Publications

Total Page:16

File Type:pdf, Size:1020Kb

Publications 1 PUBLICATIONS (A. Bischoff; complete list) 1981 1. Bischoff A.: Verhalten von klastischen Feldspäten verschiedener Stoßwellen- metamorphose-Beanspruchungen in der überhitzten Impaktschmelze von Lappajärvi, Finnland. Diploma thesis. Westf. Wilhelms-Universität. Münster (1981). 2. Bischoff A. and Stöffler D.: Thermal metamorphism of feldspar clasts in impact melt rocks from Lappajärvi crater, Finland. Lunar Planet. Sci. XII, 77 - 79, Lunar and Planetary Institute, Houston (1981). 3. Bischoff A. und Stöffler D.: Reaktionen zwischen geschockten Feldspäten und Impaktschmelzen in Gesteinen des Lappajärvi-Kraters, Finnland. 41. Jahrestagung der Deutschen Geophysikalischen Gesellschaft e. V., Heidelberg, 313 (1981). 1982 4. Bischoff A., Keil K., and Stöffler D.: Consolidation of chondrite regolith breccias by grain boundary and localized shock-melting. Meteoritics 17, 183 - 184 (1982) 5. Bischoff A., Stöffler D., and Keil K.: Consolidation and lithification of gas-rich chondrite regolith breccias by grain boundary and localized shock melting. Fortschr. Mineral. 60, 47 - 48 (1982). 1983 6. Bischoff A.: Verfestigung gasreicher chondritischer Regolithbreccien durch Stoßwellen. DFG-Kolloquium "Impaktprozesse auf Planetenoberflächen", Münster (1983). 7. Bischoff A. and Keil K.: Ca-Al-rich chondrules and inclusions in ordinary chondrites. Nature 303, No.5918, 588 - 592 (1983). 8. Bischoff A. and Keil K.: Ca-Al-rich chondrules and inclusions in ordinary chondrites: Evidence for a related genesis of ordinary and carbonaceous chondrites. Lunar Planet. Sci. XIV, 47 - 48, Lunar and Planetary Institute, Houston (1983). 2 9. Bischoff A. and Keil K.: Catalog of Al-rich chondrules, inclusions and fragments in ordinary chondrites. Special Publication No. 22, UNM, Institute of Meteoritics, Albuquerque, 1 - 33 (1983). 10. Bischoff A. and Keil K.: Ca-Al-rich chondrules and inclusions in ordinary chondrites: Evidence for a related genesis of ordinary and carbonaceous chondrites. Lunar Planet. Sci. XIV, 1 - 2, press abstract, Lunar and Planetary Institute, Houston (1983). 11. Bischoff A., Keil K. and Stöffler D.: Ca-Al-rich objects in ordinary chondrites: Significance for the origin of chondrules and chondrites. Fortschr. Mineral. 61, Bd. 1, 24 - 25 (1983). 12. Bischoff A., Keil K. and Stöffler D.: Abundant Al-rich objects in ordinary chondrites. Meteoritics 18, 268 - 269 (1983). 13. Bischoff A., Rubin A.E., Keil K. and Stöffler D.: Lithification of gas-rich chondrite regolith breccias by grain boundary and localized shock melting. Earth Planet. Sci. Lett. 66, 1 - 10 (1983). 14. Bischoff A., Stöffler D.. Borchardt R. and Rehfeldt A.: Clast population statistics of fragmental breccias, North Ray Crater, Apollo 16: Implications for the Descartes Formation. Lunar Planet. Sci. XIV, 49 - 50, Lunar and Planetary Institute, Houston (1983). 15. Borchardt R., Stöffler D., Bischoff A. and Reimold W.U.: Characterization of Descartes and Cayley Formations by different impact melt lithologies. Terra cognita 3, No.81, 2 - 3 (1983). 16. Borchardt R., Stöffler D., Bischoff A. and Reimold W.U.: Are the Descartes and Cayley Formations at Apollo 16 characterized by different impact melt lithologies? Lunar Planet. Sci. XIV, 59 - 60, Lunar and Planetary Institute, Houston (1983). 17. Boynton W.V., Hill D.H., Wark D.A. and Bischoff A.: Trace elements in Ca,Al-rich chondrules in the Dhajala (H3) chondrite. Meteoritics 18, 270 - 271 (1983). 18. Jammes C., Stöffler D., Bischoff A., Reimold W.U. and Gault D.E.: Reduction of SiO2 to Si and metallurgical transformation in Al by hypervelocity impact of Al-projectiles into quartz sand. Lunar Planet. Sci. XIV, 347 - 348, Lunar and Planetary Institute, Houston (1983). 1984 19. Bischoff A.: Refraktäre und intermediäre Chondren und Einschlüsse in Chondriten. Dissertation; Institut für Mineralogie, Universität Münster, 147 pp. (1984). 20. Bischoff A.: Bulk compositions of Al-rich chondrules in ordinary and carbonaceous chondrites: Variations and similarities. Meteoritics 19, 191 - 192 (1984). 3 21. Bischoff A. and Keil K.: Al-rich objects in ordinary chondrites: Related origin of carbonaceous and ordinary chondrites and their constituents. Geochim. Cosmochim. Acta 48, 693 - 709 (1984). 22. Bischoff A., Keil K. and Stöffler D.: Perovskite-hibonite-spinel-bearing, refractory inclusions and Ca-Al-rich chondrules in Enstatite chondrites. Meteoritics 19, 193 - 194 (1984). 23. Bischoff A. and Lange M.A.: Experimental shock-lithificatlon of chondritic powder: Implications for ordinary chondrite regolith breccias. Lunar Planet. Sci. XV, 60 - 61, Lunar and Planetary Institute, Houston (1984). 24. Bischoff A. and Stöffler D.: Clast population statistics of the lunar meteorite ALHA81005. Lunar Planet. Sci. XV, 62 - 63, Lunar and Planetary Institute, Houston (1984). 25. Bischoff A. and Stöffler D.: Chemical and structural changes induced by thermal annealing of shocked feldspar inclusions in impact melt rocks from Lappajärvi Crater, Finland. EOS 65, No.7, 63 (1984). 26. Bischoff A. and Stöffler D.: Chemical and structural changes induced by thermal annealing of shocked feldspar inclusions in impact melt rocks from Lappajärvi Crater, Finland. Proc. Lunar Planet. Sci. Conf. 14th, J. Geophys. Res. 89, B645 - B656 (1984). 27. Bischoff A., Borchardt R., Jessberger E.K., Ostertag R., Palme H., Reimold W.U., Stöffler D., Wacker K. and Wänke H.: The lunar crust in the Descartes Highland area, Apollo 16: I. Photogeology and composition of rocks. Terra Cognita 4, 76 (1984). 28. Bischoff A., Borchardt R., Jessberger E.K., Ostertag R., Palme H., Reimold W.U., Stöffler D., Wacker K. and Wänke H.: The lunar crust in the Descartes Highland area, Apollo 16: II. Chronology and selenogical interpretations. Terra Cognita 4, 76 (1984). 29. Hinton R.W. and Bischoff A.: Ion microprobe magnesium isotope analysis of plagioclase and hibonite from ordinary chondrites. Nature 308, No.5955, 169 - 172 (1984). 30. Palme H., Spettel B., Wänke H., Bischoff A. and Stöffler D.: The evolution of the lunar magma ocean: Evidence from trace elements in plagioclase. Lunar Planet. Sci. XV, 625 - 626, Lunar and Planetary Institute, Houston (1984). 31. Palme H., Spettel B., Wänke H., Bischoff A. and Stöffler D.: Early differentiation of the Moon: Evidence from trace elements in plagioclase. Proc. Lunar Planet. Sci. 15th. J. Geopyhs. Res. 89, C3 - C15 (1984). 32. Stöffler D., Bischoff A., Borchardt R., Deutsch A., Jessberger E.K., Ostertag R., Reimold W.U., Palme H., Wacker K. and Wänke H.: The lunar crust in the Descartes area near North Ray, Apollo 16, I. Petrographic and chemical properties. Lunar Planet. Sci. XV, 828 - 829, Lunar and Planetary Institute, Houston (1984). 33. Stöffler D., Bischoff A., Borchardt R., Deutsch A., Jessberger E.K., Ostertag R., Reimold W.U., Palme H., Wacker K. and Wänke H.: The lunar crust in the Descartes area near 4 North Ray, Apollo 16, II. Chronology and selenological interpretations. Lunar Planet. Sci. XV, 826 - 827, Lunar and Planetary Institute, Houston (1984). 1985 34. Bischoff A.: Refraktäre und intermediäre Chondren und Einschlüsse in Chondriten. Dissertationen der Math.-Nat. Fakultät, Universität Münster, Heft 110, 43-44 (1985). 35. Bischoff A.: Al-reiche und intermediäre Chondren in dem H4-Chondriten Ybbsitz. Ann. Naturhist. Mus. Wien 87, 21 - 31 (1985). 36. Bischoff A., Keil K. and Stöffler D.: Perovskite-hibonite-spinel-bearing inclusions and Al-rich chondrules and fragments in Enstatite chondrites. Chem. Erde 44, 97 - 106 (1985). 37. Bischoff A. and Stöffler D.: Clast population statistics of the lunar meteorite Yamato 791197 - Sample from a new source region of the lunar highlands? Lunar Planet. Sci. XVI, 63 - 64, Lunar and Planetary Institute, Houston (1985). 38. Bischoff A., Spettel B., and Palme H.: Trace elements in Al-rich chondrules from Ybbsitz (H4). Meteoritics 20, 609 - 610 (1985). 39. Borchardt R., Knöll H.-D., Bischoff A., Ostertag R. and Stöffler D.: Microprobe analyses of Apollo 14 and 16 lunar minerals and rocks. University of Münster, Institute of Mineralogy, 1 - 141 (1985). 40. Ostertag R., Bischoff A., Palme H., Spettel B., Stöffler D., Weckwerth G. and Wänke H.: Lunar meteorlte Y-791197: A lunar highland regolith breccia. 10th Symposium on Antarctic Meteorites, 95 - 97, Natl. Inst. Polar Res., Tokyo (1985). 41. Stöffler D., Bischoff A., Borchardt R., Burghele A., Deutsch A., Jessberger E.K., Ostertag R., Palme H., Spettel B., Reimold W.U., Wacker K. and Wänke H.: Composition and evolution of the lunar crust in the Descartes highlands, Apollo 16. Proc. Lunar Planet. Sci. 15th. J. Geophys. Res. 90, C449 - C506 (1985). 1986 42. Bischoff A.: Kometenstaub - Informationen durch primitive Chondrite, IDPs und die Giotto- Mission. Workshop: Kometensimulation (1986). 43. Bischoff A. and Palme H.: Oxidation of refractory metal-rich assemblages at high temperatures. Lunar Planet. Sci. XVII, 54 - 65, Lunar and Planetary Institute, Houston (1986). 44. Bischoff A. und Palme H.: Oxidation von refraktären Metallassoziationen bei hohen Temperaturen. Verhandlungen der Dt. Phys. Gesellschaft, 1574 (1986). 5 45. Bischoff A. and Palme H.: Volatile-rich clasts from lunar meteorite Y-791197. 11th Symposium on Antarctic Meteorites, 28 - 30, Natl. Inst. Polar Res., Tokyo (1986). 46. Bischoff A., Palme H., Spettel B., Stöffler D., Wänke H., and Ostertag R.: Yamato 82192 and 82193: Two other meteorites of lunar origin. 11th Symposium on Antarctic Meteorites, 34 - 36, Natl. Inst. Polar Res., Tokyo (1986). 47. Ostertag R., Stöffler D., Bischoff A.,
Recommended publications
  • Laboratory Spectroscopy of Meteorite Samples at UV-Vis-NIR Wavelengths: Analysis and Discrimination by Principal Components Analysis
    Laboratory spectroscopy of meteorite samples at UV-Vis-NIR wavelengths: Analysis and discrimination by principal components analysis Antti Penttil¨aa,∗, Julia Martikainena, Maria Gritsevicha, Karri Muinonena,b aDepartment of Physics, P.O. Box 64, FI-00014 University of Helsinki, Finland bFinnish Geospatial Research Institute FGI, National Land Survey of Finland, Geodeetinrinne 2, FI-02430 Masala, Finland Abstract Meteorite samples are measured with the University of Helsinki integrating-sphere UV-Vis- NIR spectrometer. The resulting spectra of 30 meteorites are compared with selected spectra from the NASA Planetary Data System meteorite spectra database. The spectral measure- ments are transformed with the principal component analysis, and it is shown that different meteorite types can be distinguished from the transformed data. The motivation is to im- prove the link between asteroid spectral observations and meteorite spectral measurements. Keywords: Meteorites, spectroscopy, principal component analysis 1. Introduction While a planet orbits the Sun, it is subject to impacts by objects ranging from tiny dust particles to much larger asteroids and comet nuclei. Such collisions of small Solar System bodies with planets have taken place frequently over geological time and played an 5 important role in the evolution of planets and development of life on the Earth. Every day approximately 30{180 tons of interplanetary material enter the Earth's atmosphere [1, 2]. This material is mostly represented by smaller meteoroids that undergo rapid ablation in the atmosphere. Under favorable initial conditions part of a meteoroid may survive the atmospheric entry and reach the ground [3]. The fragments recovered on the ground are 10 called meteorites, our valuable samples of the Solar System.
    [Show full text]
  • Magnetite Biomineralization and Ancient Life on Mars Richard B Frankel* and Peter R Buseckt
    Magnetite biomineralization and ancient life on Mars Richard B Frankel* and Peter R Buseckt Certain chemical and mineral features of the Martian meteorite with a mass distribution unlike terrestrial PAHs or those from ALH84001 were reported in 1996 to be probable evidence of other meteorites; thirdly, bacterium-shaped objects (BSOs) ancient life on Mars. In spite of new observations and up to several hundred nanometers long that resemble fos­ interpretations, the question of ancient life on Mars remains silized terrestrial microorganisms; and lastly, 10-100 nm unresolved. Putative biogenic, nanometer magnetite has now magnetite (Fe304), pyrrhotite (Fel_xS), and greigite (Fe3S4) become a leading focus in the debate. crystals. These minerals were cited as evidence because of their similarity to biogenic magnetic minerals in terrestrial Addresses magnetotactic bacteria. *Department of Physics, California Polytechnic State University, San Luis Obispo, California 93407, USA; e-mail: [email protected] The ancient life on Mars hypothesis has been extensively tDepartments of Geology and Chemistry/Biochemistry, Arizona State challenged, and alternative non-biological processes have University, Tempe, Arizona 85287-1404, USA; e-mail: [email protected] been proposed for each of the four features cited by McKay et al. [4]. In this paper we review the current situa­ tion regarding their proposed evidence, focusing on the Abbreviations putative biogenic magnetite crystals. BCM biologically controlled mineralization BIM biologically induced mineralization BSO bacterium-shaped object Evidence for and against ancient Martian life PAH polycyclic aromatic hydrocarbon PAHs and BSOs Reports of contamination by terrestrial organic materials [5°,6°] and the similarity of ALH84001 PAHs to non-bio­ genic PAHs in carbonaceous chondrites [7,8] make it Introduction difficult to positively identify PAHs of non-terrestrial, bio­ A 2 kg carbonaceous stony meteorite, designated genic origin.
    [Show full text]
  • Lost Lake by Robert Verish
    Meteorite-Times Magazine Contents by Editor Like Sign Up to see what your friends like. Featured Monthly Articles Accretion Desk by Martin Horejsi Jim’s Fragments by Jim Tobin Meteorite Market Trends by Michael Blood Bob’s Findings by Robert Verish IMCA Insights by The IMCA Team Micro Visions by John Kashuba Galactic Lore by Mike Gilmer Meteorite Calendar by Anne Black Meteorite of the Month by Michael Johnson Tektite of the Month by Editor Terms Of Use Materials contained in and linked to from this website do not necessarily reflect the views or opinions of The Meteorite Exchange, Inc., nor those of any person connected therewith. In no event shall The Meteorite Exchange, Inc. be responsible for, nor liable for, exposure to any such material in any form by any person or persons, whether written, graphic, audio or otherwise, presented on this or by any other website, web page or other cyber location linked to from this website. The Meteorite Exchange, Inc. does not endorse, edit nor hold any copyright interest in any material found on any website, web page or other cyber location linked to from this website. The Meteorite Exchange, Inc. shall not be held liable for any misinformation by any author, dealer and or seller. In no event will The Meteorite Exchange, Inc. be liable for any damages, including any loss of profits, lost savings, or any other commercial damage, including but not limited to special, consequential, or other damages arising out of this service. © Copyright 2002–2010 The Meteorite Exchange, Inc. All rights reserved. No reproduction of copyrighted material is allowed by any means without prior written permission of the copyright owner.
    [Show full text]
  • Radar-Enabled Recovery of the Sutter's Mill Meteorite, A
    RESEARCH ARTICLES the area (2). One meteorite fell at Sutter’sMill (SM), the gold discovery site that initiated the California Gold Rush. Two months after the fall, Radar-Enabled Recovery of the Sutter’s SM find numbers were assigned to the 77 me- teorites listed in table S3 (3), with a total mass of 943 g. The biggest meteorite is 205 g. Mill Meteorite, a Carbonaceous This is a tiny fraction of the pre-atmospheric mass, based on the kinetic energy derived from Chondrite Regolith Breccia infrasound records. Eyewitnesses reported hearing aloudboomfollowedbyadeeprumble.Infra- Peter Jenniskens,1,2* Marc D. Fries,3 Qing-Zhu Yin,4 Michael Zolensky,5 Alexander N. Krot,6 sound signals (table S2A) at stations I57US and 2 2 7 8 8,9 Scott A. Sandford, Derek Sears, Robert Beauford, Denton S. Ebel, Jon M. Friedrich, I56US of the International Monitoring System 6 4 4 10 Kazuhide Nagashima, Josh Wimpenny, Akane Yamakawa, Kunihiko Nishiizumi, (4), located ~770 and ~1080 km from the source, 11 12 10 13 Yasunori Hamajima, Marc W. Caffee, Kees C. Welten, Matthias Laubenstein, are consistent with stratospherically ducted ar- 14,15 14 14,15 16 Andrew M. Davis, Steven B. Simon, Philipp R. Heck, Edward D. Young, rivals (5). The combined average periods of all 17 18 18 19 20 Issaku E. Kohl, Mark H. Thiemens, Morgan H. Nunn, Takashi Mikouchi, Kenji Hagiya, phase-aligned stacked waveforms at each station 21 22 22 22 23 Kazumasa Ohsumi, Thomas A. Cahill, Jonathan A. Lawton, David Barnes, Andrew Steele, of 7.6 s correspond to a mean source energy of 24 4 24 2 25 Pierre Rochette, Kenneth L.
    [Show full text]
  • N Arieuican%Mllsellm
    n ARieuican%Mllsellm PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK 24, N.Y. NUMBER 2I63 DECEMBER I9, I963 The Pallasites BY BRIAN MASON' INTRODUCTION The pallasites are a comparatively rare type of meteorite, but are remarkable in several respects. Historically, it was a pallasite for which an extraterrestrial origin was first postulated because of its unique compositional and structural features. The Krasnoyarsk pallasite was discovered in 1749 about 150 miles south of Krasnoyarsk, and seen by P. S. Pallas in 1772, who recognized these unique features and arranged for its removal to the Academy of Sciences in St. Petersburg. Chladni (1794) examined it and concluded it must have come from beyond the earth, at a time when the scientific community did not accept the reality of stones falling from the sky. Compositionally, the combination of olivine and nickel-iron in subequal amounts clearly distinguishes the pallasites from all other groups of meteorites, and the remarkable juxtaposition of a comparatively light silicate mineral and heavy metal poses a nice problem of origin. Several theories of the internal structure of the earth have postulated the presence of a pallasitic layer to account for the geophysical data. No apology is therefore required for an attempt to provide a comprehensive account of this remarkable group of meteorites. Some 40 pallasites are known, of which only two, Marjalahti and Zaisho, were seen to fall (table 1). Of these, some may be portions of a single meteorite. It has been suggested that the pallasite found in Indian mounds at Anderson, Ohio, may be fragments of the Brenham meteorite, I Chairman, Department of Mineralogy, the American Museum of Natural History.
    [Show full text]
  • Infrared Reflectance Spectra of Heds and Carbonaceous Chondrites
    44th Lunar and Planetary Science Conference (2013) 1276.pdf KEYS TO DETECT SPACE WEATHERING ON VESTA: CHANGES OF VISIBLE AND NEAR- INFRARED REFLECTANCE SPECTRA OF HEDS AND CARBONACEOUS CHONDRITES. T. Hiroi1, S. Sasaki2, T. Misu3, and T. Nakamura3, 1Department of Geological Sciences, Brown University, Providence, RI 02912, USA ([email protected]), 2RISE Project, .National Astronomical Observatory of Japan, 2-12 Hoshigaoka-cho, Mizusawa-ku, Oshu, Iwate 023-0861, Japan, 3Department of Earth and Planetary Materials Science, Faculty of Science, Tohoku University, Aramaki, Aoba, Sendai, Miyagi 980-8578, Japan. Introduction: Space weathering is known to change the visible and near-infrared (VNIR) reflectance spectra of asteroidal surfaces. Past studies clearly showed the dependency of the rate of space weathering on iron content or crystal structure [1, 2]. In that respect, it is supposed that HED meteorite parent bodies would be very hard to space-weather, and space weathering of carbonaceous chondrite (CC) parent bodies would be very different from that of S- type asteroids [3]. Investigated in this study are key features useful for detecting space weathering in the VNIR spectra of HED and CC parent bodies. Experimental: Powder samples of CCs (<125 µm): Orgueil-Ivuna mixture (CI1), MAC 88100 (CM2), ALH 83108 (CO3), and ALH 85002 (CK4), and howardite EET 87503 (<25 m) were pressed into pellets, and their VNIR reflectance spectra (0.3-2.5 µm) were measured. The pellets were irradiated with pulse laser with energies of 5 and 10 mJ for the CC pellets and 75 mJ for the howardite pellet according to the procedure in [4], and their VNIR reflectance spectra were measured after each irradiation.
    [Show full text]
  • The Amino Acid Composition of the Sutterв•Žs Mill CM2 Carbonaceous
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln NASA Publications National Aeronautics and Space Administration 2014 The minoa acid composition of the Sutter’s Mill CM2 carbonaceous chondrite Aaron Burton 1NASA Johnson Space Center, [email protected] Daniel Glavin NASA Goddard Space Flight Center Jamie Elsila NASA Goddard Space Flight Center Jason Dworkin NASA Goddard Space Flight Center Peter Jenniskens SETI Institute, NASA Ames Research Center See next page for additional authors Follow this and additional works at: http://digitalcommons.unl.edu/nasapub Burton, Aaron; Glavin, Daniel; Elsila, Jamie; Dworkin, Jason; Jenniskens, Peter; and Yin, Qing-Zhu, "The minoa acid composition of the Sutter’s Mill CM2 carbonaceous chondrite" (2014). NASA Publications. 134. http://digitalcommons.unl.edu/nasapub/134 This Article is brought to you for free and open access by the National Aeronautics and Space Administration at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in NASA Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Aaron Burton, Daniel Glavin, Jamie Elsila, Jason Dworkin, Peter Jenniskens, and Qing-Zhu Yin This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/nasapub/134 Meteoritics & Planetary Science 1–13 (2014) doi: 10.1111/maps.12281 The amino acid composition of the Sutter’s Mill CM2 carbonaceous chondrite Aaron S. BURTON1* , Daniel P. GLAVIN2, Jamie E. ELSILA2, Jason P. DWORKIN2, Peter JENNISKENS3,4, and Qing-Zhu YIN5 1NASA Johnson Space Center, 2101 Space Center Parkway, Houston, Texas 77058, USA 2NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, Maryland 20771, USA 3SETI Institute, 189 Bernardo Avenue, Mountain View, California 94043, USA 4NASA Ames Research Center, Moffett Field, California 94035, USA 5Department of Earth and Planetary Sciences, University of California at Davis, Davis, California 95616, USA *Corresponding author.
    [Show full text]
  • Closing in on HED Meteorite Sources
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Earth Planets Space, 53, 1077–1083, 2001 Closing in on HED meteorite sources Mark V. Sykes1 and Faith Vilas2 1Steward Observatory, University of Arizona, Tucson, Arizona 85721, U.S.A. 2NASA Johnson Space Center, SN3, Houston, Texas 77058, U.S.A. (Received March 25, 2001; Revised June 1, 2001; Accepted June 28, 2001) Members of the Vesta dynamical family have orbital elements consistent with ejecta from a single large exca- vating collision from a single hemisphere of Vesta. The portion of Vesta’s orbit at which such an event must have occurred is slightly constrained and depends on the hemisphere impacted. There is some evidence for subsequent disruptions of these ejected objects. Spectroscopy suggests that the dynamical family members are associated with material from Vesta’s interior that was excavated by the event giving rise to the crater covering much of Vesta’s southern hemisphere. The 505-nm pyroxene feature seen in HED meteorites is relatively absent in a sample of Vesta dynamical family members raising the question of whether this collisional event was the source of the HED meteorites. Asteroids spectroscopically associated with Vesta that possess this feature are dynamically distinct and could have arisen from a different collisional event on Vesta or originated from a body geochemically similar to Vesta that was disrupted early in the history of the solar system. 1. Introduction discovery of asteroid families by Hirayama (1918), such dy- The howardite-eucrite-diogenite (HED) meteorites com- namical clusters of objects have been thought to arise from prise ∼6% of present meteorite falls (McSween, 1999).
    [Show full text]
  • Expanding Band Parameter Analysis Methods for HED Meteorites and V-Type Asteroids
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2021 Expanding Band Parameter Analysis Methods for HED Meteorites and V-type Asteroids Noah Adm Haverkamp Frere University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Physical Processes Commons, and the The Sun and the Solar System Commons Recommended Citation Frere, Noah Adm Haverkamp, "Expanding Band Parameter Analysis Methods for HED Meteorites and V- type Asteroids. " Master's Thesis, University of Tennessee, 2021. https://trace.tennessee.edu/utk_gradthes/6217 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Noah Adm Haverkamp Frere entitled "Expanding Band Parameter Analysis Methods for HED Meteorites and V-type Asteroids." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in . Sean S. Lindsay, Major Professor We have read this thesis and recommend its acceptance: Andrew W. Steiner, Tony Mezzacappa Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Expanding Band Parameter Analysis Methods for HED Meteorites and V-type Asteroids A Thesis Presented for the Master of Science Degree The University of Tennessee, Knoxville Noah Adm Haverkamp Frere May 2021 Copyright © by Noah Adm Haverkamp Frere, 2021 All Rights Reserved.
    [Show full text]
  • Trace Element Chemistry of Cumulus Ridge 04071 Pallasite with Implications for Main Group Pallasites
    Trace element chemistry of Cumulus Ridge 04071 pallasite with implications for main group pallasites Item Type Article; text Authors Danielson, L. R.; Righter, K.; Humayun, M. Citation Danielson, L. R., Righter, K., & Humayun, M. (2009). Trace element chemistry of Cumulus Ridge 04071 pallasite with implications for main group pallasites. Meteoritics & Planetary Science, 44(7), 1019-1032. DOI 10.1111/j.1945-5100.2009.tb00785.x Publisher The Meteoritical Society Journal Meteoritics & Planetary Science Rights Copyright © The Meteoritical Society Download date 23/09/2021 14:17:54 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/656592 Meteoritics & Planetary Science 44, Nr 7, 1019–1032 (2009) Abstract available online at http://meteoritics.org Trace element chemistry of Cumulus Ridge 04071 pallasite with implications for main group pallasites Lisa R. DANIELSON1*, Kevin RIGHTER2, and Munir HUMAYUN3 1Mailcode JE23, NASA Johnson Space Center, 2101 NASA Parkway, Houston, Texas 77058, USA 2Mailcode KT, NASA Johnson Space Center, 2101 NASA Parkway, Houston, Texas 77058, USA 3National High Magnetic Field Laboratory and Department of Geological Sciences, Florida State University, Tallahassee, Florida 32310, USA *Corresponding author. E-mail: [email protected] (Received 06 November 2008; revision accepted 11 May 2009) Abstract–Pallasites have long been thought to represent samples from the metallic core–silicate mantle boundary of a small asteroid-sized body, with as many as ten different parent bodies recognized recently. This report focuses on the description, classification, and petrogenetic history of pallasite Cumulus Ridge (CMS) 04071 using electron microscopy and laser ablation ICP-MS.
    [Show full text]
  • Download Version of Record (PDF / 6MB)
    Open Research Online The Open University’s repository of research publications and other research outputs An Isotopic Investigation Of Early Planetesimal Differentiation Processes Thesis How to cite: Windmill, Richard Joseph (2021). An Isotopic Investigation Of Early Planetesimal Differentiation Processes. PhD thesis The Open University. For guidance on citations see FAQs. c 2020 Richard Joseph Windmill https://creativecommons.org/licenses/by-nc-nd/4.0/ Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.21954/ou.ro.00012472 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk AN ISOTOPIC INVESTIGATION OF EARLY PLANETESIMAL DIFFERENTIATION PROCESSES Richard J. Windmill Supervisors: Dr. I. A. Franchi Professor M. Anand Dr. R. C. Greenwood Submitted to the School of Physical Sciences at The Open University in accordance with the requirements for the degree of Doctor of Philosophy June 2020 School of Physical Sciences Robert Hooke Building The Open University Walton Hall Milton Keynes MK7 6AA United Kingdom Abstract The differentiation and early evolution of planetesimals is relatively poorly understood. The Main- Group pallasites (PMGs) and IIIAB irons are differentiated meteorite groups from deep planetesimal interiors. They provide a window into the early evolution of rocky planets because of the abundance of samples from these groups and because a common planetary provenance has been proposed. Oxygen isotope analyses are crucial in understanding these relationships.
    [Show full text]
  • Mineralogy of the Sutter's Mill Carbonaceous Chondrite
    44th Lunar and Planetary Science Conference (2013) 2148.pdf MINERALOGY OF THE SUTTER’S MILL CARBONACEOUS CHONDRITE. Laurence A.J. Garvie, Cen- ter for Meteorite Studies, Arizona State University, Tempe, AZ 85287-6004, USA. [email protected] Introduction: On the morning of April 22nd, 2012, The background-subtracted profiles for SM3 and 6 do a fireball was observed over Nevada and California, not show recognizable diffracted intensity for clays or with subsequent recovery of three meteorites on April amorphous materials, whereas SM8 shows weak re- 24th around Coloma and Lotus in California. These flections for clays/amorphous material (Fig. 1). pieces are significant as they are the only to be collect- XRD profiles for SM38, 41, and 65 are similar to ed before heavy rains on the 25th and 26th. To date, each other, with the majority of the diffracted intensity ~1000 g have been found as 90 small stones. The for- arising from clay/amorphous material. On top of this tuitous breakup into individual, small meteorites facili- intensity are reflections from Fe-sulfides, calcite, and tated the distribution and study of multiple individuals. magnetite. Reflections for enstatite and olivine are Initial studies show the stones to be a breccia, with weak and vary in intensity from different regions of bulk chemistry matching that of CM chondrites [1]. sampled stones and come from dispersed macroscopic The δ17O versus δ18O data of two stones [1] show one grains. The majority of the low-angle intensity is cen- (SM43) to be within the CM field, and the other tered around ~13.5Å, with a low-intensity sharp reflec- (SM51) between the CM field and Tagish Lake.
    [Show full text]