteorites -- uniseriate and multiseriate, branched or unbranched, isodiametric or tapered, polarized or unpolarized filaments with trichomes encased within thin or thick external sheaths. Some of the filaments found in the CI1 meteorites also exhibit specialized cells and structures used by cyanobacteria for reproduction (baeocytes, akinetes and hormogonia), nitrogen fixation (basal, intercalary or apical heterocysts), attachment (pili or fimbriae) or indicative of oscillatoria type locomotion (escaped or coiling hormogonia and flattened and coiled empty sheaths). Energy dispersive X-ray Spectroscopy (EDS) studies indicate that the Orgueil meteorite filaments are typically carbon-rich sheaths infilled with magnesium sulfate and other minerals characteristic of the CI1 carbonaceous meteorites. However, the size, structure, detailed morphological characteristics and chemical compositions of the meteorite filaments are not consistent with known species of abiotic minerals.
    [Show full text]
  • 2001 - Present
    Experimental and Analytical Planetology / Experimentelle und Analytische Planetologie Publications - Experimental and Analytical Planetology 2001 - present PART I Publications in reviewed journals Publikationen in Zeitschriften mit Gutachtersystem 2007 Deutsch A. and Langenhorst F. (2007) On the fate of carbonates and anhydrite in impact processes – evidence from the Chicxulub event. GFF 129, 155-160. Deutsch A., Luetke S. and Heinrich V. (2007) The ICDP Lake Bosumtwi impact crater scientific drilling project (Ghana): Core LB-08A litho-log, related ejecta, and shock recovery experiments. Meteorit. Planet. Sci. 42, 635-654. Helbert J., Moroz L. V., Maturilli A., Bischoff A., Warell J., Sprague A. and Palomba E. (2007) A set of laboratory analogue materials for the MERTIS instrument on the ESA BepiColombo mission to Mercury. Adv. Space Res. 40, 272-279. Henkel T., Stephan T., Jessberger E. K., Hoppe P., Strebel R., Amari S. and Lewis R. S. (2007) 3-D elemental and isotopic composition of presolar silicon carbides. Meteorit. Planet. Sci., in press. Kearsley A. T., Borg J., Graham G. A., Burchell M. J., Cole M. J., Leroux H., Bridges J. C., Hörz F., Wozniakiewicz P. J., Bland P. A., Bradley J. P., Dai Z. R., Teslich N., See T., Hoppe P., Heck P. R., Huth J., Stadermann F. J., Floss C., Marhas K., Stephan T. and Leitner J. (2007) Dust from comet Wild 2: Interpreting particle size, shape, structure and composition from impact features on the Stardust aluminum foils. Meteorit. Planet. Sci., in press. Kissel J., Altwegg K., Clark B. C., Colangeli L., Cottin H., Czempiel S., Eibl J., Engrand C., Fehringer H.
    [Show full text]
  • Die Chemischen Zusammensetzungen Chondritischer Meteorite Und Die
    Die Bestimmung von solaren Häufigkeiten von Phosphor und Titan und die chemischen Zusammensetzungen von Stein-Meteoriten Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln vorgelegt von Dieter Wolf aus Aachen Köln, 2001 Berichterstatter: Prof. Dr. Herbert Palme Prof. Dr. Eberhard Seidel Tag der mündlichen Prüfung: 09. Juli 2001 Inhaltverzeichnis 1. Einführung 1 1.1. Einleitung 1 1.2. Ursprung und Bedeutung von Meteoriten 2 1.3. Einteilung der Meteorite 3 1.4. Motivation 6 2. Methodik 9 2.1. Experimentelle Vorgaben 9 2.1.1. Bestimmung der Grenzwellenlängen 10 2.1.2. Bestimmung der kritischen Tablettendicke 10 2.2. Allgemeine Probenvorbereitung 12 2.3. Spezielle Probenvorbereitung 14 2.4. Meßmethodik 16 3. Durchführung der Messungen 22 3.1. Vorbereitende Bemerkungen 22 3.1.1. Reproduzierbarkeiten von Einzelmessungen und Genauigkeit 25 3.1.2. Prinzipielle Fehlermöglichkeit: Drift der RFA 28 3.1.3. Homogenisierungsproblematik bei Orgueil verglichen mit Allende 28 3.2. Ergebnisse 29 3.2.1. Phosphorkonzentration in CI-Meteoriten 29 3.2.1.1. Spezielle Fehlerbetrachtungen 33 3.2.1.2. Abhängigkeit der Anwendbarkeit der für CI erhaltenen Formel zur Konzentrationsbestimmung von der Matrix einer Probe 37 3.2.1.3. Phosphorkonzentrationen einiger CI-Proben 42 3.2.1.4. Homogenitätsprobleme bei Orgueil 42 3.2.1.5. Phosphorkonzentrationen in CM-Meteoriten 44 3.2.1.6. Phosphorbestimmung in Diogeniten 45 3.2.2. Titankonzentrationen in CI-Meteoriten 49 3.2.2.1. Maximaler Fehler der Titanbestimmung für CI 53 i 4. Vergleiche mit Literaturangaben 54 4.1. Gegenüberstellung der in dieser Arbeit bestimmten Elementkonzentrationen für CI mit drei Kompilationen 54 4.2.
    [Show full text]
  • Modal Mineralogy of CI and CI-Like Chondrites by X-Ray Diffraction
    Title Modal mineralogy of CI and CI-like chondrites by X-ray diffraction Authors King, A; Schofield, PF; Howard, KT; Russell, Sara Description publisher: Elsevier articletitle: Modal mineralogy of CI and CI- like chondrites by X-ray diffraction journaltitle: Geochimica et Cosmochimica Acta articlelink: http://dx.doi.org/10.1016/ j.gca.2015.05.038 content_type: article copyright: Copyright © 2015 The Authors. Published by Elsevier Ltd. Date Submitted 2017-05-12 Available online at www.sciencedirect.com ScienceDirect Geochimica et Cosmochimica Acta 165 (2015) 148–160 www.elsevier.com/locate/gca Modal mineralogy of CI and CI-like chondrites by X-ray diffraction A.J. King a,⇑, P.F. Schofield a, K.T. Howard b,c, S.S. Russell a a Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK b Kingsborough Community College of the City University of New York, 2001 Oriental Boulevard, Brooklyn, New York, NY 11235, USA c Department of Earth and Planetary Sciences, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA Received 24 October 2014; accepted in revised form 24 May 2015; available online 30 May 2015 Abstract The CI chondrites are some of the most hydrated meteorites available to study, making them ideal samples with which to investigate aqueous processes in the early Solar System. Here, we have used position-sensitive-detector X-ray diffraction (PSD-XRD) to quantify the abundance of minerals in bulk samples of the CI chondrite falls Alais, Orgueil and Ivuna, and the Antarctic CI-like chondrites Y-82162 and Y-980115.
    [Show full text]
  • Nature and Origins of Meteoritic Breccias 679
    Bischoff et al.: Nature and Origins of Meteoritic Breccias 679 Nature and Origins of Meteoritic Breccias Addi Bischoff Westfälische Wilhelms-Universität Münster Edward R. D. Scott University of Hawai‘i Knut Metzler Westfälische Wilhelms-Universität Münster Cyrena A. Goodrich University of Hawai‘i Meteorite breccias provide information about impact processes on planetary bodies, their collisional evolution, and their structure. Fragmental and regolith breccias are abundant in both differentiated and chondritic meteorite groups and together with rarer impact-melt rocks pro- vide constraints on cratering events and catastrophic impacts on asteroids. These breccias also constrain the stratigraphy of differentiated and chondritic asteroids and the relative abundance of different rock types among projectiles. Accretional chondritic breccias formed at low impact speeds (typically tens or hundreds of meters per second), while other breccias reflect hyper- velocity impacts at higher speeds (~5 km/s) after asteroidal orbits were dynamically excited. Iron and stony-iron meteorite breccias only formed, when their parent bodies were partly molten. Polymict fragmental breccias and regolith breccias in some meteorite groups contain unique types of clasts that do not occur as individual meteorites in our collections. For example, ureilite breccias contain feldspathic clasts from the ureilite parent body as well as carbonaceous chon- dritic projectile material. Such clasts provide new rock types from both unsampled parent bod- ies and unsampled parts of known parent bodies. We review breccias in all types of asteroidal meteorites and focus on the formation of regolith breccias and the role of catastrophic impacts on asteroids. 1. GENERAL INTRODUCTION shock waves during collisional processes. Partsch (1843) and von Reichenbach (1860) described “polymict breccias” 1.1.
    [Show full text]