2001 - Present

Total Page:16

File Type:pdf, Size:1020Kb

2001 - Present Experimental and Analytical Planetology / Experimentelle und Analytische Planetologie Publications - Experimental and Analytical Planetology 2001 - present PART I Publications in reviewed journals Publikationen in Zeitschriften mit Gutachtersystem 2007 Deutsch A. and Langenhorst F. (2007) On the fate of carbonates and anhydrite in impact processes – evidence from the Chicxulub event. GFF 129, 155-160. Deutsch A., Luetke S. and Heinrich V. (2007) The ICDP Lake Bosumtwi impact crater scientific drilling project (Ghana): Core LB-08A litho-log, related ejecta, and shock recovery experiments. Meteorit. Planet. Sci. 42, 635-654. Helbert J., Moroz L. V., Maturilli A., Bischoff A., Warell J., Sprague A. and Palomba E. (2007) A set of laboratory analogue materials for the MERTIS instrument on the ESA BepiColombo mission to Mercury. Adv. Space Res. 40, 272-279. Henkel T., Stephan T., Jessberger E. K., Hoppe P., Strebel R., Amari S. and Lewis R. S. (2007) 3-D elemental and isotopic composition of presolar silicon carbides. Meteorit. Planet. Sci., in press. Kearsley A. T., Borg J., Graham G. A., Burchell M. J., Cole M. J., Leroux H., Bridges J. C., Hörz F., Wozniakiewicz P. J., Bland P. A., Bradley J. P., Dai Z. R., Teslich N., See T., Hoppe P., Heck P. R., Huth J., Stadermann F. J., Floss C., Marhas K., Stephan T. and Leitner J. (2007) Dust from comet Wild 2: Interpreting particle size, shape, structure and composition from impact features on the Stardust aluminum foils. Meteorit. Planet. Sci., in press. Kissel J., Altwegg K., Clark B. C., Colangeli L., Cottin H., Czempiel S., Eibl J., Engrand C., Fehringer H. M., Feuerbacher B., Fomenkova M., Glasmachers A., Greenberg J. M., Grün E., Haerendel G., Henkel H., Hilchenbach M., von Hoerner H., Höfner H., Hornung K., Jessberger E. K., Koch A., Krüger H., Langevin Y., Parigger P., Raulin F., Rüdenauer F., Rynö J., Schmid E. R., Schulz R., Silén J., Steiger W., Stephan T., Thirkell L., Thomas R., Torkar K., Utterback N. G., Varmuza K., Wanczek K. P., Werther W. and Zscheeg H. (2007) COSIMA – high resolution time-of-flight secondary ion mass spectrometer for the analysis of cometary dust particles onboard ROSETTA. Space Sci. Rev. 128, 823-867. Korochantseva E. V., Trieloff M., Lorenz C. A., Buykin A. I., Ivanova M. A., Schwarz W. H., Hopp J., Jessberger E. K. (2007) L-chondrite asteroid breakup tied to Ordovician meteorite shower by multiple isochron 40Ar-39Ar dating. Meteorit. Planet. Sci. 42, 113–130. Krauss O., Wurm G., Mousis O., Petit J.-M., Horner J. and Alibert Y. (2007) The photophoretic sweeping of dust in transient protoplanetary disks. Astron. Astrophys. 462, 977-987. Lazic V., Rauschenbach I., Jovicevic S., Jessberger E. K., Fantoni R. and Di Fino M. (2007) Laser induced breakdown spectroscopy of soils, rocks and ice at subzero temperatures in simulated Martian conditions. Spectrochim. Acta Part B, in press. Leitner J., Stephan T., Kearsley A. T., Hörz F., Flynn G. J. and Sandford S. A. (2007) TOF- SIMS analysis of crater residues from Wild 2 cometary particles on Stardust aluminum foil. Meteorit. Planet. Sci., in press. Maturilli A., Helbert J. and Moroz L. V. (2007) The Berlin Emissivity Database (BED). Planet. Space Sci., submitted. Moroz L. V., Basilevsky A. T., Hiroi T., Pieters C. M., Yakovlev O. I., Fisenko A. V., Semjonova L. F., Rusakov V. S., Khramov D. A., Zinovieva N. G., Arnold G., Semenova A. S., Barsukova L. D., Roshchina I. A., Galuzinskaya A. Kh. and Stroganov I. A. (2007) Spectral properties of simulated impact glasses produced from Martian soil analog JSC Mars- 1. Icarus, submitted. Moroz L. V., Starukhina L. V., Strazzulla G., Baratta G., Dotto E., Arnold G. and Barucci M. A. (2007) Optical alteration of complex organics induced by ion-irradiation: 2. Implications for primitive small bodies of solar system. Icarus, submitted. Mousis O., Petit J.-M., Wurm G., Krauss O., Alibert Y. and Horner J. (2007) Photophoresis as a source of hot minerals in comets. Astron. Astrophys. 466, L9-L12. Paraskov G. B., Wurm G. and Krauss O. (2007) Impacts into weak dust targets under microgravity and the formation of planetesimals. Icarus, in press. Pöml P., Menneken M., Stephan T., Niedermeier D., Geisler T. and Putnis A. (2007) Mechanism of hydrothermal alteration of natural self-irradiated and synthetic crystalline titanate-based pyrochlore. Geochim. Cosmochim. Acta 71, 3311-3322. Putnis C. V., Geisler T., Schmid-Beurmann P., Stephan T. and Giampaolo C. (2007) An experimental study of the replacement of leucite by analcime. Am. Mineral. 92, 19–26. Robens E., Bischoff A., Schreiber A., Dabrowski A. and Unger K. K. (2007) Investigation of surface properties of Lunar regolith - Part I. Applied Surface Science 253, 5709-5714. Sokol A. K., Bischoff A., Marhas K. K., Mezger K. and Zinner E. (2007) Simultaneous accretion of differentiated or metamorphosed asteroidal clasts and chondrules. Meteorit. Planet. Sci., in press. Srinivasan G., Whitehouse M. J., Weber I. and Yamaguchi A. (2007) The crystallization age of eucrite zircon. Science 317, 345-347. Stadermann F. J., Hoppe P., Floss C., Heck P. R., Hörz F., Huth J., Kearsley A. T., Leitner J., Marhas K. K., McKeegan K. D. and Stephan T. (2007) Stardust in STARDUST – the C, N, and O isotopic compositions of Wild 2 cometary matter in Al foil impacts. Meteorit. Planet. Sci., in press. Stephan T. (2007) Assessing the element composition of comet 81P/Wild 2 by analyzing dust collected by Stardust. Space Sci. Rev., submitted. Stephan T., Flynn G. J., Sandford S. A. and Zolensky M. E. (2007) TOF-SIMS analysis of cometary particles extracted from Stardust aerogel. Meteorit. Planet. Sci., in press. Stephan T., Rost D., Vicenzi E. P., Bullock E. S., MacPherson G. J., Westphal A. J., Snead C. J., Flynn G. J., Sandford S. A. and Zolensky M. E. (2007) TOF-SIMS analysis of cometary matter in Stardust aerogel tracks. Meteorit. Planet. Sci., in press. Terada K., Anand M., Sokol A. K., Bischoff A. and Sano Y. (2007) Earliest basaltic magmatism on the Moon: Kalahari 009 and cryptomare connection. Nature, submitted. Wombacher F., Rehkämper M., Mezger K., Bischoff A. and Münker C. (2007) Cadmium stable isotope cosmochemistry. Geochim. Cosmochim. Acta, submitted. Wurm G. (2007) Light induced disassembly of dusty bodies in inner protoplanetary discs: Implications for the formation of planets. Monthly Notice of the Royal Astronomical Society, in press. Wurm G. and Krauss O. (2007) Experiments on negative photophoresis and application to the atmosphere. Atmospheric Environment, in press. 2006 Benkhoff J., Helbert J. and The MERTIS Team (2006) Thermal infrared spectroscopy to investigate the composition of Mercury – The MERTIS instrument on BepiColombo. Adv. Space Res. 38, 647-658. Brownlee D., Tsou P., Aléon J., Alexander C. M. O’D., Araki T., Bajt S., Baratta G. A., Bastien R., Bland P., Bleuet P., Borg J., Bradley J. P., Brearley A., Brenker F., Brennan S., Bridges J. C., Browning N. D., Brucato J. R., Bullock E., Burchell M. J., Busemann H., Butterworth A., Chaussidon M., Cheuvront A., Chi M., Cintala M. J., Clark B. C., Clemett S. J., Cody G., Colangeli L., Cooper G., Cordier P., Daghlian C., Dai Z., d'Hendecourt L., Djouadi Z., Dominguez G., Duxbury T., Dworkin J. P., Ebel D. S., Economou T. E., Fakra S., Fairey S. A. J., Fallon S., Ferrini G., Ferroir T., Fleckenstein H., Floss C., Flynn G., Franchi I. A., Fries M., Gainsforth Z., Gallien J.-P., Genge M., Gilles M. K., Gillet Ph., Gilmour J., Glavin D. P., Gounelle M., Grady M. M., Graham G. A., Grant P. G., Green S. F., Grossemy F., Grossman L., Grossman J. N., Guan Y., Hagiya K., Harvey R., Heck P., Herzog G. F., Hoppe P., Hörz F., Huth J., Hutcheon I. D., Ignatyev K., Ishii H., Ito M., Jacob D., Jacobsen C., Jacobsen S., Jones S., Joswiak D., Jurewicz A., Kearsley A. T., Keller L. P., Khodja H., Kilcoyne A. L. D., Kissel J., Krot A., Langenhorst F., Lanzirotti A., Le L., Leshin L. A., Leitner J., Lemelle L., Leroux H., Liu M.-C., Luening K., Lyon I., MacPherson G., Marcus M. A., Marhas K., Marty B., Matrajt G., McKeegan K., Meibom A., Mennella V., Messenger K., Messenger S., Mikouchi T., Mostefaoui S., Nakamura T., Nakano T., Newville M., Nittler L. R., Ohnishi I., Ohsumi K., Okudaira K., Papanastassiou D. A., Palma R., Palumbo M. E., Pepin R. O., Perkins D., Perronnet M., Pianetta P., Rao W., Rietmeijer F. J. M., Robert F., Rost D., Rotundi A., Ryan R., Sandford S. A., Schwandt C. S., See T. H., Schlutter D., Sheffield-Parker J., Simionovici A., Simon S., Sitnitsky I., Snead C. J., Spencer M. K., Stadermann F. J., Steele A., Stephan T., Stroud R., Susini J., Sutton S. R., Suzuki Y., Taheri M., Taylor S., Teslich N., Tomeoka K., Tomioka N., Toppani A., Trigo-Rodríguez J. M., Troadec D., Tsuchiyama A., Tuzzolino A. J., Tyliszczak T., Uesugi K., Velbel M., Vellenga J., Vicenzi E., Vincze L., Warren J., Weber I., Weisberg M., Westphal A. J., Wirick S., Wooden D., Wopenka B., Wozniakiewicz P., Wright I., Yabuta H., Yano H., Young E. D., Zare R. N., Zega T., Ziegler K., Zimmermann L., Zinner E. and Zolensky M. (2006) Comet 81P/Wild 2 under a microscope. Science 314, 1711–1716. Deutsch A. and Koeberl C. (2006) Establishing the link between the Chesapeake Bay impact structure and the North American tektite strewn field: The Sr-Nd isotopic evidence. Meteoritic. Planet. Sci. 41, 689-703. Flynn G. J., Bleuet P., Borg J., Bradley J. P., Brenker F. E., Brennan S., Bridges J., Brownlee D. E., Bullock E. S., Burghammer M., Clark B. C., Dai Z. R., Daghlian C. P., Djouadi Z., Fakra S., Ferroir T., Floss C., Franchi I.
Recommended publications
  • Structure Characterization of Impact Natural Diamond from Popigai Crater
    80th Annual Meeting of the Meteoritical Society 2017 (LPI Contrib. No. 1987) 6191.pdf STRUCTURE CHARACTERIZATION OF IMPACT NATURAL DIAMOND FROM POPIGAI CRATER Mara Murri1, Adrian P. Jones2, Paul F. McMillan3, Christoph G. Salzmann3, Matteo Alvaro1, M. Chiara Domeneghetti1, Fabrizio Nestola4, Mauro Prencipe5, David Dobson2, Rachael Hazael3, Moreton Moore6, Sergei A. Vishnevsky7, Alla M. Logvinova7, Nikolay V. Sobolev7 1 Earth and Environmental Science University of Pavia, Via Ferrata 1, Italy ([email protected]), 2 Department of Earth Sciences, University College London, WC1E 6BT, UK ([email protected]), 3 Department of Chemistry, University College London, WC1E 6BT, UK, 4 Department of Geosciences, University of Padua, Italy 5 Earth Sciences Department, University of Torino, Italy, 6 Royal Holloway, University of London, TW20 0EX, UK, 7 Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, Koptyug Ave., 3, 630090, Novosibirsk, Russia Introduction: Impact cratering is undoubtedly one of the most frequent high-energetic and potentially catastrophic event occurring at the earth surface and in the planetary system. For example, the energy released from an impact occurring on the Earth’s surface as calculated even for a small impact crater appears to be 3 orders of magnitudes higher than the Hiroshima atomic bomb. These enormous energies and the very short duration can cause unique irreversible changes to rocks and minerals (eg. deformations, phase transformations, melting and vaporization) and are compatible with P and T conditions required to transform graphite into diamond (4.5GPa at 1000°C) and are also enough to induce deformation in the newly formed diamonds.
    [Show full text]
  • The Popigai Crater in the Capacity of Interplanetary Structural Analog
    EPSC Abstracts Vol. 5, EPSC2010-217, 2010 European Planetary Science Congress 2010 c Author(s) 2010 The Popigai crater in the capacity of interplanetary structural analog. G.Dolnikov (1), O.Korablev (1), O.Roste (1) and N. Evdokimova (1) (1) Space Research Institute (IKI), Russia, ([email protected] / Fax: +7-495-3332566) Abstract Popigai crater was formed into two-layer target of Archaean crystalline rocks of the Anabar Shields, In central Arctic Siberia of Russia is situated one of and overlying Proterozoic to Mesozoic sedimentary interesting placing our planet crater Popigai. It is the sequences. Basement rocks are represented by the 4th largest impact crater on Earth but the best Verkhne-Anabar (lower layer up to 10 km thick) and exposed, the three other craters are larger, but they the Khapchan (about 800-1200 m) series [3]. are either buried (Chicxulub), strongly deformed (Sudbury), or deformed and severely eroded (Vredefort). The crater is filled with melted and shuttered material, including microdiamonds and other high pressure minerals characteristic of ultra- high pressure formed during the catastrophic impact. 1. Introduction One of very interesting astroblem of Earth is one hundred kilometres Popigai structure, centred at 7134'N, 11112'E in central Arctic Siberia (Fig. 1, 2), that has been ascribed as nature conservation Figure 2: Space image of Popigai meteorite crater. object of our planet of significant first value [1], [2]. Сlearly showed the inner part about 80 km with a darker tone of forest. In Western and North-Western 2. Popigai astroblem sectors of crater clearly showed exits fragments of bottom old crater and melt rocks (tagamites).
    [Show full text]
  • (Uth)He Age for the Shallowmarine Wetumpka Impact Structure
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by OceanRep Meteoritics & Planetary Science 47, Nr 8, 1243–1255 (2012) doi: 10.1111/j.1945-5100.2012.01381.x An (U-Th)⁄He age for the shallow-marine Wetumpka impact structure, Alabama, USA Jo-Anne WARTHO1*, Matthijs C. van SOEST1, David T. KING, Jr.2, and Lucille W. PETRUNY2 1School of Earth and Space Exploration, Arizona State University, PO Box 876004, Tempe, Arizona 85287, USA 2Geology Office, Auburn University, Auburn, Alabama 36849, USA *Corresponding author. E-mail: [email protected] (Received 12 January 2012; revision accepted 27 May 2012) Abstract–Single crystal (U-Th) ⁄ He dating was applied to 24 apatite and 23 zircon grains from the Wetumpka impact structure, Alabama, USA. This small approximately 5–7.6 km impact crater was formed in a shallow marine environment, with no known preserved impact melt, thus offering a challenge to common geochronological techniques. A mean (U-Th) ⁄ He apatite and zircon age of 84.4 ± 1.4 Ma (2r) was obtained, which is within error of the previously estimated Late Cretaceous impact age of approximately 83.5 Ma. In addition, helium diffusion modeling of apatite and zircon grains during fireball ⁄ contact, shock metamorphism, and hydrothermal events was undertaken, to show the influence of these individual thermal processes on resetting (U-Th) ⁄ He ages in the Wetumpka samples. This study has shown that the (U-Th) ⁄ He geochronological technique has real potential for dating impact structures, especially smaller and eroded impact structures that lack impact melt lithologies.
    [Show full text]
  • Linking the Chassigny Meteorite and the Martian Surface Rock Backstay: Insights Into Igneous Crustal Differentiation Processes on Mars
    Meteoritics & Planetary Science 44, Nr 6, 853–869 (2009) Abstract available online at http://meteoritics.org Linking the Chassigny meteorite and the Martian surface rock Backstay: Insights into igneous crustal differentiation processes on Mars Hanna NEKVASIL*, Francis M. MCCUBBIN, Andrea HARRINGTON, Stephen ELARDO, and Donald H. LINDSLEY Department of Geosciences, Stony Brook University, Stony Brook, New York 11794–2100, USA *Corresponding author. E-mail: [email protected] (Received 05 August 2008; revision accepted 18 March 2009) Abstract–In order to use igneous surface lithologies to constrain Martian mantle characteristics, secondary processes that lead to compositional modification of primary mantle melts must be considered. Crystal fractionation of a mantle-derived magma at the base of the crust followed by separation and ascent of residual liquids to the surface is common in continental hotspot regions on Earth. The possibility that this process also takes place on Mars was investigated by experimentally determining whether a surface rock, specifically the hawaiite Backstay analyzed by the MER Spirit could produce a known cumulate lithology with a deep origin (namely the assemblages of the Chassigny meteorite) if trapped at the base of the Martian crust. Both the major cumulus and melt inclusion mineral assemblages of the Chassigny meteorite were produced experimentally by a liquid of Backstay composition within the pressure range 9.3 to 6.8 kbar with bulk water contents between 1.5 and 2.6 wt%. Experiments at 4.3 and 2.8 kbar did not produce the requisite assemblages. This agreement suggests that just as on Earth, Martian mantle-derived melts may rise to the surface or remain trapped at the base of the crust, fractionate, and lose their residual liquids.
    [Show full text]
  • Disequilibrium Melting and Melt Migration Driven by Impacts: Implications for Rapid Planetesimal Core Formation
    Available online at www.sciencedirect.com Geochimica et Cosmochimica Acta 100 (2013) 41–59 www.elsevier.com/locate/gca Disequilibrium melting and melt migration driven by impacts: Implications for rapid planetesimal core formation Andrew G. Tomkins ⇑, Roberto F. Weinberg, Bruce F. Schaefer 1, Andrew Langendam School of Geosciences, P.O. Box 28E, Monash University, Melbourne, Victoria 3800, Australia Received 20 January 2012; accepted in revised form 24 September 2012; available online 12 October 2012 Abstract The e182W ages of magmatic iron meteorites are largely within error of the oldest solar system particles, apparently requir- ing a mechanism for segregation of metals to the cores of planetesimals within 1.5 million years of initial condensation. Cur- rently favoured models involve equilibrium melting and gravitational segregation in a static, quiescent environment, which requires very high early heat production in small bodies via decay of short-lived radionuclides. However, the rapid accretion needed to do this implies a violent early accretionary history, raising the question of whether attainment of equilibrium is a valid assumption. Since our use of the Hf–W isotopic system is predicated on achievement of chemical equilibrium during core formation, our understanding of the timing of this key early solar system process is dependent on our knowledge of the seg- regation mechanism. Here, we investigate impact-related textures and microstructures in chondritic meteorites, and show that impact-generated deformation promoted separation of liquid FeNi into enlarged sulfide-depleted accumulations, and that this happened under conditions of thermochemical disequilibrium. These observations imply that similar enlarged metal accumu- lations developed as the earliest planetesimals grew by rapid collisional accretion.
    [Show full text]
  • Meteorologia
    MINISTÉRIO DA DEFESA COMANDO DA AERONÁUTICA METEOROLOGIA ICA 105-1 DIVULGAÇÃO DE INFORMAÇÕES METEOROLÓGICAS 2006 MINISTÉRIO DA DEFESA COMANDO DA AERONÁUTICA DEPARTAMENTO DE CONTROLE DO ESPAÇO AÉREO METEOROLOGIA ICA 105-1 DIVULGAÇÃO DE INFORMAÇÕES METEOROLÓGICAS 2006 MINISTÉRIO DA DEFESA COMANDO DA AERONÁUTICA DEPARTAMENTO DE CONTROLE DO ESPAÇO AÉREO PORTARIA DECEA N° 15/SDOP, DE 25 DE JULHO DE 2006. Aprova a reedição da Instrução sobre Divulgação de Informações Meteorológicas. O CHEFE DO SUBDEPARTAMENTO DE OPERAÇÕES DO DEPARTAMENTO DE CONTROLE DO ESPAÇO AÉREO, no uso das atribuições que lhe confere o Artigo 1°, inciso IV, da Portaria DECEA n°136-T/DGCEA, de 28 de novembro de 2005, RESOLVE: Art. 1o Aprovar a reedição da ICA 105-1 “Divulgação de Informações Meteorológicas”, que com esta baixa. Art. 2o Esta Instrução entra em vigor em 1º de setembro de 2006. Art. 3o Revoga-se a Portaria DECEA nº 131/SDOP, de 1º de julho de 2003, publicada no Boletim Interno do DECEA nº 124, de 08 de julho de 2003. (a) Brig Ar RICARDO DA SILVA SERVAN Chefe do Subdepartamento de Operações do DECEA (Publicada no BCA nº 146, de 07 de agosto de 2006) MINISTÉRIO DA DEFESA COMANDO DA AERONÁUTICA DEPARTAMENTO DE CONTROLE DO ESPAÇO AÉREO PORTARIA DECEA N° 33 /SDOP, DE 13 DE SETEMBRO DE 2007. Aprova a edição da emenda à Instrução sobre Divulgação de Informações Meteorológicas. O CHEFE DO SUBDEPARTAMENTO DE OPERAÇÕES DO DEPARTAMENTO DE CONTROLE DO ESPAÇO AÉREO, no uso das atribuições que lhe confere o Artigo 1°, alínea g, da Portaria DECEA n°34-T/DGCEA, de 15 de março de 2007, RESOLVE: Art.
    [Show full text]
  • POSTER SESSION 5:30 P.M
    Monday, July 27, 1998 POSTER SESSION 5:30 p.m. Edmund Burke Theatre Concourse MARTIAN AND SNC METEORITES Head J. W. III Smith D. Zuber M. MOLA Science Team Mars: Assessing Evidence for an Ancient Northern Ocean with MOLA Data Varela M. E. Clocchiatti R. Kurat G. Massare D. Glass-bearing Inclusions in Chassigny Olivine: Heating Experiments Suggest Nonigneous Origin Boctor N. Z. Fei Y. Bertka C. M. Alexander C. M. O’D. Hauri E. Shock Metamorphic Features in Lithologies A, B, and C of Martian Meteorite Elephant Moraine 79001 Flynn G. J. Keller L. P. Jacobsen C. Wirick S. Carbon in Allan Hills 84001 Carbonate and Rims Terho M. Magnetic Properties and Paleointensity Studies of Two SNC Meteorites Britt D. T. Geological Results of the Mars Pathfinder Mission Wright I. P. Grady M. M. Pillinger C. T. Further Carbon-Isotopic Measurements of Carbonates in Allan Hills 84001 Burckle L. H. Delaney J. S. Microfossils in Chondritic Meteorites from Antarctica? Stay Tuned CHONDRULES Srinivasan G. Bischoff A. Magnesium-Aluminum Study of Hibonites Within a Chondrulelike Object from Sharps (H3) Mikouchi T. Fujita K. Miyamoto M. Preferred-oriented Olivines in a Porphyritic Olivine Chondrule from the Semarkona (LL3.0) Chondrite Tachibana S. Tsuchiyama A. Measurements of Evaporation Rates of Sulfur from Iron-Iron Sulfide Melt Maruyama S. Yurimoto H. Sueno S. Spinel-bearing Chondrules in the Allende Meteorite Semenenko V. P. Perron C. Girich A. L. Carbon-rich Fine-grained Clasts in the Krymka (LL3) Chondrite Bukovanská M. Nemec I. Šolc M. Study of Some Achondrites and Chondrites by Fourier Transform Infrared Microspectroscopy and Diffuse Reflectance Spectroscopy Semenenko V.
    [Show full text]
  • Wednesday, March 22, 2017 [W453] MARTIAN METEORITE MADNESS: MIXING on a VARIETY of SCALES 1:30 P.M
    Lunar and Planetary Science XLVIII (2017) sess453.pdf Wednesday, March 22, 2017 [W453] MARTIAN METEORITE MADNESS: MIXING ON A VARIETY OF SCALES 1:30 p.m. Waterway Ballroom 5 Chairs: Arya Udry Geoffrey Howarth 1:30 p.m. Nielsen S. G. * Magna T. Mezger K. The Vanadium Isotopic Composition of Mars and Evidence for Solar System Heterogeneity During Planetary Accretion [#1225] Vanadium isotope composition of Mars distinct from Earth and chondrites. 1:45 p.m. Tait K. T. * Day J. M. D. Highly Siderophile Element and Os-Sr Isotope Systematics of Shergotittes [#3025] The shergottite meteorites represent geochemically diverse, broadly basaltic, and magmatically-derived rocks from Mars. New samples were processed and analyzed. 2:00 p.m. Armytage R. M. G. * Debaille V. Brandon A. D. Agee C. B. The Neodymium and Hafnium Isotopic Composition of NWA 7034, and Constraints on the Enriched End-Member for Shergottites [#1065] Couple Sm-Nd and Lu-Hf isotopic systematics in NWA 7034 suggest that such a crust is not the enriched end-member for shergottites. 2:15 p.m. Howarth G. H. * Udry A. Nickel in Olivine and Constraining Mantle Reservoirs for Shergottite Meteorites [#1375] Ni enrichment in olivine from enriched versus depleted shergottites provide evidence for constraining mantle reservoirs on Mars. 2:30 p.m. Jean M. M. * Taylor L. A. Exploring Martian Mantle Heterogeneity: Multiple SNC Reservoirs Revealed [#1666] The objective of the present study is to assess how many mixing components can be recognized, and address ongoing debates within the martian isotope community. 2:45 p.m. Udry A. * Day J.
    [Show full text]
  • Magnetite Biomineralization and Ancient Life on Mars Richard B Frankel* and Peter R Buseckt
    Magnetite biomineralization and ancient life on Mars Richard B Frankel* and Peter R Buseckt Certain chemical and mineral features of the Martian meteorite with a mass distribution unlike terrestrial PAHs or those from ALH84001 were reported in 1996 to be probable evidence of other meteorites; thirdly, bacterium-shaped objects (BSOs) ancient life on Mars. In spite of new observations and up to several hundred nanometers long that resemble fos­ interpretations, the question of ancient life on Mars remains silized terrestrial microorganisms; and lastly, 10-100 nm unresolved. Putative biogenic, nanometer magnetite has now magnetite (Fe304), pyrrhotite (Fel_xS), and greigite (Fe3S4) become a leading focus in the debate. crystals. These minerals were cited as evidence because of their similarity to biogenic magnetic minerals in terrestrial Addresses magnetotactic bacteria. *Department of Physics, California Polytechnic State University, San Luis Obispo, California 93407, USA; e-mail: [email protected] The ancient life on Mars hypothesis has been extensively tDepartments of Geology and Chemistry/Biochemistry, Arizona State challenged, and alternative non-biological processes have University, Tempe, Arizona 85287-1404, USA; e-mail: [email protected] been proposed for each of the four features cited by McKay et al. [4]. In this paper we review the current situa­ tion regarding their proposed evidence, focusing on the Abbreviations putative biogenic magnetite crystals. BCM biologically controlled mineralization BIM biologically induced mineralization BSO bacterium-shaped object Evidence for and against ancient Martian life PAH polycyclic aromatic hydrocarbon PAHs and BSOs Reports of contamination by terrestrial organic materials [5°,6°] and the similarity of ALH84001 PAHs to non-bio­ genic PAHs in carbonaceous chondrites [7,8] make it Introduction difficult to positively identify PAHs of non-terrestrial, bio­ A 2 kg carbonaceous stony meteorite, designated genic origin.
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • A PROTEROZOIC 40Ar/39Ar AGE for the SUVASVESI SOUTH STRUCTURE (FINLAND)
    72nd Annual Meteoritical Society Meeting (2009) 5076.pdf A PROTEROZOIC 40Ar/39Ar AGE FOR THE SUVASVESI SOUTH STRUCTURE (FINLAND). E. Buchner1, M. Schmieder1, W. H. Schwarz2, M. Trieloff2, J. Moilanen3, T. Öhman4 and H. Stehlik5. 1Institut für Planetologie, Universität Stuttgart, D-70174 Stuttgart, Germany. Email: [email protected]. 2Institut für Geowissenschaften, Universität Heidelberg, D-69120 Heidelberg. 3Pinkelikatu 6 B 48, FI-90520 Oulu, Finland. 4Department of Geosciences, FI-90014 University of Oulu, Finland. 5Hagedornweg 2/2/12, A-1220 Vienna, Austria Introduction: The Suvasvesi North (diameter ~3.5 km) and South (diameter ~4.0 km) structures [1-3] in Finland are thought to represent a double impact crater system, similar to the Clearwater lakes in Canada [4]. As no isotopic data have so far been available, only the age of the ~1.88 Ga Paleoproterozoic (and some ~2.7 Ga Archean) crystalline target rocks of the Baltic Shield [1] is cited as the maximum impact age. Paleomagnetic data suggested either a Permo-Triassic (~230-280 Ma) or a Neoproterozoic (770-790 Ma) age for the Suvasvesi North impact structure [4,5]. We here present the first 40Ar/39Ar age for the Suvasvesi South structure. Samples and analytical procedure: Clast-poor particles of impact melt rock (87.1 mg) recovered by one of the authors (J. M.) from the Mannamäki area were chosen for 40Ar/39Ar dat- ing at the University of Heidelberg [6,7]. Results and interpretation: 40Ar/39Ar step-heating analysis yielded no plateau within a perturbed, hump-shaped [8] age spectrum with younger apparent ages (~100-450 Ma) within the low-temperature (T) heating steps (~13% of 39Ar released), older apparent ages (~820 Ma) in the mid-T fractions (~47% of 39Ar), and intermediate apparent ages (~715-710) Ma in the four final high-T steps (~40% of 39Ar).
    [Show full text]
  • Raman Spectroscopy of Shocked Gypsum from a Meteorite Impact Crater
    International Journal of Astrobiology 16 (3): 286–292 (2017) doi:10.1017/S1473550416000367 © Cambridge University Press 2016 This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Raman spectroscopy of shocked gypsum from a meteorite impact crater Connor Brolly, John Parnell and Stephen Bowden Department of Geology & Petroleum Geology, University of Aberdeen, Meston Building, Aberdeen, UK e-mail: c.brolly@ abdn.ac.uk Abstract: Impact craters and associated hydrothermal systems are regarded as sites within which life could originate onEarth,and onMars.The Haughtonimpactcrater,one ofthemost well preservedcratersonEarth,is abundant in Ca-sulphates. Selenite, a transparent form of gypsum, has been colonized by viable cyanobacteria. Basementrocks, which havebeenshocked,aremoreabundantinendolithicorganisms,whencomparedwithun- shocked basement. We infer that selenitic and shocked gypsum are more suitable for microbial colonization and have enhanced habitability. This is analogous to many Martian craters, such as Gale Crater, which has sulphate deposits in a central layered mound, thought to be formed by post-impact hydrothermal springs. In preparation for the 2020 ExoMars mission, experiments were conducted to determine whether Raman spectroscopy can distinguish between gypsum with different degrees of habitability. Ca-sulphates were analysed using Raman spectroscopyand resultsshow nosignificant statistical difference between gypsumthat has experienced shock by meteorite impact and gypsum, which has been dissolved and re-precipitated as an evaporitic crust. Raman spectroscopy is able to distinguish between selenite and unaltered gypsum. This showsthat Raman spectroscopy can identify more habitable forms of gypsum, and demonstrates the current capabilities of Raman spectroscopy for the interpretation of gypsum habitability.
    [Show full text]