Asteroid (4) Vesta: I. the Howardite-Eucrite-Diogenite (HED) Clan of Meteorites

Total Page:16

File Type:pdf, Size:1020Kb

Asteroid (4) Vesta: I. the Howardite-Eucrite-Diogenite (HED) Clan of Meteorites Chemie der Erde 75 (2015) 155–183 Contents lists available at ScienceDirect Chemie der Erde j ournal homepage: www.elsevier.de/chemer Invited Review Asteroid (4) Vesta: I. The howardite-eucrite-diogenite (HED) clan of meteorites ∗ David W. Mittlefehldt XI3/Astromaterials Research Office, Astromaterials Research and Exploration Sciences Division, NASA/Johnson Space Center, 2101 NASA Parkway, Houston, TX 77058, USA a r a t b i c s t l e i n f o r a c t Article history: The howardite, eucrite and diogenite (HED) clan of meteorites are ultramafic and mafic igneous rocks Received 23 November 2013 and impact-engendered fragmental debris derived from a thoroughly differentiated asteroid. Earth-based Accepted 21 August 2014 telescopic observation and data returned from vestan orbit by the Dawn spacecraft make a compelling Editorial handling – K. Keil case that the asteroid (4) Vesta is the parent asteroid of HEDs, although this is not universally accepted. Diogenites are petrologically diverse and include dunitic, harzburgitic and noritic lithologic types in addi- Keywords: tion to the traditional orthopyroxenites. Diogenites form the lower crust of Vesta. Cumulate eucrites are Howardites gabbroic rocks formed by accumulation of pigeonite and plagioclase from a mafic magma at depth within Eucrites Diogenites the crust, while basaltic eucrites are melt compositions that likely represent shallow-level dikes and sills, Vesta and flows. Some basaltic eucrites are richer in incompatible trace elements compared to most eucrites, Basaltic achondrites and these may represent mixed melts contaminated by partial melts of the mafic crust. Differentiation Differentiated asteroids occurred within a few Myr of formation of the earliest solids in the Solar System. Evidence from oxy- gen isotope compositions and siderophile element contents favor a model of extensive melting of Vesta forming a global magma ocean that rapidly (period of a few Myr) segregated and crystallized to yield a metallic core, olivine-rich mantle, orthopyroxene-rich lower crust and basaltic upper crust. The igneous lithologies were subjected to post-crystallization thermal processing, and most eucrites show textural and mineral-compositional evidence for metamorphism. The cause of this common metamorphism is unclear, but may have resulted from rapid burial of early basalts by later flows caused by high effusion rates on Vesta. The observed surface of Vesta is covered by fragmental debris resulting from impacts, and most HEDs are brecciated. Many eucrites and diogenites are monomict breccias indicating a lack of mixing. However, many HEDs are polymict breccias. Howardites are the most thoroughly mixed polymict breccias, yet only some of them contain evidence for residence in the true regolith. Based on the numbers of meteorites, compositions of howardites, and models of magma ocean solidification, cumulate eucrites and their residual ferroan mafic melts are minor components of the vestan crust. © 2014 Published by Elsevier GmbH. Contents 1. Introduction . 156 2. Lithologies . 156 3. Mineralogy and petrology. 157 3.1. Diogenites. 157 3.2. Cumulate eucrites . 162 3.3. Basaltic eucrites. 164 3.4. Petrologically anomalous eucrites . 165 3.5. HED polymict breccias . 166 ∗ Tel.: +1 281 483 5043; fax: +1 281 483 1573. E-mail address: [email protected] http://dx.doi.org/10.1016/j.chemer.2014.08.002 0009-2819/© 2014 Published by Elsevier GmbH. 156 D.W. Mittlefehldt / Chemie der Erde 75 (2015) 155–183 4. HED compositions . 167 4.1. Oxygen isotopic composition. 167 4.2. Lithophile element compositions . 169 4.3. Siderophile element compositions . 171 4.4. Noble gas contents. 172 5. HED ages. 172 6. HED meteorite petrogenesis . 174 7. Thermal metamorphism of the HED parent body crust . 175 8. Fluid-mediated metasomatism? . 176 9. Mixing of the vestan crust . 176 10. Ungrouped basaltic achondrites . 178 11. The future . 178 Acknowledgments . 179 Appendix A. Supplementary data . 179 References . 179 1. Introduction geological, mineralogical, compositional and geophysical informa- tion on Vesta. The returned data are consistent with the identity Meteorites of the howardite, eucrite and diogenite (HED) clan of Vesta as the HED parent asteroid (McSween et al., 2013). Never- make up the largest suite of crustal igneous rocks available for study theless, there continues to be a minority view that Vesta is not the from any solar system body, baring the Earth and Moon. As of July HED parent. Wasson (2013) contends that the numerous V-type 2014, there were over 1450 named HED meteorites with 270 new asteroids in the inner main belt are debris from the disruption of HED meteorites announced during the previous year. Because most several differentiated asteroids, and that these are more probable are from collection fields in Antarctica and northern Africa, pairings as sources for HEDS than debris knocked off Vesta by the impact greatly reduces the number of individual fall events represented. that formed the Rheasilvia basin. He argues that the isotopic simi- HEDs include basalts, cumulate gabbros, norites, orthopyroxenites, larity of IIIAB irons and HEDs indicates that they were derived from harzburgites and rare dunites, plus brecciated mixtures of these the same asteroid, and that asteroid must have been completely igneous lithologies. The HED clan.
Recommended publications
  • Mineralogy and Petrology of the Angrite Northwest Africa 1296 Albert Jambon, Jean-Alix Barrat, Omar Boudouma, Michel Fonteilles, D
    Mineralogy and petrology of the angrite Northwest Africa 1296 Albert Jambon, Jean-Alix Barrat, Omar Boudouma, Michel Fonteilles, D. Badia, C. Göpel, Marcel Bohn To cite this version: Albert Jambon, Jean-Alix Barrat, Omar Boudouma, Michel Fonteilles, D. Badia, et al.. Mineralogy and petrology of the angrite Northwest Africa 1296. Meteoritics and Planetary Science, Wiley, 2005, 40 (3), pp.361-375. hal-00113853 HAL Id: hal-00113853 https://hal.archives-ouvertes.fr/hal-00113853 Submitted on 2 May 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Meteoritics & Planetary Science 40, Nr 3, 361–375 (2005) Abstract available online at http://meteoritics.org Mineralogy and petrology of the angrite Northwest Africa 1296 A. JAMBON,1 J. A. BARRAT,2 O. BOUDOUMA,3 M. FONTEILLES,4 D. BADIA,1 C. GÖPEL,5 and M. BOHN6 1Laboratoire Magie, Université Pierre et Marie Curie, CNRS UMR 7047, case 110, 4 place Jussieu, 75252 Paris cedex 05, France 2UBO-IUEM, CNRS UMR 6538, Place Nicolas Copernic, F29280 Plouzané, France 3Service du MEB, UFR des Sciences de la Terre, Université Pierre et Marie Curie, case 110, 4 place Jussieu, 75252 Paris cedex 05, France 4Pétrologie, Modélisation des Matériaux et Processus, Université Pierre et Marie Curie, case 110, 4 place Jussieu, 75252 Paris cedex 05, France 5Laboratoire de Géochimie et Cosmochimie, Institut de Physique du Globe, CNRS UMR 7579, 4 place Jussieu, 75252 Paris cedex 05, France 6Ifremer-Centre de Brest, CNRS-UMR 6538, BP70, 29280 Plouzané Cedex, France *Corresponding author.
    [Show full text]
  • 2016 Publication Year 2020-12-21T10:07:06Z
    Publication Year 2016 Acceptance in OA@INAF 2020-12-21T10:07:06Z Title Spectral characterization of V-type asteroids - II. A statistical analysis Authors IEVA, Simone; DOTTO, Elisabetta; Lazzaro, D.; PERNA, Davide; Fulvio, D.; et al. DOI 10.1093/mnras/stv2510 Handle http://hdl.handle.net/20.500.12386/29033 Journal MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY Number 455 MNRAS 455, 2871–2888 (2016) doi:10.1093/mnras/stv2510 Spectral characterization of V-type asteroids – II. A statistical analysis S. Ieva,1‹ E. Dotto,1 D. Lazzaro,2 D. Perna,3 D. Fulvio4 and M. Fulchignoni3 1INAF–Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monteporzio Catone (Roma), Italy 2Observatorio Nacional, Rua General Jose´ Cristino, 77 – Sao˜ Cristov´ ao,˜ Rio de Janeiro – RJ-20921-400, Brazil 3LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universites,´ UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cite,´ 5 place Jules Janssen, F-92195 Meudon, France 4Departamento de Fis´ıca, Pontif´ıcia Universidade Catolica´ do Rio de Janeiro, Rua Marques de Sao˜ Vicente 225, Rio de Janeiro 22451-900, Brazil Downloaded from https://academic.oup.com/mnras/article/455/3/2871/2892629 by guest on 06 November 2020 Accepted 2015 October 23. Received 2015 October 22; in original form 2015 August 9 ABSTRACT In recent years, several small basaltic V-type asteroids have been identified all around the main belt. Most of them are members of the Vesta dynamical family, but an increasingly large number appear to have no link with it. The question that arises is whether all these basaltic objects do indeed come from Vesta.
    [Show full text]
  • Olivine and Pyroxene from the Mantle of Asteroid 4 Vesta ∗ Nicole G
    Earth and Planetary Science Letters 418 (2015) 126–135 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Olivine and pyroxene from the mantle of asteroid 4 Vesta ∗ Nicole G. Lunning a, , Harry Y. McSween Jr. a,1, Travis J. Tenner b,2, Noriko T. Kita b,3, Robert J. Bodnar c,4 a Department of Earth and Planetary Sciences and Planetary Geosciences Institute, University of Tennessee, Knoxville, TN 37996, USA b Department of Geosciences, University of Wisconsin, Madison, WI 53706, USA c Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, USA a r t i c l e i n f o a b s t r a c t Article history: A number of meteorites contain evidence that rocky bodies formed and differentiated early in our solar Received 25 September 2014 system’s history, and similar bodies likely contributed material to form the planets. These differentiated Received in revised form 25 February 2015 rocky bodies are expected to have mantles dominated by Mg-rich olivine, but direct evidence for such Accepted 25 February 2015 mantles beyond our own planet has been elusive. Here, we identify olivine fragments (Mg# = 80–92) in Available online 17 March 2015 howardite meteorites. These Mg-rich olivine fragments do not correspond to an established lithology Editor: T. Mather in the howardite–eucrite–diogenite (HED) meteorites, which are thought to be from the asteroid 4 Keywords: Vesta; their occurrence in howardite breccias, combined with diagnostic oxygen three-isotope signatures planetary formation and minor element chemistry, indicates they are vestan.
    [Show full text]
  • Laboratory Spectroscopy of Meteorite Samples at UV-Vis-NIR Wavelengths: Analysis and Discrimination by Principal Components Analysis
    Laboratory spectroscopy of meteorite samples at UV-Vis-NIR wavelengths: Analysis and discrimination by principal components analysis Antti Penttil¨aa,∗, Julia Martikainena, Maria Gritsevicha, Karri Muinonena,b aDepartment of Physics, P.O. Box 64, FI-00014 University of Helsinki, Finland bFinnish Geospatial Research Institute FGI, National Land Survey of Finland, Geodeetinrinne 2, FI-02430 Masala, Finland Abstract Meteorite samples are measured with the University of Helsinki integrating-sphere UV-Vis- NIR spectrometer. The resulting spectra of 30 meteorites are compared with selected spectra from the NASA Planetary Data System meteorite spectra database. The spectral measure- ments are transformed with the principal component analysis, and it is shown that different meteorite types can be distinguished from the transformed data. The motivation is to im- prove the link between asteroid spectral observations and meteorite spectral measurements. Keywords: Meteorites, spectroscopy, principal component analysis 1. Introduction While a planet orbits the Sun, it is subject to impacts by objects ranging from tiny dust particles to much larger asteroids and comet nuclei. Such collisions of small Solar System bodies with planets have taken place frequently over geological time and played an 5 important role in the evolution of planets and development of life on the Earth. Every day approximately 30{180 tons of interplanetary material enter the Earth's atmosphere [1, 2]. This material is mostly represented by smaller meteoroids that undergo rapid ablation in the atmosphere. Under favorable initial conditions part of a meteoroid may survive the atmospheric entry and reach the ground [3]. The fragments recovered on the ground are 10 called meteorites, our valuable samples of the Solar System.
    [Show full text]
  • Assessment of the Mesosiderite-Diogenite Connection and an Impact Model for the Genesis of Mesosiderites
    45th Lunar and Planetary Science Conference (2014) 2554.pdf ASSESSMENT OF THE MESOSIDERITE-DIOGENITE CONNECTION AND AN IMPACT MODEL FOR THE GENESIS OF MESOSIDERITES. T. E. Bunch1,3, A. J. Irving2,3, P. H. Schultz4, J. H. Wittke1, S. M. Ku- ehner2, J. I. Goldstein5 and P. P. Sipiera3,6 1Dept. of Geology, SESES, Northern Arizona University, Flagstaff, AZ 86011 ([email protected]), 2Dept. of Earth & Space Sciences, University of Washington, Seattle, WA, 3Planetary Studies Foundation, Galena, IL, 4Dept. of Geological Sciences, Brown University, Providence, RI, 5Dept. of Geolo- gy, University of Massachusetts, Amherts, MA, 6Field Museum of Natural History, Chicago, IL. Introduction: Among well-recognized meteorite 34) is the most abundant silicate mineral and in some classes, the mesosiderites are perhaps the most com- clasts contains inclusions of FeS, tetrataenite, merrillite plex and petrogenetically least understood. Previous and silica. Three of the ten norite clasts contain a few workers have contributed important information about tiny grains of olivine (Fa24-32). A single, fine-grained “classic” falls and Antarctic finds, and have proposed breccia clast was found in NWA 5312 (see Figure 2). several different models for mesosiderite genesis [1]. Unlike the case of pallasites, the co-occurrence of met- al and silicates (predominantly orthopyroxene and cal- cic plagioclase) in mesosiderites is inconsistent with a single-stage “igneous” history, and instead seems to demand admixture of at least two separate compo- nents. Here we review the models in light of detailed ex- amination of multiple specimens from a very large mesosiderite strewnfield in Northwest Africa. Many specimens (totaling at least 80 kilograms) from this area (probably in Algeria) have been classified sepa- rately by us and others; however, in most cases the Figure 1.
    [Show full text]
  • Orbit and Dynamic Origin of the Recently Recovered Annama’S H5 Chondrite
    ORBIT AND DYNAMIC ORIGIN OF THE RECENTLY RECOVERED ANNAMA’S H5 CHONDRITE Josep M. Trigo-Rodríguez1 Esko Lyytinen2 Maria Gritsevich2,3,4,5,8 Manuel Moreno-Ibáñez1 William F. Bottke6 Iwan Williams7 Valery Lupovka8 Vasily Dmitriev8 Tomas Kohout 2, 9, 10 Victor Grokhovsky4 1 Institute of Space Science (CSIC-IEEC), Campus UAB, Facultat de Ciències, Torre C5-parell-2ª, 08193 Bellaterra, Barcelona, Spain. E-mail: [email protected] 2 Finnish Fireball Network, Helsinki, Finland. 3 Dept. of Geodesy and Geodynamics, Finnish Geospatial Research Institute (FGI), National Land Survey of Finland, Geodeentinrinne 2, FI-02431 Masala, Finland 4 Dept. of Physical Methods and Devices for Quality Control, Institute of Physics and Technology, Ural Federal University, Mira street 19, 620002 Ekaterinburg, Russia. 5 Russian Academy of Sciences, Dorodnicyn Computing Centre, Dept. of Computational Physics, Valilova 40, 119333 Moscow, Russia. 6 Southwest Research Institute, 1050 Walnut St., Suite 300, Boulder, CO 80302, USA. 7Astronomy Unit, Queen Mary, University of London, Mile End Rd. London E1 4NS, UK. 8 Moscow State University of Geodesy and Cartography (MIIGAiK), Extraterrestrial Laboratory, Moscow, Russian Federation 9Department of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki University, Finland 10Institute of Geology, The Czech Academy of Sciences, Rozvojová 269, 16500 Prague 6, Czech Republic Abstract: We describe the fall of Annama meteorite occurred in the remote Kola Peninsula (Russia) close to Finnish border on April 19, 2014 (local time). The fireball was instrumentally observed by the Finnish Fireball Network. From these observations the strewnfield was computed and two first meteorites were found only a few hundred meters from the predicted landing site on May 29th and May 30th 2014, so that the meteorite (an H4-5 chondrite) experienced only minimal terrestrial alteration.
    [Show full text]
  • Thursday, August 11, 2016 EARLY SOLAR SYSTEM CHRONOLOGY I 8:30 A.M
    79th Annual Meeting of the Meteoritical Society (2016) sess701.pdf Thursday, August 11, 2016 EARLY SOLAR SYSTEM CHRONOLOGY I 8:30 a.m. Room B Chairs: Gregory Brennecka Audrey Bouvier 8:30 a.m. Kruijer T. S. * Kleine T. Tungsten Isotope Dichotomy Among Iron Meteorite Parent Bodies: Implications for the Timescales of Accretion and Core Formation [#6449] We report new combined Pt and W isotope data for IC, IIC, IIF, IIIE, and IIIF iron meteorites, with the ultimate aim of better understanding the variable pre-exposure 182W/184W signatures observed among different iron meteorite groups. 8:45 a.m. Tissot F. L. H. * Dauphas N. Grove T. L. Heterogeneity in the 238U/235U Ratios of Angrites [#6104] We report the 238U/235U ratios of six angrites. We find that the angrite-parent body was heterogeneous with regards to U isotopes. We correct the Pb-Pb ages of angrites and test their concordance with ages derived from short-lived chronometers. 9:00 a.m. Brennecka G. A. * Amelin Y. Kleine T. Combined 238U/235U and Pb Isotopics of Planetary Core Material: The Absolute Age of the IVA Iron Muonionalusta [#6296] We report a measured 238U/235U for the IVA iron Muonionalusta. This measured value requires an age correction of ~7 Myr to the previously published Pb-Pb age. This has major implications for our understanding of planetary core formation and cooling. 9:15 a.m. Cartwright J. A. * Amelin Y. Koefoed P. Wadhwa M. U-Pb Age of the Ungrouped Achondrite NWA 8486 [#6231] We report the U-Pb age for ungrouped achondrite NWA 8486 (paired with NWA 7325).
    [Show full text]
  • Asteroid Family Ages. 2015. Icarus 257, 275-289
    Icarus 257 (2015) 275–289 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Asteroid family ages ⇑ Federica Spoto a,c, , Andrea Milani a, Zoran Knezˇevic´ b a Dipartimento di Matematica, Università di Pisa, Largo Pontecorvo 5, 56127 Pisa, Italy b Astronomical Observatory, Volgina 7, 11060 Belgrade 38, Serbia c SpaceDyS srl, Via Mario Giuntini 63, 56023 Navacchio di Cascina, Italy article info abstract Article history: A new family classification, based on a catalog of proper elements with 384,000 numbered asteroids Received 6 December 2014 and on new methods is available. For the 45 dynamical families with >250 members identified in this Revised 27 April 2015 classification, we present an attempt to obtain statistically significant ages: we succeeded in computing Accepted 30 April 2015 ages for 37 collisional families. Available online 14 May 2015 We used a rigorous method, including a least squares fit of the two sides of a V-shape plot in the proper semimajor axis, inverse diameter plane to determine the corresponding slopes, an advanced error model Keywords: for the uncertainties of asteroid diameters, an iterative outlier rejection scheme and quality control. The Asteroids best available Yarkovsky measurement was used to estimate a calibration of the Yarkovsky effect for each Asteroids, dynamics Impact processes family. The results are presented separately for the families originated in fragmentation or cratering events, for the young, compact families and for the truncated, one-sided families. For all the computed ages the corresponding uncertainties are provided, and the results are discussed and compared with the literature. The ages of several families have been estimated for the first time, in other cases the accu- racy has been improved.
    [Show full text]
  • Possible Fluid Rock Interactions on Differentiated Asteroids Recorded in Eucritic Meteorites Jean-Alix Barrat, A
    Possible fluid rock interactions on differentiated asteroids recorded in eucritic meteorites Jean-Alix Barrat, A. Yamaguchi, T.E. Bunch, Marcel Bohn, Claire Bollinger, Georges Ceuleneer To cite this version: Jean-Alix Barrat, A. Yamaguchi, T.E. Bunch, Marcel Bohn, Claire Bollinger, et al.. Possible fluid rock interactions on differentiated asteroids recorded in eucritic meteorites. Geochimica et Cosmochimica Acta, Elsevier, 2011, 75 (13), pp.3839-3852. insu-00586415 HAL Id: insu-00586415 https://hal-insu.archives-ouvertes.fr/insu-00586415 Submitted on 15 Apr 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Possible fluid-rock interactions on differentiated asteroids recorded in eucritic meteorites by J.A. Barrat 1,2 , A. Yamaguchi 3,4 , T.E. Bunch 5, M. Bohn 1,2 , 1,2 6 C. Bollinger , and G. Ceuleneer 1Université Européenne de Bretagne, France. 2CNRS UMR 6538 (Domaines Océaniques), U.B.O.-I.U.E.M., Place Nicolas Copernic, 29280 Plouzané Cedex, France. E-Mail: [email protected] . 3National Institute of Polar Research, Tachikawa, Tokyo 190-8518, Japan 4Department of Polar Science, School of Multidisciplinary Science, Graduate University for Advanced Sciences, Tokyo 190-8518, Japan.
    [Show full text]
  • The Solar System
    5 The Solar System R. Lynne Jones, Steven R. Chesley, Paul A. Abell, Michael E. Brown, Josef Durech,ˇ Yanga R. Fern´andez,Alan W. Harris, Matt J. Holman, Zeljkoˇ Ivezi´c,R. Jedicke, Mikko Kaasalainen, Nathan A. Kaib, Zoran Kneˇzevi´c,Andrea Milani, Alex Parker, Stephen T. Ridgway, David E. Trilling, Bojan Vrˇsnak LSST will provide huge advances in our knowledge of millions of astronomical objects “close to home’”– the small bodies in our Solar System. Previous studies of these small bodies have led to dramatic changes in our understanding of the process of planet formation and evolution, and the relationship between our Solar System and other systems. Beyond providing asteroid targets for space missions or igniting popular interest in observing a new comet or learning about a new distant icy dwarf planet, these small bodies also serve as large populations of “test particles,” recording the dynamical history of the giant planets, revealing the nature of the Solar System impactor population over time, and illustrating the size distributions of planetesimals, which were the building blocks of planets. In this chapter, a brief introduction to the different populations of small bodies in the Solar System (§ 5.1) is followed by a summary of the number of objects of each population that LSST is expected to find (§ 5.2). Some of the Solar System science that LSST will address is presented through the rest of the chapter, starting with the insights into planetary formation and evolution gained through the small body population orbital distributions (§ 5.3). The effects of collisional evolution in the Main Belt and Kuiper Belt are discussed in the next two sections, along with the implications for the determination of the size distribution in the Main Belt (§ 5.4) and possibilities for identifying wide binaries and understanding the environment in the early outer Solar System in § 5.5.
    [Show full text]
  • Meteorite Dunite Breccia Mil 03443: a Probable Crustal Cumulate Closely Related to Diogenites from the Hed Parent Asteroid
    METEORITE DUNITE BRECCIA MIL 03443: A PROBABLE CRUSTAL CUMULATE CLOSELY RELATED TO DIOGENITES FROM THE HED PARENT ASTEROID. David W Mittlefehldt, Astromateri- als Research Office, NASA/Johnson Space Center, Houston, Texas, USA, ([email protected]). Introduction: There are numerous types of differ- Metal is very rare, and occurs as grains a few microns entiated meteorites, but most represent either the crusts in size associated with troilite. or cores of their parent asteroids. Ureilites, olivine- pyroxene-graphite rocks, are exceptions; they are man- tle restites [1]. Dunite is expected to be a common mantle lithology in differentiated asteroids. In particu- lar, models of the eucrite parent asteroid contain large volumes of dunite mantle [2-4]. Yet dunites are very rare among meteorites, and none are known associated with the howardite, eucrite, diogenite (HED) suite. Spectroscopic measurements of 4 Vesta, the probable HED parent asteroid, show one region with an olivine signature [5] although the surface is dominated by ba- saltic and orthopyroxenitic material equated with eucrites and diogenites [6]. One might expect that a small number of dunitic or olivine-rich meteorites might be delivered along with the HED suite. The 46 gram meteoritic dunite MIL 03443 (Fig. 1) Figure 2. BSE image of MIL 03443 showing its gen- was recovered from the Miller Range ice field of Ant- eral fragmental breccia texture, and primary texture arctica. This meteorite was tentatively classified as a between olivine, orthopyroxene and chromite. mesosiderite because large, dunitic clasts are found in this type of meteorite, but it was noted that MIL 03443 could represent a dunite sample of the HED suite [7].
    [Show full text]
  • Forschungsbericht 2013-2014
    Forschungsbericht 2013-2014 Fachbereich 14 - Geowissenschaften Impressum Herausgeber Westfälische Wilhelms-Universität Münster Prorektor für Forschung Schlossplatz 2 48149 Münster E-Mail: [email protected] http://www.uni-muenster.de Bearbeitung und Layout Dr. Sebastian Herwig Westfälische Wilhelms-Universität Münster Abteilung 6.4: Forschungsinformationen und Forschungsberichterstattung Röntgenstraße 19 48149 Münster Telefon: +49 251 83-30347 E-Mail: [email protected] http://www.uni-muenster.de/CRIS Abruf der Forschungsberichte http://www.uni-muenster.de/wwu/dokumentationen/forschungsberichte Münster, den 17.03.2015 Verehrte Leserin, verehrter Leser, Wie wurde mit Religion über die Jahrtausende Staat gemacht? Wie können neue Batteriesysteme zu einer nachhaltigen Energieversorgung von morgen beitragen? Wie visualisieren wir molekulare Vorgänge in Zellen? An diesen und vielen weiteren Fragen forschen die Wissenschaftlerinnen und Wissenschaftler der Westfälischen Wilhelms-Universität Münster in zahlreichen multidisziplinären Verbünden, um hierauf Antworten zu finden. Mit diesem Forschungsbericht erhalten Sie einen zusammenhängenden Überblick über die in den Jahren 2013 und 2014 an der WWU durchgeführten Forschungsprojekte, die daraus hervorgegangenen Veröffentlichungen, die an unsere Wissenschaftlerinnen und Wissenschaftler verliehenen Preise und Auszeichnungen sowie über die an der WWU abgeschlossenen Promotionen und Habilitationen. Die in den Forschungsberichten zusammengefassten Forschungsaktivitäten und -ergebnisse
    [Show full text]