<<

Cambridge University Press 0521470102 - : A Petrologic, Chemical and Isotopic Synthesis Robert Hutchison Index More information

Index of names

Acapulco 174, 176, 181–2, 183, 248, 249, 250, 273, Beaver Creek 176 274, 369, 373 Belgica 7904 94, 107, 405 Acfer 059 172, 181–2 Bench Crater 101 Acfer 094 50, 100, 121–2, 123 Bencubbin 118, 358, 360, 361, 416–17 Acfer 182 103, 113, 117, 119 Binda 280, 284, 289 Acfer 187 118 Bishopville 270 Adelaide 121, 122 Bishunpur 6, 50, 73, 87, 90, 137, 180 Adrar 003 87 Bjurb¨ole42, 131, 175, 176 Alais 98, 101 Bocaiuva 358, 360 Allan Hills (ALH) 76003 131 Bohumilitz 327 ALH 76004 21, 59 Brachina 251, 256, 274 ALH A77003 110 395 ALH A77005 15, 312, 318 Brownfield (1937) 59 ALH A77081249 Brunflo 155 ALH A77257 264 Burnwell 147, 148, 411 ALH A77307 109, 110 Bustee 268, 269, 270, 271 ALH A78019 261, 264 Butsura 438 ALH A81005 280, 297, 302 ALH 82101 110 Caddo County 254, 256 ALH 82106 264 Calcalong Creek 298, 300 ALH 83014 261 Camel Donga 283 ALH 84001 307, 311, 315–16, 318 274 ALH 84025 256 Canyon Diablo 169, 170 ALH 85001283 Cape York 322, 327, 330, 332, 343, 390 ALH 85085 119, 120, 193 Carlisle Lakes 128, 130, 139, 140 ALH 88045 103 Carlton 254, 255 170, 171, 177 Cerro los Calvos 147, 148, 410 Allende 4, 55, 59, 76, 80, 93, 110, 111, 112, 114, 115, Chainpur 50, 73, 135, 137, 166, 175, 176, 181–2, 222 138, 168, 172, 173, 177, 431 245, 279, 280, 305, 307, 314–15, 317 Al Rais 111, 116 Chervony Kut 369, 373 Angra dos Reis 280, 291, 292, 293, 295 Chihuahua City 342 Appley Bridge 49 Chinguetti 354 Asuka (A) 87031264 Clark County 344 A 881371 292 Clover Springs 354 A 881394 373 Cold Bay 347, 358 A 881757 298, 300, 301, 303, 304 Cold Bokkeveld 104, 105, 106, 107, 108, 403 Aubres 267, 269 Coolidge 47, 111, 121, 122 Ausson 170 Crab Orchard 351, 354 Crumlin 21 Bacubirito 327 Cumberland Falls 268, 270 Ballinoo 327 Barratta nos. 1and 2 15 165 Barwell 131, 170, 176, 181–2, 185, 434, 438 Dar al Gani 262 302, 303

478

© Cambridge University Press www.cambridge.org Cambridge University Press 0521470102 - Meteorites: A Petrologic, Chemical and Isotopic Synthesis Robert Hutchison Index More information

Index of Meteorite names 479

Dar al Gani 400 279, 297, 301 Kaba 110, 114 Dar al Gani 476 308, 312, 313, 318 Kaidun 107, 118, 145 Dayton 254, 255 Kakangari 24, 147, 248 Deep Springs 360 Kapoeta 279, 283, 290, 291, 295, 296 Dhajala 43, 77–81, 130 Karoonda 25, 47, 97, 103, 112, 115, 117 Dhofar 081303 Kernouve 46, 130, 170, 176, 400, 438 Dhofar 378 317 Khairpur 143, 166 Dingo Pup Donga 257, 261, 264 Knyahinya 170, 171, 181–2 Divnoe 256 Kobe 115, 116 D’Orbigny 292, 293, 295 Kodaikanal 342 Dyalpur 257, 258, 263, 273, 274 Kota-kota 143 345 Eagles Nest 257 Krymka 50, 59, 73, 74, 134, 137, 193, 408 Eagle Station 343, 347, 358, 360 Efremovka 172, 181–2 Lafayette 314, 317 Elephant Moraine (EET) A79001280, 305, 306–7, Landes 249, 416 308, 311, 312, 313, 318 La Primitiva 332 EET A79002 289 Lea County 002 147 EET 83334 103 Leedey 375 EET 84032 251 Leoville 111 EET 87517 264 Lewis Cliff (LEW) 86010 179, 181–2, 183, 292, 369, EET 87521/96008 298, 300, 301, 304 373 EET 96080 400 LEW 87009 115, 116 Emery 351, 354 LEW 87051292 9, 346, 347 LEW 87232 147 Estherville 351 LEW 88180 146 LEW 88516 313 Felix LEW 88774 266 F¨ollinge 341 Linville 344 Forest Vale 167, 170, 181–2, 373 Little River (a) 15 Frontier Mountain (FRO) 90011 249 Little River (b) 15 Lodran 248, 249, 250 Galim (a) 157 Loongana 001 121, 122 Galim (b) 157 Los Angeles (LA) 001317 330, 332 Glorieta Mountain 395 MacAlpine Hills (MAC) 88104 302 Goalpara 257, 258–9, 263 MAC 88136 143 Governador Valadares 314 MAC 88177 251 Grosnaja 110 Maltah¨ohe254, 255 Grosvenor Mountains (GRO) 95577 118 Marion (Iowa) 170 Guare˜na167, 170, 171 Mayo Belwa 270, 272 Guidder 170 Mbale 161 Mbosi 358, 360 Hadley Rille 142 Meteorite Hills (MET) A78008 264 Hainholz 354 Mez¨o-Madaras 59, 135, 166 Hajmah (a) 249, 259 Mighei 25, 101 Hammadah al Hamra 237 119 Mincy 10, 354 Hammond Downs 16 Mocs 46, 155 Haver¨o263, 264, 273, 274 Modoc 176 Henbury 8, 343, 431 Mokoia 168, 181–2 170 Monahans 161, 176, 181–2 Monument Draw 249 Ibitira 282, 283, 288 Moorabie 146, 147, 148, 410 Innisfree 11 Morristown 395, 396 Itzawisis 347, 358 Moti-ka-nagla 21 Ivuna 25, 98, 101 Mount Egerton 267, 272 Mount Morris (Wisconsin) 250, 253, 254, 256 Jamestown 327, 330, 344 Mulga West 111 Jilin 4 416, 431 Johnstown 279, 283, 289, 290, 295, 296 Mundrabilla 012 111 Juvinas 290 Murchison 4, 93, 101, 102, 169

© Cambridge University Press www.cambridge.org Cambridge University Press 0521470102 - Meteorites: A Petrologic, Chemical and Isotopic Synthesis Robert Hutchison Index More information

480 Index of Meteorite names

Nadiabondi 170, 171 Sˆao JoˆaoNepomucena 344 Nakhla 305, 311, 314, 317, 318, 368, Semarkona 50, 72, 90, 94, 133, 134, 136, 137, 138, 371 177, 181–2, 218, 408, 409, 436–7 Nedagolla 332 Serra de Mag´e283, 295, 296 Nelson County 344 Shallowater 157, 175, 176, 267, 269, 272–3, 373, Netscha¨evo 148, 342, 411, 417 416 Ngawi 94, 409 Sharps 89, 90, 135, 137, 138 Nilpena Shaw 42 Ningqiang 115, 116, 117 Shergotty 305, 308, 311, 312 North Haig 257, 262 Shingle Springs 344 Northwest Africa 032 298, 303, 304 Siena 6 Northwest Africa 505 399 Sikhote-Alin 4, 327 Northwest Africa 801140 Sioux County 7, 295, 379 Northwest Africa 1152 76 Skookum 327 Norton County 4, 267, 268, 271, 273, 274 Springwater 369 Novo Urei 257, 263, 264 295 Nuevo Laredo 284, 295, 296 Steinbach 344 Supuhee 92 Ochansk 21 Suwahib (Buwah) 146, 147, 148, 410 Oktibbeha County 341, 416 369 89, 98, 122, 181–2 87, 98, 99, 100, 101, 168, 172, 176 Tatahouine 289 25, 102, 112 16, 46 Osterplana 155, 159 Thiel Mountains 346 Tieraco Creek 395 Paneth’s Iron 15 Tierra Blanca 254, 256 Parnallee 135, 166, 174, 417 Tieschitz 42, 59, 67, 73, 87, 135, 136, 137, 165, 166, Pasamonte 283, 284, 288 167, 218, 413 Pecora Escarpment (PCA) 82506 264 Tonk 98 Phum Sambo 176 Tucson 358, 360 Picacho 395 Tuxtuac 167, 170 Pine River 254 Piplia Kalan 282, 283 Udaipur 59 Pitts 254 Udei Station 251, 254, 416 Pontlyfni 248, 250, 253, 254, 256, 273, 274 Uden 138 Prairie Dog Creek 135 Uwet 327 Puente del Zacate 343 Veramin 354 Qingzhen 146, 167, 176, 181–2 Vigarano 25, 80, 102, 108, 110, 111, 112, Queen Alexandra Range (QUE) 93069 300, 302 114 QUE 94201 308, 311, 312, 317 QUE 94269 297 Walters 176 QUE 94281298, 303 Warrenton 110 Watson 417 Reckling Peak (RKP) A79015 354 Weatherford 118, 358, 360, 416–17 Renazzo 25, 59, 87, 103, 111, 113, 116, 117, 118, Willaroy 147, 148, 410 431 Winona 253, 254–5, 256 Revelstoke 4, 98 Wray (a) 147, 148 Richardton 165, 170, 176, 181–2 Roosevelt County 027 261, 262 Yamato (Y) 6901167 Rumuruti 24–5, 128, 139, 140 Y 74013 289 Y 74025 254 Sahara 99555 292 Y 74063 249 Sahara 00182 118 Y 74130 264 Ste Marguerite 170, 176, 177, 179, 180, 181–2, 183, Y 74357 251 373 Y 74659 264 St Marks 143 Y 75032 289 St Mesmin 49, 131, 162, 167 Y 75274 274 St Sauveur 146 Y 791197 300, 302 St S´everin 167, 170, 171, 176, 181–2 Y 791198 90 Salta 406 Y 791199 289

© Cambridge University Press www.cambridge.org Cambridge University Press 0521470102 - Meteorites: A Petrologic, Chemical and Isotopic Synthesis Robert Hutchison Index More information

Index of Meteorite names 481

Y 791200 289 Y 82192/82193/86032 300, 302 Y 791492 289 Y 8451349–50 Y 793169 298, 303–4 Y 86720 94, 107, 405 Y 793274 298, 303 Y 793605 308, 312, 313 Zag 176, 177, 181–2 Y 82162 94, 98, 99, 100, 101 Zagami 306–7, 308, 312

© Cambridge University Press www.cambridge.org Cambridge University Press 0521470102 - Meteorites: A Petrologic, Chemical and Isotopic Synthesis Robert Hutchison Index More information

General index

aberrant grains 400 aerodynamic sorting 203 absolute age 155 aerolite 5 calibration 184 age principal systems 157 absolute, see absolute age; see also Rb-Sr; U-Pb; - 243–53, 275 processes chemical compositions 273, 274 cosmic ray exposure, see cosmic ray exposure age diagnostic features 249 of the Earth 165, see also Earth’s age grain-size 251 formation, see formation age grain-size, texture, shock stages, modes 252 gas retention, see gas retention age melting 375 metamorphic, see metamorphic age 246, 251 relative, see relative age relict 249 shock metamorphic, see shock metamorphic age shock stages 251 terrestrial, see terrrestrial age texture 249–51 agglomeratic , see chondrule, granular thermal history 251 trapped noble gases 253 Agrell, S. O. 223 veining 249 Ahrens, L. H. 192 accretion disk, protosolar 48, 210, 421 aircraft, operated by NASA 8 CI composition 210 ˚akermanite 36 cold disk 433 Al, determination by difference 26 gas 412, 433 lithophile 37 ices 433 normalization 195, 205, 207 organics, interstellar 426, 433 refractory 35 oxygen isotopic ratio 412–13 26Al 77, 81, 186 solids/grains 412–33 heating 369 vaporization of solids 210, 433 initial 26Al/27Al ratio 78, 177, 178, 180, 373, 434, see also protosolar matter, protosolar nebula 436–7 accretionary lapili 233 local synthesis 434 6, 245, 247 Al-Mg method 177 Al-Mg ‘ages’ 178 ‘delta’ notation 178–9 , see angrites; see also -like calibration 183 achondrites isochron plot 177, 178 Ca-rich and Ca-poor 245 alabandite, ferroan 142 differentiated 244, 245, 277–9, 286–7, 318 albite 36 gas retention ages 159 alkalis, Na, K, moderately volatile 35 HED 280–91, see also HED ALL initial Sr 165 lunar 6, 296–305, see also lunar meteorites Allan Hills, see Antarctica martian 6, 305, see also martian meteorites aluminosilicate 424 numbers of 12, 295–6 amoeboid olivine aggregates, see CAIs olivine-pigeonite or olivine-, see amorphous material, in matrix 50 primitive, see primitive achondrites amphoterites, see ADOR initial Sr 163 Anders, E. 216, 422 adsorption, anomalous 429 angrites 291–4

482

© Cambridge University Press www.cambridge.org Cambridge University Press 0521470102 - Meteorites: A Petrologic, Chemical and Isotopic Synthesis Robert Hutchison Index More information

General index 483

age 292, 273 asteroidal heating 369; see also parent body processes Ca/Al ratio 292, 295 asteroidal volcanism chemical analyses 295 duration 366, see also parent body processes chemical composition 295–6 products 295–6 diagnostic mineralogy 246, 278–80 Fe/Mn ratio 295 early history 366–77; see also parent body mg# 295 processes mode 280 Earth-crossing 10, 11 olivine pyroxenite 291 source of achondrites 10 oxygen isotopic ratios 292 source of non-chondritic meteorites 366–8; see also Rb/Sr modelling 292 meteorites, sources of silica undersaturated 294 asymmetric accretion, see giant planet volatile poor 292 331, see iron meteorites, structural angrites mineralogy 286–7, 293–4 classification anorthite 293 atmophile elements 37 diopside-hedenbergite pyroxene 293 atmospheric entry 1–2, 13 high Ca, Ti, Al ‘fassaite’ 293 Au kirschsteinite 293 condensation 202 larnite 293 moderately volatile 35 minor/trace (baddeleyite, celsian) 293–4 , brecciated 243–8, 267–72, 275 olivine 292, 293–4 age 267 pyroxene 293–4 chemical composition 273 angrites texture 292–3 diopside 267 granular 292 fusion crust 267 groundmass 292 267 hypidiomorphic granular 292 parent bodies 267 poikilitic 292 relationship, EH, EL groups 267 porphyritic 292 summary 274 subophitic 292 aubrites mineralogy 270 unbrecciated 292–3 diagnostics 246 unshocked 292 enstatite 270 angrites thermal history 294 igneous clast 268, 270 burial depth 294 inhomogeneity 270 cooling rate 294 , , sulfides 270 parent body size 377 modes, compositions 271 anorthite 36, 80, 81 pyroxene 270 anorthite-gehlenite-forsterite-spinel system 79, 235 aubrites polymict 268 anorthosite 296 chondritic clasts 268 ANT suite 296 igneous clast, Bustee 268, 269, 270, 271 Antarctic Meteorite Newsletter 16 impact melt clasts 268 Antarctic Meteorite Research 16, 308, 316 regolith breccias 268, 272 Antarctica aubrites texture 268–9 numbers of specimens 12 matrix 268 Queen Maud Land, Yamato Mountains 12 aubrites thermal history 271 terrestrial ages 13 cooling rate 271 Victoria Land, Allan Hills 12, 15 crystallization from melt 271 Apollo 14, Apollo 16 302 igneous clast, Bustee 271 Apollo missions 3, 10, 296 regolith breccias 268, 272 returned samples, nomenclature 15 shock stage 267–72 aqueous metamorphism, see chondrites; parent body shock vaporization in Mayo Belwa 272 processes temperature 271 39Ar-40Ar method 159, 160 Ti in 267, 271 39Ar recoil 161 vugs 272 Arizona State University 11 see also Mount Egerton; Shallowater armored chondrule, see chondrule augite 130 As vs Ga 356, 357 austenite 324 condensation curve 357 As vs Ni 356, 357 BABI initial Sr 163 1989DA 11 baddeleyite 293–4 asteroid resonances, see Jupiter-asteroid resonances bandwidth (kamacite), see iron meteorites, asteroidal basaltic meteorites, see angrites; HED structure

© Cambridge University Press www.cambridge.org Cambridge University Press 0521470102 - Meteorites: A Petrologic, Chemical and Isotopic Synthesis Robert Hutchison Index More information

484 General index

basalt 6 fundamental properties 230 Solar System compared 414; see also lunar, group II 83, 84 mare basalts group IV 84 basaltic hornfels 281 groups I, III, V and VI 83 basaltic melt loss 377 heat-source 238 basaltic meteorites, see angrites; ; ; igneous texture in POIs 81 HED; ; lunar and martian isotopic heterogeneity 422 meteorites layered 240 basaltic rocks 278 layered rims 81 basalt-like achondrites 7, 10 mass-dependent isotopic fractionation 234 10Be 158, 183, 186, 203 melilite alteration 81 Bern (University) 422 melilite-rich 82 Bi 35, 36, 38, 216 oxygen isotopic ratios 92–3, 237, 238, 412 biaxial classification scheme 23, 49 -olivine inclusions (POIs) 81 ‘big delta’ () notation 38–9 porous aggregates 81 248, 356 REE patterns 83 chemical composition 273, 274 refractory elements 82 diagnostic mineralogy 246 reversed zoning 237, 238 grain-size, mode, shock stage, texture 252 rim sequences 81 metamorphism 248–57 secondary sodalite, grossular 77 mineralogy 257 spinel spherule 105 oxygen 256; see also primitive spinel-hibonite 82, 236, 237 achondrites spinel-pyroxene 76 texture 251, 257 spinel-pyroxene-olivine inclusions 237 texture cumulate 257 spinel-rich fine-grained 80, 82, 105 thermal history 257 type A 76, 80, 82, 235, 236 type B (B1, B2 and B3) 76, 79–80, 82, 235, breccia types, EOC 131, HED 281 236 igneous 6 type C 80, 235, 236 polymict () 345 ultrarefractory 83–4, 234, 237 polymict surface 289; see also chondrites Wark-Lovering rims 81, 105 Brezzina lamellae 343 CAI age 172, 181–2, 373 Brezina, A. 245; see also chondrites, classification Al-Mg systematics 78, 177, 178–9, 180, 229, (RTB) 437 bright fireball 2 older than chondrules 229, 437 British Museum (Natural History) 16 preaccretion storage 172, 230, 437 bronzite-olivine chondrites, see chondrites CAI alteration 81, 211, 230, 237–8 Brownlee particles 89 aqueous 238 in small bodies 230 14C dating 13 isotopic disequilibrium 238 C/O ratios, in stars 424 nebular 237–8 41Ca 186 oxygen isotopic exchange 238 48Ca 81 replacement reactions 237 Ca, lithophile 37 temperature 237–8 Ca, refractory 35 CAI mineralogy 54, 64, 237 Ca-, Al-rich inclusions (CAIs) 54, 75–84, 139, 141, nucleation barriers 238 144 CAI origin 82, 203, 210, 229–33, 239, 241 figures 55 CAI origin by condensation summary 239 from dust enriched gas 233 CAI of liquids 193, 233 amoeboid olivine aggregates 76, 80–1 of solids 233 Ca/Al ratios 82 CAI origin by condensation/evaporation 83, 210, chemical fractionation 208 234 classification 77–81 composition 233–6 compact type A 80 formation sequence 233 cooling rate 237, 238 CAI origin by condensation/evaporation of liquids corundum-hibonite 82 233, 234–6 fluffy type A 80 disequilibrium 234–6 forsterite-bearing 80 dust enriched gas 234 fremdlingen 79 CAI origin by evaporation/condensation 233 FUN inclusions 81, 238 of solids in accretion disk (x-wind) 233, 240

© Cambridge University Press www.cambridge.org Cambridge University Press 0521470102 - Meteorites: A Petrologic, Chemical and Isotopic Synthesis Robert Hutchison Index More information

General index 485

CAI origin by fluctuating x-wind 233, 238–9, 437, groups, chemical fractionation 33, 190–1, 440 194–5, 196, 199, 200, 201, 205, 207, 209–13 conditions 239 duration 434 radial transport 239, 437 heliocentric zones 434, 435 storage 437, 440 recycled component 437 CAI origin by melting refractory minerals 233 uncertainties 209 multiple heating 233 x-wind model 213–15, 434 reaction, refractory assemblages with fluids 233 chondrite groups, diagnostic petrography 41, 124, 149 CAI textures 54, 230 chondrite groups, grouplet 24, 47 nucleation barriers 238 chondrite groups, origin 193–216, 219 CAI thermal history 236–7 chondrite groups, volatile elements 209 secondary melting/reheating 237 chondrite parent body, ordinary chondrites, size 414; calcite 424 see also parent body processes Ca-poor pyroxene 22, 40, 41, 42, 130, 290, 339 chondrite parent body structure 190–1, 413 Ca content 49 burial depth, type 3 413 clinoenstatite lamellae 44 primary bodies, ‘onion-shell’ 414 striated 139 ‘rubble-pile’ 225, 414 capture theory 421; see also Solar System, origin chondrite petrography 96–7 Ca-pyroxene 290, 339 most primitive 43, 49, 50, 51 carbide 37 petrologic (petrographic) type 23, 40–2, 47, 49 carbide- and magnetitie-rich assemblages 92 petrologic subtype 40, 47, 49–50 carbon dioxide 37 uncertainty 49 carbon monoxide 37 chondrite precursors 208, 214 carbon, as CO2 22, 26–7, 35, 37 differentiated bodies 225 carbonaceous asteroid, icy-heating, fluid flow 404–5, heliocentric zones 434 406; see also parent body processes onion-shell bodies 224 carbonaceous chondrites, see chondrites parent bodies 434 carbonacous chondrite fission xenon (CCFXe) 431; presolar dust 433 see also Xe-HL slightly differentiated bodies 224 carbonate 54, 424 small bodies 224 oxygen isotopic ratios 94, 402–3 chondrite, veined, premetamorphic 434–8 carbonyl sulfide 87 chondrite 216–18 Carlisle Lakes-like, see chondrites, R group trace elements 217 339 chondrite water content 41 Ca-Tschermaks pyroxene 36 chondrite weathering 20 Cd 35, 38 quantitative measurement 45; see also weathering celsian 293–4 scale chalcophile Ca, K, Mg, Mn, in enstatite chondrites 28 chondrites 5, 18–52, 239 chalcophile elements 36, 37 chondrites accretion 209–15, 216 Challenger expedition 7 cold/hot 399–401 charged particle-tracks 172 trigger 434 chemical affinity of elements 37 two-stage 437; see also parent body processes chemical analyses, techniques 25–6, 27 chondrites accretion/fragmentation, repetitive 210, instrumental 26–7 215 limitations 26–7 chondrites sample size 26 aggregate rocks 19, 50 wet 26 Al contents 28 chemical compositions Al/Si ratios 22, 28, 31 angrites and HED 295 amphoterites 22, 245 aubrites, primitive achondrites and ureilites 273 analytical data-base 27 chondrite groups 29 aqueous metamorphism 20, 40, 50, 141, 210, 216, chemical group, see chondrites 404–5, 406; see also parent body processes chemical thermodynamics 35 aqueous metamorphism, age 181–2 chemistry of chondrites 18–52 breccias 23, 24, 48–9, 145; see also chondrite Chicago (University) 38, 422 groups, monomict, polymict, etc. Chicxulub 2, 3 breccias, classification 48, 51 Chladni, E. F. F. 345 breccias, history 162 chondrite chemical groups 23, 28, 29, 30, 207 premetamorphic age 434–8 chondrite distribution (class, group, type) 40, 42 bronzite-olivine 20, 22 chondrite diversity 421 bulk compositions 19, 23, 28, 29, 30 chondrite groups, chemical compositions 193–219 Ca contents 28

© Cambridge University Press www.cambridge.org Cambridge University Press 0521470102 - Meteorites: A Petrologic, Chemical and Isotopic Synthesis Robert Hutchison Index More information

486 General index

chondrites (cont.) CH metal-rich 120 Ca/Al ratios 28, 30, 32 CH metamorphism 121 Ca/Si ratios 22, 28, 30, 31 impact into regolith 121 carbon contents 22, 27, 28, 31 CH mode 120 carbonaceous and non-carbonaceous groups CH polymict regolith breccias 120 diagnostic features 124 CH related to CR, Bencubbin 118, 416–17, interelement ratios 28, 51, 194–5, 196, 197 see petrogenetic associations chondrites, carbonaceous groups 22, 25, 28, 39, 40, CH siderophile element enriched 119 47, 96–104, 126 CH texture, chondrule size 103, 113, 120 ages 168, 172–6 clasts of petrologic types 1–3 aqueous alteration 97 CH weathering 113 chemical fractionation among groups 195, 206, chemical classes 25, 27–34, 47–51 207 chemical fractionation 195, 205, 207; see also moderately volatile elements 214 chondrite groups, chemical fractionation; volatile trace elements 217 nebular condensation; x-wind model historical 97–8 chemical groups 24–5, 27–34, 51 matrices in CO, CV, CK, CR, CH 112 chemical-petrologic classification 23, 40, 47 parent body processing 168–9 chemistry 18–22, 27–34, 52, 193, 194–6 petrologic types 97, 104 chronology 152–82, 186 summary 123–5 chondrites, CI 25, 29, 30, 39, 42, 90, 98–101, 149 textures, modes 102, 104 CI alteration, conditions 407 types I, II, and III 47 age 168 type 4 47 CI composition like interstellar solids 426 chondrites, carbonaceous, ungrouped 50, 121–3 CI fusion crust, interior 99 matrix 121 CI high-temperature components 100 summary of properties 122 olivine 100 carbonaceous, ungrouped: Acfer 094 121–3 CI low-temperature components 100 123 , phyllosilicates, sulfide 99 unequilibrated 121 organics 100, 429 unshocked 121 presolar grains 100 carbonaceous, ungrouped: Adelaide 121 pristine solids 218 anorthite-rich CAIs 121 CI metamorphism 100–1 related to CO or CV, not to CM 121 thermally metamorphosed, oxygen isotopes 94 carbonaceous, ungrouped: Coolidge and CI oxygen isotopes 100, 402–3 Loongana 001grouplet 121 CI solar composition 19, 101, 192 lightly shocked 121 CI texture 99 oxygen isotopic ratios 121 veining 100–1 types 3.8–4 121 chondrites, CK 25, 29, 30, 35, 39, 42, 90, 98–101, carbonaceous, ungrouped: Tagish Lake 123 149 carbon-rich 123 CK breccia matrix 112, 115, 116 carbonate-rich lithology 123 olivine 117 CM1clast 123 CK high-temperature components 116 density 123–4, 312 chondrule types 116 like 123 CK low-temperature components 116 petrography 123 CK metamorphism 116 porosity 123 CK petrologic types 115 Carlisle Lakes R3 140 CK plagioclase 116 Carlisle Lakes-like grouplet 139 CK shock stage 116 chondrites, CH 25, 29, 30, 42, 119–21, 149 CK sulfides (Os, Ru) 116 CH alteration 120 CK texture 103, 115 CH high-temperature component 120 chondrites classification 18–48, 51, 52 CAIs 120; alteration 120; 120; classification, by olivine and pyroxene composition rims 120 22 chondrule types 120 classification, high- and low-Fe groups 22 lithic, chondrule and clasts 120 classification, petrologic 24 CH low-temperature component 120 classification, Prior’s mineralogic 20–2 dark inclusions/matrix lumps 113 classification, Rose-Tschermak-Brezina (RTB) 20 like CI 120 classification, shock 24 matrix olivine 117 classification, Van Schmus-Wood (biaxial) 23, 47, matrix, rims 120 48, 49, 51, 97, 130 reduction 120 clastic matrix 85, 87, 140

© Cambridge University Press www.cambridge.org Cambridge University Press 0521470102 - Meteorites: A Petrologic, Chemical and Isotopic Synthesis Robert Hutchison Index More information

General index 487

chondrites, CM 25, 29, 30, 42, 82, 90, 100–7, 149, isolated mineral grains 118–19 193, 194 metal grains 119 CM alteration, conditions 407 CR low-temperature components 119 age 168 dark inclusions 119 CM brecciation 103, 108, 403 matrix and rims 118, 119; composition 90, 91 CM deformation 105 matrix olivine 117 CM high-temperature components 104–6 partial reduction 119 chondrules 104 CR metamorphism 119 isolated mineral grains 106 CR mode 118 olivine 105, 106 CR petrologic types 118 CM low-temperature components 107 CR related to CH, Bencubbin 118, 416–17, see dust mantles 103, 105 petrogenetic associations matrix composition 90, 91 CR texture 118 organics 429 CR xenoliths in howardites 290 presolar grains 107, 194 CR2 103 CM metal 106 cristobalite grains 84 CM metamorphism 107 crystalline 20 oxygen isotopic ratios 94, 402–3 chondrites, CV 25, 29, 30, 40, 42, 43, 49, 75, 82, 90, CM moderately volatile elements 194 111–15, 149, 216 CM texture 102, 103, 104, 105 CV alteration 114 CM volatile elements 217 age, Mn-Cr 172 CM xenoliths in howardites 290 conditions 407 CM1 104, 107 duration, hydrous and thermal metamorphism chondrites, CO 25, 29, 30, 39, 40, 42, 43, 49, 90, 172–3 107–11, 149,193, 194, 216 CV dehydration 114 CO alteration 109 CV high-temperature components 118–19 conditions 407 CAIs 77–81, 113 CO high-temperature components 108–9 chondrules 113; Ca-Al-rich 113; composition 68, CAIs 109 69 chondritic xenoliths 109 igneous clasts 113 chondrule composition 68, 69 CV low-temperature components 113–14 chondrule types 108; chondrules and matrix dark inclusions 113 112 matrix and rims 113–14; composition 90, 91 isolated mineral grains 109 matrix olivine 110, 112 CO low-temperature components 109 presolar grains 114 matrix and rims 109; composition 90, 91 CV metamorphism 114 matrix olivine 110 CV metasomatism of CAIs and chondrules 114 CO metamorphism 109 CV shocked clasts 113 CO petrologic subtypes 109, 110 CV subgroups 111 CO texture 102, 108 CV subtypes 110, 111, 115 CO volatile elements 217 CV texture 55, 102, 111–13 chondrites, components of 53 CV thermal metamorphism 114 chondrule/matrix ratios 193 CV volatile elements 217 dirty ice 219 CV2 111 diverse 193; single suite 54 dehydration 114, 141, 216, 403–5 high- and low-temperature 54, 216 early history, summary 185 oxygen isotopic ratios 92–4 chondrites, EH 24, 29, 30, 32, 36, 42, 142–4, 145, 149 cooling rates, see parent body processes EH age, Rb-Sr 166 cosmic ray exposure (CRE) age 154–5 EH cosmic ray exposure ages 156 chondrites, CR 29, 30, 42, 73, 74, 75, 90, 116–19, EH diagnostic minerals 66; 142 149 EH distinct from EL 142 CR 15N/14N ratios 118–20 EH high-temperature components 145–6 CR alteration of CAIs and chondrules 119 CAIs 144 CR aqueous alteration 119 chondrule types 145–6 conditions 407 FeO content 146 preaccretionary 119 preaccretionary equilibration 145 CR breccias, regolith breccias 118 silica minerals 145–6 CR high-temperature components 118–19 EH lithophile elements 142,145 CAIs, melilite-rich and spinel-rich 118 EH low-temperature components 146 chondrule types 118; Ca-, Al-rich 118; metallic matrix 145, 146 118 presolar grains 146

© Cambridge University Press www.cambridge.org Cambridge University Press 0521470102 - Meteorites: A Petrologic, Chemical and Isotopic Synthesis Robert Hutchison Index More information

488 General index

chondrites, EH (cont.) polymict 131–6; polymict fragmental 131 EH metamorphism 146 post-metamorphic 131 anhydrous prograde 146 premetamorphic 131, 434–8 redox conditions 146 regolith 131–9 thermometry 146 EOC Fe total vs olivine composition 129 EH shock stages 146 EOC high-temperature components 138–9 EH siderophile elements 145 igneous clasts 139, 185 EH texture 145 EOC hot accretion - 5.167, breccias 145 EOC L group 500 Myr shock event 139 mainly type 3 145 EOC low-temperature components 139 matrix 145 xenoliths, types 1and 2 139 melt breccias 145, 146 EOC metamorphism 139 EH xenoliths in Kaidun 145 duration 171–2 EH3 chondrule ages, I-Xe 176; Rb-Sr 167 EOC petrologic types 4–6 138 EH3, chondrule compositions 68, 69 EOC prograde thermal metamorphism 139 EH3 distinguishing features 142 Fe/Mn ratio 407 chondrites, EL 24, 29, 30, 32, 36, 42, 142, 144–5, olivine and Ca-poor pyroxene compositions 149 409 EL age, Rb-Sr 167 olivine/Ca-poor pyroxene ratio 407, 409 EL cosmic ray exposure ages 156 pyroxene equilibration 139 EL diagnostic minerals 66; ferroan alabandite redox state 406, 407–8 142 thermal annealing 139 EL distinct from EH 142 EOC precursors 139 EL high-temperature components 144 EOC shock stages 139 CAIs 141 EOC texture 6, 55, 138 chondrules, metal, sulfides 144 brecciated 138 EL lithophile elements 142, 145 equilibrated ordinary, see EOC EL low-temperature components 144 Fe distribution 32, 34 EL metamorphism 145 Fe/Si ratios 28–33 dry annealing, EL3 145 fossil 15 early shock effects, EL6 145 gas retention ages 159 EL shock stages 145 granulitic texture 20, 21 EL texture 144 chondrites, H group 18–23, 24, 29, 30, 40, 42, 46, chondrules in clastic matrix 144 128, 149 EL3 distinguishing features 142 H group age, gas retention 159, 161; Rb-Sr 166; EL6s dominate 144 U-Pb 169–73 elemental abundances 22, 27, 29, 30 H group cosmic ray exposure ages 156 elemental fractionation, see chondrite groups, H group petrologic types 21, 129–32 chemical fractionation H3 chondrules 81 chondrites, enstatite 20, 22, 28, 39, 42, 127–8, H3 distinguishing features 133 142–6 H2O contents 22, 27, 29 age, I-Xe 176, Rb-Sr 166–7 high-temperature materials 84–5 classification schemes 142 history, 10 stages 153–4 classified list 142 hypersthene-olivine 20, 22 introduction 142–4 igneous activity 181–2 lithophile elements 142 igneous clasts 113, 135, 136, 185 origin 212, 213–14, 216 ages 176, 434, 436–7 oxygen isotopes 39, 94, 142 REE 436–7 oxygen-poor 143 interchondrule matrix 85; see also matrix shock classification 142 interelement ratios 28, 51, 194–5, 196, 197 subclassification, Zhang et al. (1995) scheme Kakangari (K) triplet 24, 39, 47, 147 144 chondrites, L group 11, 24, 29, 30, 35, 42, 46, 128, type I and intermediate type 145 149 type II 144 L group chondrule conent 194 chondrites, EOC 6, 130, 138–9 L group cosmic ray exposure ages 156 EOC ages, see chondrites ordinary L group gas retention ages 159, 160, 161 EOC aqueous alteration 139 L group moderately volatile elements 194 EOC bleached chondrules 139 L group secondary metal-loss 214 EOC breccia types, 48–9, 131 L group shock event 139, 158, 161 light–dark structure 131 L petrologic types 21, 129–32 monomict fragmental 131 L3 distinguishing features 133, 193

© Cambridge University Press www.cambridge.org Cambridge University Press 0521470102 - Meteorites: A Petrologic, Chemical and Isotopic Synthesis Robert Hutchison Index More information

General index 489

L6 polymict breccias 131 origin 224, 241; see also chondrite precursors LL group 22, 24, 29, 30, 40, 42, 46, 48, 128, alternative theories 190–1 149 formation sequence 219 LL group age, gas retention 159; Rb-Sr 166 two component model 216, 217 LL group cosmic ray exposure ages 159 oxidation of 22, 28 LL group secondary metal-loss 214 oxygen isotopes 19, 23, 38–40, 47, 51, 54, 94, 127, LL group, shocked, Rb-Sr ages 167 148, 402–3 LL petrologic types 129–32 oxygen isotopic exchange 408, 409, 411 LL3 chondrule compositions 69, 71; REE 72 plagioclase, isolated grains 84 LL3 distinguishing features 133, 193; Fe/Mg ratio presolar component, see presolar grains 193 primary properties 23, 38–40, 51, 194 LL3.0 50 pyroxene, isolated grains 84 LL3.150 quasi-solar composition 19, 50 LL3.3 21 chondrites, R group 25, 28, 29, 30, 39, 42, 127–41, LL3.4 50 149 low-FeO ordinary chondrites 146–7 R group aqueous alteration 141 low-temperature components (see also matrix) R group chemical classification 128–9 85 Carlisle-Lakes-like grouplet 139 matrices in CH, CK, CO, CR, CV 112 R group diagnostic features 140–1 matrix composition 90, 91, 191 chondrule/matrix ratio 140 matrix in type 187, 88, 90 Fe2O3 141 matrix in type 2 87, 88, 90, 192 R group high-temperature components 141 matrix in type 3 87, 88, 90 CAIs 141 matrix, recrystallized 88 chondrule types 141; -rich 141; melting (primitive achondrites) 50 feldspar-rich 141; sulfide-rich 141 metal-sulfide assemblages 74 equilibrated chondritic clasts 141 metamorphic age 162, 180, 181–2 mineral clasts 141 metamorphism, closed system 216; open system noble metal-rich grains 141 216; see also parent body processes R group low-temperature components 141 metamorphosed chondrules 85 R group metamorphism 141 metamorphosed clasts 85 dehydration 141 Mg/Si ratios 22, 28, 30, 31 R group mode 130 mineral grains 84 R group numbers 128 mineralogy 20, 54, 64–6 R group olivine 141 Ni/Si ratios 28–33 R group oxygen isotopes 129 non-carbonaceous 127–50; summary 150 disequilibrium 141 chemical fractionation 195, 205, 207 isotopic exchange 409 Si, Mg enrichment 214 R group petrography 139 non-carbonaceous ungrouped 146–7, 148 Carlisle Lakes unbrecciated R3 140 oxygen isotopic exchange 411 R group shock stages 140 oxygen isotopic ratios 148 R group regolith breccias 140 redox conditions 410 R group sulfides 141 non-carbonaceous ungrouped, Kakangari grouplet R group texture 140–1, 147 clastic matrix, recrystallized 140 non-clastic matrix 85 clastic, R3-R6 breccias 140 numbers 12, 128 R3.6–3.8 Fe total vs olivine composition 129 olivine, isolated grains 84 chondrites, recrystallization 23 orbits 10 relative abundances, metal, sulfide, silicate 48 chondrites, ordinary 21, 23, 28, 39, 40, 43, 49, secondary properties 23, 40–2, 51 127–41, 212 shock classification 24, 42–5, 51, 142 ordinary ages, by Al-Mg 163–80; by I-Xe 176; shock metamorphism 20, 23, 42 Rb-Sr 165–7; U-Th-Pb 169–72 spherical 20 ordinary, chemical classification 128–9 stages in formation 210 ordinary equilibrated, see chondrites EOC superior analyses of 22 ordinary petrologic type 3, see chondrites UOC taxonomic conventions 24 ordinary petrologic types 4–7 138; see also terrestrial age 154–5 chondrites EOC tertiary features 20, 23, 42–5 ordinary, time-temperature plot 180 texture 5, 20, 40, 54 ordinary unequilibrated, see chondrites UOCs thermal metamorphism 20, 23, 40, 42, 50, 141, 210, ordinary ungrouped, see chondrites 216; see also parent body processes non-carbonaceous ungrouped Ti contents 28

© Cambridge University Press www.cambridge.org Cambridge University Press 0521470102 - Meteorites: A Petrologic, Chemical and Isotopic Synthesis Robert Hutchison Index More information

490 General index

chondrites, recrystallization (cont.) UOC thermal metamorphism 136, 137; see also Ti/Si ratios 22 parent body processes type 140 variations, primary chemical 19, 20 type 2 40, variations, secondary textural 19, 20, 40–2 type 3 21, 40 variations, tertiary (shock) 20 type 3, subclassification 43, 134 chondroid 56 type 4 21, 40, 138 chondrule analogs, crystalline lunar melt spherules type 5 21, 40 225 type 6 21, 40, 138 definition 55–6, 220 type 7 41, 42 (lithic clasts) droplet 56, 59 chondrites, unequilibrated ordinary, see UOC formation, see chondrule origin ungrouped 24; see also carbonaceous ungrouped; glass-rich 59, 63 non-carbonaceous ungrouped granular olivine 56, 59, 63 UOC 6, 130, 132–8 granular olivine-pyroxene 63 UOC age, Rb-Sr 165–7 igneous clastic 84 UOC anhydrous precursors 137 impact melt clasts 84 UOC aqueous alteration 136, 137 kamacite in 73 bleached chondrules 135, 137 mesostasis 57, 61 conditions 407 metal in silicate 73 fluids, C-O-H-bearing 137, 408, 414 metal in type I 73–5 UOC breccias 133, 135 metallic and metal-sulfide 56, 59, 63, 73, 132 EOC clasts 133 metallic, redox reactions, CR group 73, 75 genomict 136 mineralogy 54, 61, 64 igneous clasts 133, 135, 136 moderately volatile elements 67 polymict 133 chondrule origin 56, 203, 210, 215, 219–29, 231–3, xenocrysts 133, 136 241 UOC high-temperature components 133–6 accretion with CAIs 227 CAIs 136; spinel-rich 136 by ablation in bipolar outflows 232 chondrule composition 68–72; Ca-Al-rich 133; by collisional splashing from molten bodies 231 chondrules with glass 132; with twinned by condensation of liquids 227; from dust clinoenstatite 132 enriched gas 212, 227, 228, 229, 231, 232; chondrule types 133; equilibration 133 enhanced compound chondrule formation 228 UOC low-temperature components 136–7 by disruption/reassembly of partly molten bodies amorphous ‘glue’ 137 222, 223, 224, 231 awaruite 408 by flares 232; ‘flash’ heating 221 carbide 136 by friction with gas in accretion shock 233 calcite 137 by gas-drag or radiation in nebular shocks 233 clastic grains 136 by heating solid precursors, in hot nebula 232 clay 137 by impact melting of large bodies 231 fayalitic olivine 137, 409 by impact melting of planetesimals 231 -magnetite assemblages 137 by lightning 232 LIME olivine 136 by meteor ablation in planetary atmospheres 231 magnetite 136, 408; oxidation of kamacite 408 by T Tauri outbursts (x-wind model) 232 matrix and chondrule rims 136–7 by volcanism 231 particle size-distribution 136 CAI-chondrule time difference 227 presolar grains 136, 137, 218 chondrule density high 223 sulfide veins 87 chondrule-forming association 220, 437 white matrix 137 cold precursors 222 UOC metamorphism 60, 137 cooling mechanism 222 metal and sulfide polygonal, amoeboid 132 cooling rate 220 metal-sulfide chondrules 132, 136 crystal nuclei 220 oxidation state 408–10 crystal-liquid fractionation 223 oxidizing agent 408 diverse cooling rates 222 oxygen isotopic exchange 408, 409, 411 diverse types 223 physical conditions 138 ‘flash’ heating 221 UOC mode 132 fractionated Ca/Al ratios 222, 223 UOC parent-body processes 136; see also parent from dust-ball/matrix precursors 226; with body processes presolar grains, nebular volatiles 226, 227 UOC recrystallized matrix 136 from dust enriched gas 212, 223, 227 228, 229, UOC shock stages 138 231, 232 UOC texture 132–3 gradation to CAIs 227, 228

© Cambridge University Press www.cambridge.org Cambridge University Press 0521470102 - Meteorites: A Petrologic, Chemical and Isotopic Synthesis Robert Hutchison Index More information

General index 491

heat source (26Al) 222 mutually indented 399, 400 high relative velocities 225 non-porphyritic 61 immiscible liquids 223 oxidation state 57 in FU Orionis outbursts 232 oxygen isotopic ratios 54, 92–3, 94, 225, 226 in giant protoplanet atmospheres 231 phosphate with metal 75 incompatible element enrichment 223 poikilitic 62 lithic clasts, some igneous 223 porphyritic 61 mass-dependent isotopic fractionation 222 porphyritic, chemical classification 62 multiple events 222 porphyritic olivine 59, 61 nebular theories 190–1, 220, 225, 232 porphyritic olivine-pyroxene 59, 61 parent body magnetite 226 porphyritic pyroxene 59, 61 peak temperature 220 porphyritic textural types 59, 61–2 peak temperature control 223 pre-existing grains, see relict grains physical conditions 220–2 proportions in chondrites 19, 55 planetary theories 190–1, 220, 222–5, 231 radial pyroxene 59, 63 presolar grains 225 REE abundances 72; in troilite 226 oxygen isotopic ratios 225, 226 refractory incompatible lithophile elements 70 quasi-solar bulk composition 223 relict grains in 62, 87, 143 relict grains 223–7, 238 schreibersite with metal 75 requirements of a theory 221 shape 56 rim formation 223 sibling (in compound) 57 type IA by evaporation of type IIA 222 size-range 56 volatile content 222, 226–7 spheroidal metal 73 x-wind model 226; CAIs 226; microchondrules sulfide Ni content 73 226 survival of structures 14, 40, 41 primary (in compound) 57 textures 54, 56–7, 60 properties, constraints on origin 221 type 1, metal 73–5 secondary (in compound) 57 type IA 60, 62 types, distribution 54–5 type IAB 62 chondrule-matrix intergrowth 23, 40 type IB 62 Condrules and the Protoplanetary Disk 17 type IIA 60, 62 chondrules 5, 40, 48, 54, 55, 239 type IIB 62 age 172, 175, 177 variability 56 agglomeratic, see granular olivine x-wind model, see chondrule origin Al-Mg age 178–9, 180 chromite 130, 339, 390 Al-rich, Ca-, Al-rich 63, 81, 133 chronology Al-rich, chemical compositions 81 calibration, relative ages to absolutee 181–2, 184 armored 132 core formation, melting 368–73; see also parent barred olivine 59, 62 body processes bleached 131, 133, 135, 139, 400 early Solar System 179–83, 184, 185, 422, 434–8; Ca/Al ratios 70–5 see also formation interval CAIs within 62 circumstellar dust/grains 422–4, 427 chemical classification 60 clan 25 chemical composition 54, 67, 68, 69, 70, 71, 228, IAB 25 229 minichondrule 25 chromite with metal 75 refractory-rich 25 chromite-rich 63, 141 volatile-rich classification 57–67 class 25, 28 classification scheme (Sears et al.) 57 classical chemical analysis, see chemical analysis clast 55–6, 59 classification, see chondrites, classification; compositional range 56, 67 differentiated meteorites compound 57, 59 clast chondrule, see chondrules corroded metal 73 C-O-H-bearing fluids 137 cryptocrystalline 63 339 dark-zoned, see granular olivine , see meteorites, souces of dusty metal 73 Committee on Meteorite Nomenclature 15, 16, 45 Eu anomalies 72 common elements (Mg, Fe, Si) 35, 36 Fe contents 57 compass, for meteorite identification 15 ferromagnesian 57, 67 compatible elements 37–8 independent (as compound) 57 concentration mechanism for meteorites 12 I-Xe age 176, 181–2 concordia method (U-Pb) 169, 171

© Cambridge University Press www.cambridge.org Cambridge University Press 0521470102 - Meteorites: A Petrologic, Chemical and Isotopic Synthesis Robert Hutchison Index More information

492 General index

condensable elements 35 diopside 36, 130 condensation, see nebular condensation Al-, Ti-rich ‘fassaite’ 80, 293 condensation, duration 168 dirty ices, in chondrites 219 cooling rate, see metallographic cooling rate; parent dispersed elements 37–8 body processes; petrogenetic associations dolomite 424 Copiapo-type inclusions 253 droplet chondrule, see chondrule core-formation, see parent body processes; dunite 6; see also martian meteorites, Chassigny petrogenetic associations dust, interplanetary, see interplanetary dust particles core-mantle boundary () 345 dust, interstellar 1; see also interstellar dust corona structure 350, 353, 355 dust mantles 103, see chondrites CM corundum 36, 424 dust, presolar 5; see also presolar grains ‘cosmic’ composition 424 Cosmic Mineralogy Working Group (of the IMA) 16 Eagle Station trio, see pallasites; ungrouped irons and cosmic ray exposure (CRE) age 154–5 stony irons EH, EL, H, L and LL chondrites 156 Earth and Planetary Science Letters 16 cosmic ray exposure, complex 155 Earth’s age 165 cosmic ray-produced (cosmogenic) nuclides 14, core formation 372, 374–5 156 87Sr/86Sr evolution 165 cosmic spherules 7, 101 Eberhardt, P. 422 cosmochemical classification of elements 23, 24, electron probe microanalysis 22, 47 34–7, 38 elemental abundances, see chondrites cosmochemical fractionation 196–7 elemental partitioning, solid/liquid Fe,Ni metal 338 iron meteorites 336 core-mantle, La,P, Mo,Ce, W,Ce 380; see also cosmogenic nuclides, production rates 154 petrogenetic associations cosmogonic theories 421–2; see also Solar System Elliott, R. 400 origin engulfment, exoplanet by star 439 Cr 35, 37 enstatite 36 crater, impact 2 enstatite achondrites, see aubrites; Mount Egerton; cristobalite xenocryst 131 Shallowater cryoconite 7 class 11, see chondrites crystal lattice 37 enstatite meteorites, parent bodies 273 crystal-liquid fractionation 84 equilibrium condensation, see nebular condensation C-type asteroid 403 etching with acid 15 Cu 25 chalcophile 37 debris 290, see HED meteorites siderophile 37 exoplanets 439 cumulates, igneous 278, see HED eucrites; see also masses 439 petrogenetic associations, HED observational bias 439 Curie point 203 period 439; see also engulfment

D/H ratio 137 falls, see meteorite falls dark inclusions (matrix lumps) 92 fassaite, see diopside oxygen isotopic ratios 94 fayalite 36 dark-zoned chondrule, see chondrule, granular olivine ‘condensation’ 202 daubr´eelite339 60Fe 186 decay constant 157 Fe, chalcophile 37 ␭87Rb 163 lithophile 37 delta (␦) notation 38 siderophile 37 dendritic texture 67, 389 Fe,Ni metal 7, 15, 36 deuterium (D) enrichment 429 phase relations, sub-solidus 323, 324–5, 331, diagnostic mineralogy, achondrites 246, 278–80 391–5 diamond 424 phosphorus in 392 differentiated achondrites, see achondrites solid/liquid partitioning 323 differentiated meteorites 243–7, 248, 277–318, Fe,Ni-FeS cotectic 375 321–63, see angrites; HED; iron meteorites; Fe distribution 22, 37, 45 lunar meteorites; martian meteorites; stony partitioning 338 iron meteorites Fe/Mg ratio 201 diffusion 391, 392 Fe/Mn ratios 25 EOCs 407 debris, see HED meteorites; petrogenetic HED 278 associations lunar 278

© Cambridge University Press www.cambridge.org Cambridge University Press 0521470102 - Meteorites: A Petrologic, Chemical and Isotopic Synthesis Robert Hutchison Index More information

General index 493

Fe/Mn vs Fe/Mg ratio 245 Geochemical Society 16 Fe/Ni/Co ratio 203 Geochimica et Cosmochimica Acta 16 feldspar giant planet age by Al-Mg 183 angular momentum 439 age by I-Xe 176, 177 asymmetric accretion 439 grain-size, petrologic type 41, 49 capture 439 isotropic 44 inward migration 439 feldspar (see also plagioclase) 40, 42, 130, 167 orbital stabilization 439–40 in basaltic meteorites 278 glaciologists, Japanese 12 feldspathoid 80 glass 40 ‘feline’ 417 glass veins 44 ferric iron in chondrites 28, 141 Goldschmidt, V. M. 37 weathering product 13 graftonite 339 ferrite 324 graphite 261, 339, 424, 426 ferroan alabandite 142 graphite-magnetite aggregates 92 ferrosilite 36 gravitational collapse 189 FeS 36; see also troilite finds, see meteorite finds half-life 157 fireball halite age by I-Xe 176, 177 bright 2 339 Innisfree 11 HD 82943 439 meteorite-producing 4, 11 3He, in sediments 3, 4 fission heat-affected zone 15, 332 asymmetric 431 HED meteorites 25, 278–91 neutron-rich 431 age 372 floccule theory 421; see also Solar System origin breccia types 281 flux chemical analyses 295 estimated annual 2, 3, 4; from sediments 2–3, 4; chemical composition, Fe/Mn ratios from spacecraft 3, 4 278 extraterrestrial material on Earth 1–4 interrelationships 281 formation age 162 lunar origin 278 formation interval 162, 163, 173, 175, 183–4 metamorphism, shock 281 formation, of a chondrite 162 metamorphism, thermal 281 forsterite 36, 197 modes 280, 295–6 ‘fossil’ chondrites 155 related to 280 fourier transform infrared spectroscopy (FTIR) sampling 281 429 series 281, 382; Al2O3 vs MgO 382 fractional condensation 197 subclassification 285 fractional crystallization 196 textures 282–3 Fe,Ni cores 338, 377, 388–91; see also parent body HED meteorites, diogenites processes; petrogenetic associations age 372 fractional distillation 206, 214 Ca/Al ratio 295 fractional vaporization 197, 208 definition 281, 288 fremdlingen 79 diagnostic minerals 246, 278 FUN inclusions, see CAI diagnostic properties 285 fusion crust 2, 13, 55 Fe/Mn ratio 295 mg# 295 Ga condensation 202 HED meteorites, diogenites gabbro 296 mineralogy 286–7, 289 gabbroic inclusions 254 accessory minerals 289 garnet 80, 368 modal variation 289 gas retention age 158–62 olivine content 289 gas, solar compositon, see solar composition plagioclase 289 Ge, siderophile 37, 388 pyroxene composition 289 gehlenite 36 HED meteorites, diogenites Genesis mission 413 texture 279, 283, 288–9 genomict breccias 48 equigranular 289 geochemical classification of elements 23, 24, 34, 36, large 289 37–8 monomict breccias 288 geochemical fractionation 196–7 shock effects, glassy matrix 289 iron meteorites 336 unbrecciated 289

© Cambridge University Press www.cambridge.org Cambridge University Press 0521470102 - Meteorites: A Petrologic, Chemical and Isotopic Synthesis Robert Hutchison Index More information

494 General index

HED meteorites, diogenites heat-source 288 brecciation 289 impact brecciation 288 cooling rate 288–9 ordinary eucrites 288 shock-heating 288–9 parent body size 377 veining 289 peak metamorphic temperature 288 HED meteorites, eucrites 25, 281–8 HED meteorites, genesis 374–5, 381–7; see also age 288, 372, 373 parent body processes; petrogenetic basaltic 283, 285 associations Binda-type 285 HED meteorites, howardites Ca/Al ratio 292, 295 Ca/Al ratio 295 cumulate 281, 283, 284, 285, definition 281, 285 384 diagnostic minerals 246, 278 definition 285 Fe/Mn ratio 295 Fe/Mn ratio 295 mg# 295 figure 7 regolith properites 290 lava-like 284, 285 HED meteorites, howardites main group 285 mineralogy 286–7, 290–1 mg# 295 Ca-pyroxene eucritic 290 Moore County-type 285 minor minerals 290 non-cumulate 283, 285 orthopyroxene diogenitic 290 ordinary 284, 285 plagioclase eucritic 290 polymict 285 sources 291 primary magmas 370–1 HED meteorites, howardites subclassification 285 texture 279, 290 surface 284, 285 brecciation 290 HED meteorites, eucrites ‘chondrules’ 290 diagnostic minerals 246, 278 clast types 290, 291; CM and CR chondrite modes 280, 295–6 290 HED meteorites, eucrite components 291; Fe, Ni 290; glass 290; fractionation trends 290 A (Nuevo Laredo) 284, 285, 288 irradiation effects 290 B (Stannern) 284–8 light-dark structure 290 low pressure 370–1 matrix 291; clastic 290; shock-welding 290 parent liquids 384 HED meteorites, howardites polybaric fractionation 370–1 thermal history 291 Sm vs mg# 383 age 291 HED meteorites, eucrites duration of activity 291 mineralogy 284–7, 288 impact-heating 291; matrix unaffected 291; phase relations 370–1 selective outgassing 291 plagioclase zoned 284; with calcic cores 284; HED parent body differentiation 183, 372 unzoned 284 core formation 372 pyroxene series 284 evolution, magma ocean, crystallization 386 HED meteorites, eucrites melt loss 377; see also parent body processes; texture 282–3 petrogenetic associations cumulate 281, 283, 284, 285, 384 hercynite spinel 36 hornfels 281, 284 , see iron meteorites, structural metamorphic stages 283, 284 classification monomict breccias 283 182Hf 186 non-cumulate 283, 285 Hf-W method 372 ophitic 284 calibration 372; against Al-Mg 373; H4 chondrites plagioclase clouded 282, 284; zoned 284 373; Pb-Pb 373 polymict eucrites 284, 285 Hg 35, 38 clouded 284; exsolved 283, hibonite 36, 80, 426 284 highly labile elements 37–8 unbrecciated 282, 283 highly volatile elements 35, 36, 37, 38 HED meteorites, eucrites history of 24 thermal history 288 howardite-eucrite-diogenite meteorites, see HED basaltic melts 288 hydration of silicates 36 cooling rate 288–9 hydrocarbons 424 crystallization temperature 288 hydrogen, as water 35 cumulate eucrites 288 hypersthene-olivine chondrites, see chondrites

© Cambridge University Press www.cambridge.org Cambridge University Press 0521470102 - Meteorites: A Petrologic, Chemical and Isotopic Synthesis Robert Hutchison Index More information

General index 495

I, isotopic homogeneity 175 classification 7, 322–3 129I86 cooling rate 325–9 initial 129I/127I ratio 174, 373 etching with nital 323 IDPs 1, 9 fall statistics, masses, survival 322 non-porous hydrated 9 gas retention ages 159 porous, anhydrous 9; cometary 9 groups igneous rocks (achondrites) 6 IAB (includes (IIICD) 25, 249, 341, 345; age ilmenite 339 373; inclusion types 341; ‘meteoritic complex’ immiscible liquids 376, 389, 390 341; Ni-rich Oktibbeha County 341; properties impact, hypervelocity 434–8; effects 438; shock 334–5; silicate inclusions 341; silicate, pressure 438; timing 437; see also polymict chondritic 248; see also breccia IC 341–2; properties 334–5 impact crater 2 IIAB 342; properties 334–5 impact melt 2 IIC 342; properties 334–5 impact spherules 48, 56; see also shock melting IID 342; properties 334–5 impact reworking 162 IIE 342, 345; chondritic inclusions (Netscha¨evo) impact, very large 3–4 342; fractionated silicate (Kodaikanal) 342; H impingement 391 group chondrite 342; oxygen isotopes 342; In 35, 36, 38 properties 334–5; silicate inclusions 254, 342; incompatible elements 37–8 see also petrogenetic associations inductively coupled plasma mass-spectroscopy IIF 343; linked to Eagle Station trio 343, 360; (ICPMS) 50 properties 334–5 initial 87Sr/86Sr, see Rb-Sr method; 87Sr/86Sr IIIAB 8, 25, 341, 343; age 373; burial depth 391; instrumental neutron activation analysis (INAA) 26, chemical complexity 343; chromite 390; 27 cooling rate 367, 391, 393; core formation International Mineralogical Association (IMA) 16 372, 374–5, 376; crater forming 343; oxygen interplanetary dust particles, see IDPs isotopes 343; phosphate 343, 390; properties interstellar cloud 189 334–5; relationships 343; rhabdite 343; silicate interstellar dust particles, in Solar System 1 343; see also parent body processes; interstellar dust/grains 422, 423, 424–5 petrogenetic associations composition 425 IIICD silicates, mineralogy 255; texture 254; disruption, growth, size, structure 424, 425 see also IAB and winonaites interstellar gas, ‘metals’ depleted 423 IIIE 343–4; properties 334–5 interstellar grains, chronology 423 IIIF 344; properties 334–5; variable bandwidth organic 429 344 interstellar medium 423 IVA 344; complex cooling history 344; oxygen bulk chemical composition 424 isotopes 344; properties 334–5; pyroxenes processes 424–5 344; related to L or LL chondrites? 344; silica interstellar SiC (tridymite) 344; single core origin 344, 368; presolar age 425 see also petrogenetic associations survival 425 IVB 344; properties 334–5 interstellar solids, CI composition 426 heat-affected zone 332, 341 iodine-xenon, see I-Xe literature - 10.010b - 10.f010 ionic radius 37 magmatic 12, 323 ion-molecule reactions 429 explosive volcanism 377 Ir 37, 389 molten cores 338 compatible in kamacite 37 Ni partition 388 incompatible in silicate 37 origin 336, 357 groups sulfur poor 377 crystal/liquid fractionation 356 minerals 339 intergroup fractionation trend (As and Ga) 356 non-magmatic 12, 323 intragroup fractionation 356 origin 338 iron meteorites 5, 6, 244, 321–62, 363 8, 324–5, 327, 331 12 groups 333 bandwidth (kamacite) 330, 331 anomalous 333 bandwidth measurement 340 chemical classification 322–3, 331–6; Ga, Ge Ir formation 325–9 contents 331, 334–5, 336; history 331–3; Ni kinetic effects 330–1 content 331, 334–5, 336 ‘M’-shaped profile 329 chemical groups 331; constitution 333; diagnostic Ni redistribution 325–9; see also octahedral properties 334–5; inter- and intra-group planes; Widmanst¨attenpattern variation 338; properties 334–5, 338–44 origin, grouped and ungrouped irons 357, 362

© Cambridge University Press www.cambridge.org Cambridge University Press 0521470102 - Meteorites: A Petrologic, Chemical and Isotopic Synthesis Robert Hutchison Index More information

496 General index

iron meteorites (cont.) Laplacian theory 421; see also Solar System origin proportion of finds 13 larnite 293 recrystallized 332 laser heating 161 structural (textural) classification 6, 322–3, 324–5, layered rims, see CAIs 327 6Li 439 ataxite 327, 331 life, origin, requirements 441 hexahedrite 324, 327, 331 life-supporting planets, see planets octahedrite 8, 324–5, 327, 331 light-dark structure 131, 290 structure 324–31 limonitic staining 45 atmospheric flight 341 lithic clasts 54 cross-hatched kamacite 341 lithium tetraborate glass 27 fusion crust 341 lithophile 34 heat-affected zone 332, 341 lithophile elements 36, 37 intragroup variation 340 local nucleosynthesis 158, 179, 183, 203 recrystallized kamacite 341 loess deposits 3 shock effects 341 London 16 summary 362 Long Duration Exposure Facility (LDEF) 3 total abundance 12 176Lu 157 ungrouped 332, 333, 357; see also ungrouped irons Luna missions 10 and stony irons lunar breccias and ‘soils’ 297 isochron 163 cumulates 297 internal 165 exotic siderophile elements 297 pseudo-isochron 177 Fe/Mn ratios 278 whole- (whole-meteorite) 165 highland/mare mixtures 297 dilution 27 impact glass 297 isotopic anomalies 77, 81, 137, 238, 422 lunar highlands 296 isotopic fractionation 38, 77, 234, 402–3 lunar magnetic field 431 isotopic homogeneity 157 lunar mare basalts 296–7 isotropic plagioclase 44 LT, VLT 296 I-Xe ages pyroxene, augite 296 Acapulco 369 pyroxene, pigeonite 296 H, L, LL and EH chondrites 176 pyroxene, zoned 296 Shallowater 267 pyroxferroite 297 I-Xe method 173–4, 177 lunar maria 300 calibration 183 lunar melt spherules 225 feldspar 177 crystalline, as chondrule analogs 225 isotopic closure 175 series 298 phosphate 177 highlands/mare meteorite ratio 298 prograde metamorphism 177 multiple ejections 298 reference standards 175 sampling sites 298 retrograde metamorphism 177 lunar meteorites 11, 297–8, 301, 414 time differences 175 classification, components 299 cosmic ray exposure 296 Japanese glaciologists 12 ejection events 297 Johnson Space Center 15, 16 finds 280, 296–305 Journal of Geophysical Research 16 lunar highlands and highlands/mare breccias 279, Jupiter-asteroid resonances 11 298–303 fusion crusts 298 40K-40Ar method 157, 159 texture 300; anorthositic clasts 300; breccia 300; K/Ca ratio 161 clast population 300, 302; grain-size 300; K/T boundary 3 impact melt glass 300; lithic clasts 300; mafic kamacite 41, 324, 329, 330, 341, 391, 392 clasts 300; matrix 300; matrix glass 300; swathing 346 microbreccia 300; mineral clasts 300; regolith K-feldspar 339 breccia 300 kinetic heating experiments 208 lunar highlands anorthositic breccias 298, 299, 301 kirschsteinite 293 lunar highlands breccias KREEP 296 ANT rocks 302 K/T boundary - 1. 026 extra-lunar contribution 302 glass compositions 302 L group chondrites highlands basalt 300 ages 158 mare contribution 303 degassed 11 mineralogy 300–3

© Cambridge University Press www.cambridge.org Cambridge University Press 0521470102 - Meteorites: A Petrologic, Chemical and Isotopic Synthesis Robert Hutchison Index More information

General index 497

olivine 300 Mars plagioclase 300 source 6, 10 pyroxene 300 atmosphere, NASA Viking craft 280, 305, 306–7 lunar highlands/mare breccias 299 core formation 372, 374–5 Al2O3 content 303 life 307 ANT clasts 303 mantle melting 317–18 basalt, VLT 303 martian meteorites 11, 278–80, 297, 305, 414 chondritic component 303 ages glasses 303 crystallization 305, 309 impact melts, sources 303 cosmic ray exposure 307 metal 303 transit times 318 mineralogy 300–3 martian meteorites ALH 84001307, 314 modal abundances 303 genesis 316, 318; carbonate origin 316; cumulus plagioclase 303 orthopyroxene, chromite 316; evaporite 316; pyroxene 303 magnetite 316; shock effects 316 inventory 299 mineralogy 316; carbonate 316; chromite 316; lunar mare basalt, mare basalt breccia 298, chromite metamorphism 316; mode 315; 303–4 orthopyroxene 316 ages 304 texture 315; euhedral chromite 316; layered glass, igneous 304 carbonates 311, 315; shock, crushed zones impact melt 304 315; shock, plagioclase/ 316 LT 303 martian meteorites basaltic shergottites 307, 308–12 maskelynite 304 mineralogy 311; late stage minerals 312; olivine mineralogy 304 311–12; oxides, Fe3+ 312; phosphate 312; plagioclase 304 plagioclase/maskelynite 311–12; pyroxene, pyroxene 304; zoned 304 compositional range 311; pyroxene, extreme pyroxferroite 304 zoning 311; shock melts 312–13 symplectite 304 related to lherzolitic shergottites, REE contents 318 textures 303–4; ‘gabbroic’ 301, 304; porphyritic texture 310, 312–13; co-existing lithologies 308, 303; subophitic 303 310; impact glass, pockets, veins 306–7, 308; Ti-rich 304 interpretation 311, 312; magmatic flow 311; VLT 301, 304 maskelynite 308; pyroxene lineation 308; lunar mare basalts 299 xenoliths 311 lunar mare breccia 298, 299 martian meteorites Chassigny dunite 279, 314–15 lunar mare/highlands breccias 298, 299 mineralogy 315; amphibole 314; biotite 315; lunar mineralogy 246, 278–80, 287 Ca-pyroxene 315; olivine 314, 315; sources of data 298 plagioclase 315; sanidine 315; Ti minerals 315 summary 305 texture 311, 314–15; cumulate 315; melt inclusions thermal history 304–5 315; olivine, form 314; origin 318; poikilitic breccia maturity 305 Ca-pyroxene 314; shock effects 315 multiple impacts 304 classification 309 shock metamorphism 304 diagnostic petrology 307 solar wind gases 305 Fe3+ 307 sources, igneous bodies 304 ejection events 318 thermal cycling 305 fusion crusts 307–8 transit times 297 hydrous minerals 307 lunar multi-ring basins 302 martian meteorites inventory 309 lunar remote sensing 296 martian meteorites lherzolitic shergottites 307, lunar rocks, diagnostic features 297 312–13, 317 lunar samples, returned 296, 302 mineralogy 312–13; Fe3+ shock-produced 313; magmatic inclusions 313; olivine 313; ‘M’-shaped profile 329, see plagioclase/maskelynite 313; pyroxene, macrochondrule 56 Ca-enrichment 313; pyroxene, augite 313; magnetic rake 7 shock melts 312–13 magnetite 28, 36, 54, 79–80, 99, 216 texture 310, 312–13; impact glass 312; I-Xe age 176 interpretation 312; interstitial crystalline 312; oxygen isotopic ratios 49, 402–3 mosaicism 312; poikilitic 312; preferred parent body origin 216, 384 orientation 312 major element fractionation 196–203 related to basaltic shergottites 318 x-wind model 203–9, 435 mineralogy 246, 287 44 modes 309, 315 maria 10 name 307

© Cambridge University Press www.cambridge.org Cambridge University Press 0521470102 - Meteorites: A Petrologic, Chemical and Isotopic Synthesis Robert Hutchison Index More information

498 General index

martian meteorites (olivine melting, shock 42 clinopyroxenites) 313–14 339 distinct meteorites 314 mesosiderites 7, 10, 25, 244, 321–50, 363 mineralogy 314; amphibole 314; aqueous alteration age 373 314; Ca-pyroxene cores 314; and rims 314; cooling rate 367, 395 evaporites 314, 316; glass 314; halite 314; introduction 350 K-feldspar 314; minor minerals 314; numbers of 12, 354 314; oxides 314; plagioclase 314; salts 314 summary 362; see also petrogenetic associations texture 311, 313–14; alteration 313; augite mesosiderites classification 351, 353–4, 355 (Ca-pyroxene) 313; augite preferred igneous type 355 orientation 313; cumulate 313; flow metamorphic types 355 alignement 313; igneous glass 313; magmatic mineralogic types, ratio, eucritic/diogenitic material inclusions 313; mesostasis 313; olivine, form 353–5 314; origin 318, 371; poikilitic halite 313; origin, igneous texture 355 unshocked 314 textural types 355 , see ALH 84001 mesosiderites mineralogy 352–3 oxygen isotopic ratios 307 breccia clasts 353 rock-types 307–8, 310–11 Ca-poor pyroxene 353 basaltic shergottite 307 Ca-pyroxene 352 dunite Chassigny 307 chromite/ilmenite ratio 353 lherzolitic shergottite 307 corona structure, merrillite 353 olivine clinopyroxeneite 307 corona structure, olivine 353 orthopyroxeneite ALH 84001307 diogenitic affinity 352 picritic shergottite 307 dunite clasts 353 Rb/Sr systematics 317–18 eucritic affinity 352 shared properties 317 Fe/Mn ratio 353 summary 317 HED affinity 352 martian meteorites thermal history 317 kamacite 353 basaltic shergottites cooling rate 317; pyroxene lithic clasts 352 cumulates 317; solidified melts 317 mafic rocks 352 lherzolitic shergottites 317 metal veins 353 nahklites 317; aqueous activity 317 metal, sulfide 352, 353 parent magmas hydrous 317 mineral clasts 352–3 shock pressure, shock effects 317 minor minerals 353 trapped Mars’ atmosphere 305, 306–7 olivine composition 349 unbrecciated 307 orthopyroxenite 352 maskelynite 44 plagioclase 352, 353 mass-independent isotopic fractionation 77 schreibersite 353 matrix 19, 23, 40, 41, 48, 50, 54, 85–90, 239 silicate clasts 352–3 age 175 silicate matrix 353 chemical composition 54, 85–90, 91, 192 sulfide 352 clastic precursor 218 troilite 353 definition 85–8 Widmanst¨attenpattern 353 discrete lumps 85; see also dark inclusions mesosiderites texture 350–1, 352 mineralogy 54, 64, 88–9 breccias, polymict 350 secondary minerals 218 corona structure 350, 351, 355 opaque matrix 85 matrix 350, 351 origin 88, 217, 218–19, 241 melt 350, 351 oxygen isotopic ratios 92–3, 94 metal content 350 parent body processing 89, 216, 218 metamorphic 350–2 presolar component 218, 426; see also presolar octahedrite structure 324–5, 353 grains; carbide- and magnetite-rich poikilitic plagioclase 352, 355 assemblages; graphite- magnetite aggregates; poikiloblastic pyroxene 352, 355 chondrites, petrologic types 1, 2 and 3 mesostasis (chondrule) 40, 41 Maurette, M. 8 metal 26, 37, 41, 48, 106, 119, 120, 130, 132 melilite 36 metal loss, secondary? 214 Al-rich 80 metal magnetization 203 alteration 106 metal, recrystallization 332 melt droplets 48 metal segregation 203 melt, impact 2 metal/silicate fractionation 33, 195, 196, 199, 201, melting, see parent body processes 205, 210, 211

© Cambridge University Press www.cambridge.org Cambridge University Press 0521470102 - Meteorites: A Petrologic, Chemical and Isotopic Synthesis Robert Hutchison Index More information

General index 499

metal loss from CI 202, 211 pairing 12, 16 thermometry 202–3 primitive (chondrites) 5 ‘metals’ 423 relative abundances, major types 12 metallic chondrule, see chondrule sources of 10–11 metallic Fe, Ni, see Fe,Ni metal asteroids 10 metallographic cooling rate 329, 391–5 comets 10, 11 ‘M’ profiles 391 Moon 10 cloudy taenite, island width 392, 393 stony 5 impingement 391 stony iron 5, 7 kamacite bandwidth 391 relative abundance 12 magmatic iron and stony iron meteorites 367 terrestrial ages of 13 ordinary chondrites 413–14 types of 4–10 homogenization of metal 413 ungrouped - 2.120 metamorphic temperature 413 Meteorites and the Early Solar System 17 quench texture 413 meteorites within meteorites 48 volatile Fe, Ni 413 Meteoritical Bulletin 12, 15, 16, 45, 299, 309 taenite half-width 329, 391, 413 15, 16, 45 taenite in chondrites 391 Meteoritics and Planetary Science 12, 16, 366 uncertainty 393 1, 2 volume diffusion 391 Innisfree 11 metal-sulfide assemblages, UOCs and CR 74 pre-atmospheric size 155 metal-sulfide chondrule, see chondrule 26Mg 77 metal-sulfide dendritic spherules 67 Mg, lithophile 37 metamorphic age 162–80, 437, 438 Mg/Al ratio 195 Rb-Sr in feldspar 167 Mg/Si fractionation 195, 197, 198–9, 210, 211 Rb-Sr in phosphate 167 compensation for 199–202 metamorphism, see chondrites; parent body processes forsterite 197 meteor 1 Si gain 205 meteorite classification (historical) 24 Mg/Si fractionation meteorite, definition 2 MGP, see pallasites, main group meteorite falls 11–13 microchondrule 56 meteorite finds 4, 11–13 micrometeorites 2, 4, 7–10 distinction from terrestrial rocks 13, 15 alteration of 8 relative abundance of irons 13 atmospheric heating 8 weathering of 12, 13, 14, 45–6 CM-like 101 meteorite flux 4, 13, 14, 46 from Antarcric ice 8 meteorite grouplet 24 from central Pacific 7 meteorite literature 17 from Greenland ice cap 7 meteorite magnetism 15 from South Pole 8 meteorite names 15–16 from the stratosphere 8 individuals of multiple falls 15, 16 scoriaceous texture 8 of abundant finds 15 size-range 8 overlapping strewnfields 16 source, asteroidal or cometary 3 pairing 16 mass-distribution 3 Meteorite Observation and Recovery Program from radar observations 3 (MORP) 11 microprobe analysis 22, 40 meteorite parent bodies mineral clasts 54 interrelationships 48 mineral stability 36 number 418; see also parent body processes; Mineralogical Society of America 16 petrogenetic associations mineralogic classification (Prior) 20–2 meteorite recognition 13–15 53Mn 186 meteorite recovery 11–13 initial 53Mn/55Mn ratio 372, 373 meteorite streams 11 Mn, moderately volatile 35 meteorites, compositional differences, Antarctic– Mn-Cr method non-Antarctic 13 age, diogenites, eucrites 369 concentration mechanism 12 calibration 179 differentiated 5 Chervony Kut 369 fossil 11, 15 LEW 86010 369 gross classification 5 pallasites 369 lunar 11, see lunar meteorites Mo 38 martian 11, see martian meteorites model ages 168

© Cambridge University Press www.cambridge.org Cambridge University Press 0521470102 - Meteorites: A Petrologic, Chemical and Isotopic Synthesis Robert Hutchison Index More information

500 General index

moderately volatile elements 35, 36, 38, 194, 214, components 429 356 exotic 427–33 monomict breccias 48 fractionation, elemental 429 Moon fractionation, isotopic 429 core formation 372 in chondrites, origin 427 meteorites 296 in chondrites, trapped 427–33 source of achondrites 6 interstellar condensation 431 tektites 296; see also meteorites, sources of planetary 428–31 mosaicism 44, 258–9 planetary Xe, isotopic composition 430 M¨ossbauer spectroscopy 13, 45 solar origin 428, 430 Mount Egerton 272 trapping mechanism 429 x-wind model 430 15N enrichment 332, 429 noble metals 35, 80 Na 35, 37 non-chondritic stony meteorites, mineralogy 246 Namibia, meteorite finds 12 norite 296 nanodiamond 426; see also diamond norm, normative composition 57 NASA aircraft 8 nucleosynthesis 422 Johnson Space Center 15, 16 timing, see formation interval scientists 15 nuclides, cosmogenic 154 National Institute of Polar Research, Tokyo 16 Nullarbor area, meteorite finds 12, 15 Natural History Museum, London 16 Naturhistorisches Museum, Vienna 245 octahedral planes, orientation 330 21Ne production 156 octahedrite, see iron meteorites, octahedrites nebular condensation Odessa-type inclusions 253 common elements 211 olivine 7, 22, 35, 40, 41, 42, 50, 100, 106, 286–7, 339, constrained equilibrium 198 349, 424 dust- and tar-enriched 213 homogenization 60 dust-enriched 198, 211, 212, 228, 229 olivine clinopyroxenite 307; see also martian equilibrium 35, 36, 190–1, 192, 197–203, 210, 235, meteorites, nakhlites 357 olivine-pigeonite achondrites, olivine-pyroxene equilibrium, conditions for 35 achondrites, see ureilites ice/water enriched 198, 212 optical microscopy 45, 47 iron meteorites 337 of iron meteorites 340 loss of residual dust/gas 210, 215–16 orbital zones 214 objections 440 orbits, Earth-crossing asteroids 10, 11 tar/carbon enriched 198, 211 Innisfree family 11 thermometry 35, 36, 197 class 25 volatiles 216 Ordovician limestone 15 Ne-E 422, 431 meteorites 11, 155 carrier 422 organic compounds 89, 426, 433 nepheline 81 orthopyroxene 290 Neptune 440 orthopyroxenite 307, see martian meteorites 324 Os in sulfide 116 neutron activation analysis (NAA) 26; see also Os isotopic ratios 3, 4 instrumental; radiochemical oxidation of Fe metal 136, 408 neutron-rich fission 431 oxidation, terrestrial 45 New Mexico, meteorite finds 12; see also Roosevelt oxides 37, 424, 426, 427 County oxygen fugacity 406 Newcastle University, England 431 related to temperature 406, 408 Ni 35 oxygen isotopic ratios 19, 23, 24, 38–9, 77, 92–3, 100, in metal 26 136, 238, 248, 254, 278, 280, 192, 380, 403, in sulfide 41, 73 409, 427 Ni/Mg ratio 201 chondrite groups 39, 94 Nininger Collection of Meteorites 11 CI, CM 402–3 niningerite 142 differentiated meteorites 247, 265 nital, etchant 323 iron and stony iron meteorites, ungrouped 360 nitride 37 ordinary chondrites, ungrouped 148 nitrogen 27, 35; see also 15N oxygen noble gases 35 16O-poor gas 412 carrier 429, 430 16O-rich solids 411, 412 carrier distribution 430 mass-dependent isotopic fractionation 412–13

© Cambridge University Press www.cambridge.org Cambridge University Press 0521470102 - Meteorites: A Petrologic, Chemical and Isotopic Synthesis Robert Hutchison Index More information

General index 501

mass-independent isotopic fractionation 412–13 timing on Earth, Mars, Moon, HED body 373, self-shielded 412 374–5 source in chondrites, isotopic mixing 412–13 fractional crystallization 377 oxygen-bearing compounds 37 mineral assemblages 385 Vesta-wide magma ocean 385 pairing of meteorites 154–5 volume crystallized 385 Pallas, P. S. 345 heating, external or internal 375, 413 pallasites 7, 9, 25, 244, 322, 345, 347–50, 358 cold/hot accretion 399–401 pallasites, Cold Bay, Eagle Station, Itzawisis 347 heating rate 368, 404–5 pallasites, Eagle Station trio 347 heat-producing nuclides 375 angular olivine 348 melt migration 375, 376 composition 348 time to melting, controls 368, 369 distinguishing features 348–9 heating water-poor bodies 376 FeO/MnO ratio 348–9 redox state 405–12 Ge/Ga ratio 348, 349 heating water-rich/icy bodies 401–5 metal composition 348 capillary fluid flow 402–3, 404–5 pyroxene, Ca-poor 349 controlling factors 401, 403, 406 pyroxene, Ca-rich 349 explosive disruption 401, 403, 405 pallasites main group 347–8 initial composition 401, 403 age 373 multiple parent bodies 403 chromite 348 oxygen isotopic fractionation, mixing, model and cooling rate 367, 395 observation 402–3 melting 376 literature 365–6 metal 348, 395 melting 365, 369, 376 metal structure, modal variation, olivine texture duration in asteroids, Mars, Earth, Moon 366, 346, 347–8 368–73 mineralogy 347–8 heating experiments, modelling 375 minor minerals 348 immiscible liquids 376, 390 olivine composition 348, 349, 396 metal, sulfide 375 olivine Fe/Mn ratio 348 silicate 376 olivine, phosphoran 348 sulfur loss 376 origin 346–7 volatiles, effects of 376 phosphates 348 metal homogenization 401 pyroxene 348 metallographic cooling rate 401 symplectic intergrowths 348; see also metamorphism, chondrite 399–406, 414 petrogenetic associations 26Al heating 399, 403 octahedrite structure 324–5 26Al heating vs accretion time, diameter 369 pallasites, pyroxene doublet 347, 349 petrologic series 399; see also chondrite parent olivine 349 body structure Vermilion 347 metamorphism, prograde 365, 399, 405–12 mode, texture, mineralogy 350 Fe/Mn ratio 407 Y 8451347 heating and oxidation 405, 408 mode, texture, mineralogy 349 heating and reduction, nebular setting 405 pallasites, relative abundance 12 mineral barometers 368 subclassification, metal and olivine compositions, olivine/Ca-poor pyroxene ratio 407 oxygen isotopes 347–50 oxidizing agent 405, 408 texture 345, 346–7 primary oxidation state (Burnwell) 411 parent bodies, number 418 pressure 406 parent body processes 365–418; see also petrogenetic reducing agent 406 associations size 367 basaltic melt loss, body size, volatile content 377; thermometry 376, 401, 409, 410 see also HED parent body metamorphism, retrograde 365, 369, 399, 403 break-up 162 brecciation, dark inclusions, mixed petrologic body size 367 types 405 cooling rate, controls 367 P(H2O), temperature, water/rock ratio 405, 407 cooling to isotopic closure 391 metamorphism, shock 365 depth of burial 367, 391 oxygen isotopic exchange 403, 409, 411 reassembly 224, 405 mass-dependent fractionation, 409, 411; see also core formation 323, 365, 375, 376 oxygen, source in chondritic bodies elemental distribution 380 post-metamorphic breccias 400 timing 372, 388 aberrant grains 400

© Cambridge University Press www.cambridge.org Cambridge University Press 0521470102 - Meteorites: A Petrologic, Chemical and Isotopic Synthesis Robert Hutchison Index More information

502 General index

parent body processes (cont.) HED-IIIAB iron-MGP-mesosiderite parent bodies sampling 365 397 summary 418 cooling rates, burial depth 398 volcanism, body size 366 HED and MES separate bodies 398 duration 366 IIIAB core separate 398 explosive, pyroclastic 375, 377 MES metal unfractionated 398 Paris, University of 170 metallic pods, MGP core-mantle boundary 398 Pb 35, 37, 38, 216 IAB/IIICD irons and winonaites 414–15, 416 Pb-Pb age, EOCs 170, 179, 369 multiple bodies 414–16 Pb-Pb method 169 parent body disrupted, reassembled 416 Pd-Ag age 369, 391, 396, 414 timing 416 107Pd 186 IIE silicate, 415, 417 107Pd/108Pd ratio 373 ages 417 perovskite 36, 80 IIE metal 417 petrogenetic associations 7, 25, 244, 364–418 multiple impacts 417 aubrites, enstatite chondrites 415, 416 olivine/pyroxene ratio 417 EL, EH and aubrites differ 416 oxygen isotopic ratios 148, 417 parent bodies 416 oxygen reservoirs 417 CR, CH, Bencubbin/Weatherford 118, 415, silicate differentiated 417 416–17 IIIAB iron genesis, fractional crystallization 388–91 diogenite genesis Cape York composition 390 low-density magma 387 early formation 388 orthopyroxene-rich magma 387 Ge partition 388 eucrite genesis 381–4 Ir/Au ratio 389 chemical composition 379 metal dendrites 389 convective overturn, cumulate eucrites 381, 387 Ni partition 388 equilibrium crystallization 385 one/two liquids 389, 390 eucrite-howardite-diogenite series 381 sulfide liquid 390 FeO reduction 383 sulfur content 389, 390, 395 fractional crystallization 381, 385 IIIAB-MGP-mesosiderite metal evolution 394–5 magma ocean 381, 384, 387 IVA irons, L or LL chondrite, oxygen isotopic metal-silicate equilibration 384 ratios 415, 418 partial cumulates 383, 387 mesosiderites, differentiated body, impact, genesis partial melting 376, 381, 384, 387 396–7 slow convection 387 age, Ar-Ar 397 vigorous convection 387 age, Pd-Ag 396 HED body 378 breccias of core, crust, mantle 396, 397 crust layered 387 cooling rate, metal 396 early melting 384 cooling rate, silicate 396, 397 eucrite fractionation 378–80 metal composition 396 genetic complexity 381–4 precursor bodies 397 mantle, core compositions, thermal history regolith 397 378–80 related to IIIAB iron 395, 396 oxygen isotopic ratio 380 shock heating 397 parental chondrite group 380–1 silicates, interpretation 396–7 Vesta core 378 MGP core-mantle mixing, genesis 395–6 Vesta density 378 cooling rate 395, 396 Vesta layered 382 dunite 395 HED-IIIAB iron-MGP-mesosiderite 365, 415 metallic melt 395 bulk composition, genesis 378–99 olivine composition 396 core, mantle model compositions 379 related to IIIAB iron 395, 396 FeO/MnO ratio 379 sulfur content 395 melting 376 summary 418 melting experiments 378 tabulation 415 metallic and silicate melts 378, 384 , 415, 417–18 mg# 379 basaltic fraction 417 Ni in metal 379 cumulates/residues 417 partition coeffecient 378, 388 dark inclusion precursor 417 S in core 379 feline igneous clast 417 thermodynamic modelling 378; see also parent multiple parent bodies 417–18 body processes, fractional crystallization oxygen isotopic ratios 417, 418

© Cambridge University Press www.cambridge.org Cambridge University Press 0521470102 - Meteorites: A Petrologic, Chemical and Isotopic Synthesis Robert Hutchison Index More information

General index 503

petrologic (petrographic) type, see chondrites gravitational collapse 438; see also giant planet phase separation origin 438–41 incomplete 26 protosolar matter 422–7 physical means 26 composition, form 433–4 selective chemical attack 26 gas 433 phenocryst 61 grains 433 Philosophical Transactions of the Royal Society 423 historical 422–3 phosphate 130, 167, 170 homogenized 426 ages 170, 171, 176, 177, 343, 390 ices 433; see also accretion disk phosphate, in fremdlingen 79–80 protosolar nebula, hot 197, 209–10, 213, 433 phosphide 392 244Pu 172, 431 phosphorus 35, 37, 38, 392 244Pu/238U ratio 183, 186 photosphere, solar 34 pyroxene 40, 286–7, 424; see also Ca-poor pyroxene; phyllosilicate 54 Ca-pyroxene plagioclase (see also feldspar, K-feldspar) 40, 116, pyroxene series, in HEDs 284 286–7, 339, 368 pyroxenite 6 plagioclase-olivine inclusions, see CAIs planar fractures 44 Q gases, Q phase 429 planet, giant, see giant planet Queen Maud Land, see Antarctica planetary fractionation pattern 428 quintessence 429 Planetary Materials 17 planetary noble gases, see noble gases radiochemical neutron activation analysis (RNAA) 27 planets radionuclides, long-lived 155 giant, unbound 438, see also exoplanets primordial 155–8 life-supporting 441 short-lived 157, 183 plateau age 161 short-lived primordial 186, 368 329, 339 short-lived, initial ratios 186 poikilitic plagioclase 352, 355 rare earth elements (REE) 27, 35 poikiloblastic pyroxene 352, 355 as pressure indicators 371 polished thin-sections 45 distribution, garnet/melt 368 polycrystalline taenite 67 Rayleigh equation 388 polycrystalline texture 67 87Rb 157 polymict breccia 48, 361 Rb-Sr age compared with U-Pb 166 p-process 432 Rb-Sr method 163–9 presolar grains 54, 88, 100, 107, 123, 136, 143, 145, isochron 164 146, 194, 215, 216, 218, 399, 423, 424, 426 summary 168 acid resistance 425 Re (rhenium) 35 chondritic 422–7 187Re 157 comparison, circumstellar grains 425 reduced (EH, EL) chondrites 28 isotopic signature 426 refractory, refractory elements 33, 35, 36, 38 stellar sources 422, 426, 427 refractory lithophile element fractionation 33, 195, survival 426 196, 197, 198–9, 210 presolar minerals, inventory 426 refractory lithophile elements 82 pressure, solar gas 35 refractory minerals 197, 205, 211 primitive achondrites 12, 25, 50, 243–9, 257, 275 refractory siderophile elements 82 chemical compositions 273 regolith breccias 48, 104–6, 139, see aubrites; HED classification, relationships, oxygen isotopes 247, howardites; lunar meteorites 248–9 Reichenbach lamellae 343 grain-size, texture, shock stages, modes 250, 252 relative ages 157 melting 376 calibration 184 Mn/Mg ratio 273 relict grains, see chondrules noble gases 50 resonances, see Jupiter-asteroid resonances summary 274, see acapulcoites/lodranites; rhabdite 343 brachinites, winonaites and IAB chondritic rim sequences, see CAIs inclusions ringwoodite 44 primordial noble gases 50; see also noble gases Roosevelt County, New Mexico 15 Prior’s rules 22 Rose, G. 278 protojupiter 421, 438 Rose-Tschermak-Brezina (RTB) classification, see accretion trigger 434 chondrites, classification aggregation and growth 438 r-process 432 capture 422, 438–9, 440 Ru in sulfide 116

© Cambridge University Press www.cambridge.org Cambridge University Press 0521470102 - Meteorites: A Petrologic, Chemical and Isotopic Synthesis Robert Hutchison Index More information

504 General index

Sahara meteorite finds 12, 15 87Sr/86Sr initial ratio 163, 165 sarcopside 339 Standard Mean Ocean Water (oxygen) 38 scanning electron microscope (analytical) (SEM) 40 stardust 5 Scheil equation 388 stellar nucleosynthesis 158 scheibersite 255, 324, 332, 339 stellar processing/grain formation 423 scoriaceous texture, see micrometeorites stellar spectra, see spectra secondary ion mass spectroscopy (SIMS) 423 stepwise heating 161 separation, silicate from metal 26 stony iron meteorites 321–63 Shallowater unbrecciated enstatite achondrite 269, historical introduction 345–55 272–3 minerals 339 age by I-Xe 267 summary 362 collisional origin 273 stony iron meteorites, see mesosiderites, cooling history 273, 329 see pallasites mineral abundances, compositions 271 substellar masses, see planets, giant unbound mineral assemblage 272–3 sulfide 37, 48, 132, 136, 141, 143, 424 parent bodies 273 in fremdlingen 79–80 shock classification, see chondrites Ni content 41, 136 shock melting 42, 44, 67 sulfide formation 35, 36, 210, 211 shock metamorphic age 158, 159, 161 Mg- and Ca-sulfides 212 shock pressure 44, 428 sulfide-metal assemblages, UOCs and CR 74 shock veins 44, 438 sulfur ‘condensation’ 202 short-lived radioactivities, see radionuclides, carbon enriched gas 211 short-lived Sun, spin axis 438 Si enrichment 214 superheavy element 431 Si, lithophile 37 detection, half-life 431–2 Si normalization 194, 207 superior analyses, see chondrites Si/Al ratio 195 surface deposits, bodies with no atmosphere 48 Si3N4 424, 426 swathing kamacite 346 SiC 424, 425, 426 Sweden 11, 155 siderite (meteorite) 5 symplectic intergrowth 348 siderolite 5 siderophile elements 36, 37 T Tauri Sun 203, 209, 213, 218, 238, 440 silicates 37, 38 taenite silicides 143 ‘M’-shaped profile 328–9 147Sm 157 half-width method 329 SMOW, see Standard Mean Ocean Water technical advances 50 SNC (Shergottites, Nakhlites, Chassignites) tektites 296 meteorites 25, see martian meteorites terrestrial origin 296 sodalite 81 terrestrial (mass-dependent) fractionation line 38 solar composition 19, 34, 35, 36, 101, 210, 424 terrestrial age 13, 46, 154–5 oxygen isotopic 198 339 Solar System, origin 189–91, 192, 420–2 Th capture theory 189, 421 232Th 157 disk disruption 439, 440 refractory 35 floccule theory 421 thermal metamorphism, see chondrites; HED eucrites; Laplacian theory 421 mesosiderites; parent body processes meteoritic constraints, summary 442 thermoluminescence (TL) 23, 40, 43, 47, 50 nebular condensation 192 thin-section, petrologic 14 planetesimal growth 440 Thomson, W. 329 stable configuration 440; see also chronology; 50Ti 81 x-wind model Ti 35 solar wind 48, 131 TiC 424 solar-type stars 439 Tl 35, 36, 38, 216 solar-type systems 441 Tokyo 16 south-east Arabia, meteorite finds 12 tridymite 339, 368 south-west USA, meteorite finds 12 troctolite 296 spallation 439 troctolitic xenolith 131, 185 spectra, unevolved stars 424 I-Xe, mineralogy, oxygen isotopes, REE 185 spinel 36, 80, 426; see also oxides troilite 130, 324, 332, 339, 424 s-process 432 Pb isotopes, Canyon Diablo 169, 170 87Sr/86Sr evolution 165 Pb isotopes ordinary chondrites 170

© Cambridge University Press www.cambridge.org Cambridge University Press 0521470102 - Meteorites: A Petrologic, Chemical and Isotopic Synthesis Robert Hutchison Index More information

General index 505

Tschermak, G. 278; see also chondrites, classification Uranus 440 (RTB) ureilites 243–9, 257–67, 275 tungsten, see 182W augite 257 Ca/Al ratios 273 U carbon-rich matrix/mesostasis 259 235U, 238U157 with planetary noble gases 259 refractory 35 chemical composition 273, 274 unbrecciated enstatite achondrite 269, 272–3 diagnostic mineralogy 246 unbrecciated metal-rich meteorite 272 enstatite (‘bronzite’) 257 undercooling 392 Mn/Mg ratios 273 undifferentiated bodies 224, 440 modes 263 undulose extinction 44 origin 259–60 ungrouped iron, Bocaiuva 359 oxygen isotopic ratios 259, 265 Fe/Mn ratio 359 pigeonite 257 Ge/Ga ratio 359 reversed zoning 259 plagioclase composition 359 smelting 266 relationships 358, 360–1 subgroups 265 silicate inclusions 359 summary 274 ungrouped iron, Deep Springs, oxygen isotopes texture, shock effects 258–9, 262 360 ureilites monomict ungrouped iron, Mbosi 358–9 ages 259 Ge/Ga ratio 359 augite 263 like Eagle Station trio 358, 361 carbonaceous matrix 261 like IIF irons 358 ‘clinobronzite’ (clinoenstatite) 263 silicate inclusions 359 Cr distribution 266 ungrouped iron, Tucson 359 Cr minerals 262–6 anorthite 359 euhedral graphite 261 enstatite 359 feldspar 262 forsterite 359 foliation 260 Ge/Ga ratio 359 fractionation series 263, 265 no close relative 358, 361, 362 groups 263 oxygen isotopes 359, 360 metal veins 259 Si in metal 359 metal-rich spherules in olivine 261 silicate inclusions 359 mineralogy, carbon polymorphs 264 ungrouped irons olivine 264 interrelationships, parent bodies 356–7, olivine core composition 262 358 olivine, high CaO 263 ‘primary’ cosmochemical properties 356 olivine, high Cr2O3 263 secondary ‘geochemical’ properties 356 oxygen isotopes 263, 265 ungrouped irons and stony irons 355–62 pigeonite 263 abundance statistics 356 pigeonite Cr2O3 content 264 examples 358 poikilitic ureilites 261, 263 mass-distribution 356 pyroxene 264 origin, grouped and ungrouped irons, see iron reduction rims in olivine 259, 261 meteorites smelting 263 oxygen isotopes 360 subclassification 262–6 properties 358 texture 258–9, 260–1 ungrouped polymict stony iron breccias ureilites polymict 15N enriched 359 age by Mn-Cr 262 barred olivine-pyroxene silicate 359 clasts 266 Bencubbin and Weatherford 359, 361 chondritic clasts 262, 266 CR group affinity 359 exotic clasts 266 metal ‘slugs’ 359 exotic olivine 266 oxygen isotopes 359, 360 feldspar 266 related to Tucson, Eagle Station? 358, 361–2 mineralogy 266 xenoliths, carbonaceous and ordinary chondrite 359 plagioclase clasts 266 ungrouped stony irons, Eagle Station trio, diagnostic texture 262 properties 358, 359–60, 362 ureilites thermal history 266 University of California at Los Angeles 27 melting 376 U-Pb age, EOCs, phosphate 71 planetary noble gases 267 comparison with Rb-Sr 166 smelting 266

© Cambridge University Press www.cambridge.org Cambridge University Press 0521470102 - Meteorites: A Petrologic, Chemical and Isotopic Synthesis Robert Hutchison Index More information

506 General index

Urey, H. C. 192 diagnostic mineralogy 246 U-Th-Pb method 169–73 grain-size, shock stages, texture 252 summary 172, 173 IIICD subgroup 255 oxygen isotopes 254 valency 37 shock stages 255 Vdovykin, G. P 262 texture 250, 251, 254–5 Vesta, asteroid 278; see also petrogentic veining 254 associations, HED parent body winonaites mineralogy 255–6 Victoria Land, see Antarctica alabandite 255 Vienna 245 Cr-minerals 255 Viking landers, see Mars daubr´eelite255 VLT mare basalt 296 schreibersite 255 volatile elements 36, 216–17, 218 winonaites origin, crystal-liquid fractionation (Caddo accretion in pristine dust 218 County) 256 condensation 216–18 heterogeneous precursor 255 loss during metamorphism 216 partial differentiation 256 volcanic droplets 56 winonaites thermal history 256 volcanism, related to parent body size 366 cooling rates 256 volume diffusion coefficient 392 w¨ustite 14 vugs 293 Xe, planetary, see noble gases, planetary 182W evolution 374–5 129Xe/128Xe ratio 174 W0 45 129Xe/130Xe vs 128Xe/130Xe 174; see also I-Xe W1-W6 45 Xe-HL 422, 431 Walker, R. M. 423 bimodal gas-release 432 Wark-Lovering rims, see CAIs carrier 422, 432 Washington University, St Louis 423 implantation, stellar origins 432 water condensation 36 ion implantations 432 water, oxidizing agent 405 isotopic composition 432 weathering of meteorites, see meteorite finds, xenocryst 62 weathering of X-ray diffraction (XRD) 22 weathering scale 45 X-ray fluorescence (XRF) 22, 26–7, 50 wehrlite 256 XRF, low Z elements (Na, Mg, Al, Si) 27 wet chemical analysis, see chemical analysis x-wind model 190–1, 192, 203–9, 210, 213–15, 218, Widmanst¨attenpattern 6, 8, 15, 327, 329, 330, 235, 238, 434, 435 332 Wiik, H. B. 27, 29 Yamato Mountains, see Antarctica Williams, I. P. 11 winonaites and chondritic silicate in IAB irons 243–9, Zn 253–6, 275 chalcophile 37 ages by Ar-Ar 256 lithophile 37 chemical compositions 273, 274 zodiacal light 2

© Cambridge University Press www.cambridge.org