Exploring Exogenic Sources for the Olivine on Asteroid (4) Vesta Lucille Le Corre Planetary Science Institute, 1700 East Fort Lowell, Suite 106, Tucson, AZ 85719, USA. Email:
[email protected] Vishnu Reddy Planetary Science Institute, 1700 East Fort Lowell, Suite 106, Tucson, AZ 85719, USA. Juan A. Sanchez Planetary Science Institute, 1700 East Fort Lowell, Suite 106, Tucson, AZ 85719, USA. Tasha Dunn Colby College, Department of Geology, 5800 Mayflower Hill, Waterville, ME 04901 Edward A. Cloutis Department of Geography, University of Winnipeg, 515 Portage Avenue, Winnipeg, Manitoba, Canada R3B 2E9 Matthew R. M. Izawa Department of Geography, University of Winnipeg, 515 Portage Avenue, Winnipeg, Manitoba, Canada R3B 2E9 Paul Mann Department of Geography, University of Winnipeg, 515 Portage Avenue, Winnipeg, Manitoba, Canada R3B 2E9 Andreas Nathues Max-Planck-Institute for Solar System Research, Göttingen, Germany. 1 Pages: 62 Figures: 12 Tables: 4 Keywords: Asteroid Vesta; Asteroids, Composition; Asteroids, Surfaces; Mineralogy; Spectroscopy Proposed Running Head: Exogenic sources for the olivine on Vesta Editorial correspondence to: Lucille Le Corre Planetary Science Institute 1700 E Fort Lowell Rd #106 Tucson, Arizona 85719, USA
[email protected] 2 Abstract The detection of olivine on Vesta is interesting because it may provide critical insights into planetary differentiation early in our Solar System’s history. Ground-based and Hubble Space Telescope (HST) observations of asteroid (4) Vesta have suggested the presence of olivine on the surface. These observations were reinforced by the discovery of olivine-rich HED meteorites from Vesta in recent years. However, analysis of data from NASA’s Dawn spacecraft has shown that this “olivine-bearing unit” is actually impact melt in the ejecta of Oppia crater.