2016 Publication Year 2020-12-21T10:07:06Z

Total Page:16

File Type:pdf, Size:1020Kb

2016 Publication Year 2020-12-21T10:07:06Z Publication Year 2016 Acceptance in OA@INAF 2020-12-21T10:07:06Z Title Spectral characterization of V-type asteroids - II. A statistical analysis Authors IEVA, Simone; DOTTO, Elisabetta; Lazzaro, D.; PERNA, Davide; Fulvio, D.; et al. DOI 10.1093/mnras/stv2510 Handle http://hdl.handle.net/20.500.12386/29033 Journal MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY Number 455 MNRAS 455, 2871–2888 (2016) doi:10.1093/mnras/stv2510 Spectral characterization of V-type asteroids – II. A statistical analysis S. Ieva,1‹ E. Dotto,1 D. Lazzaro,2 D. Perna,3 D. Fulvio4 and M. Fulchignoni3 1INAF–Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monteporzio Catone (Roma), Italy 2Observatorio Nacional, Rua General Jose´ Cristino, 77 – Sao˜ Cristov´ ao,˜ Rio de Janeiro – RJ-20921-400, Brazil 3LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universites,´ UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cite,´ 5 place Jules Janssen, F-92195 Meudon, France 4Departamento de Fis´ıca, Pontif´ıcia Universidade Catolica´ do Rio de Janeiro, Rua Marques de Sao˜ Vicente 225, Rio de Janeiro 22451-900, Brazil Downloaded from https://academic.oup.com/mnras/article/455/3/2871/2892629 by guest on 06 November 2020 Accepted 2015 October 23. Received 2015 October 22; in original form 2015 August 9 ABSTRACT In recent years, several small basaltic V-type asteroids have been identified all around the main belt. Most of them are members of the Vesta dynamical family, but an increasingly large number appear to have no link with it. The question that arises is whether all these basaltic objects do indeed come from Vesta. To find the answer to the above questioning, we decided to perform a statistical analysis of the spectroscopic and mineralogical properties of a large sample of V-types, with the objective to highlight similarities and differences among them, and shed light on their unique, or not, origin. The analysis was performed using 190 visible and near-infrared spectra from the literature for 117 V-type asteroids. The asteroids were grouped according to their dynamical properties and their computed spectral parameters compared. Comparison was also performed with spectral parameters of a sample of HED meteorites and data of the surface of Vesta taken by the VIR instrument on board of the Dawn spacecraft. Our analysis shows that although most of the V-type asteroids in the inner main belt do have a surface composition compatible with an origin from Vesta, this seem not to be the case for V-types in the middle and outer main belt. Key words: methods: data analysis – methods: statistical – minor planets, asteroids: individ- ual: V-types – minor planets, asteroids: individual: 4 Vesta. Vesta (Marchi et al. 2012), that with all probability are the origin 1 INTRODUCTION of Vesta’s dynamical family. The scenario was then complete: sev- 4 Vesta, an asteroid of 530 km diameter orbiting at 2.36 au, is the eral impacts created a swarm of basaltic fragments, some forming biggest ‘small body’ to show a basaltic crust. Its basaltic nature was the dynamical family while others, due to collisions and dissipative first inferred by McCord, Adams & Johnson (1970), who found, in effects, were injected into strong resonances, who pumped their the spectrum of Vesta, a deep absorption band near 0.9 µm, rep- eccentricities. Some were ejected from the Solar system or fell di- resentative of pyroxene composition. Because of the spectroscopic rectly into the sun (Farinella et al. 1994). Others, extracted from a similarity with basaltic achondrites, Vesta was also considered the close encounter with a terrestrial planet, became NEAs (Cruikshank parent body for Diogenites, Howardites and Eucrites meteorites et al. 1991) or Mars-crossers (Ribeiro et al. 2014). Finally, some (Drake 2001), collectively known as HED meteorites. With the in- of them ended up colliding on Earth and were recovered as HED crease in the number of asteroids discovered in the inner main belt, meteorites. a dynamical family of ten members was first identified by Williams Previous dynamical and observational works confirmed the above (1989). scenario characterized by the diverse steps of the evolution of frag- A major breakthrough was the discovery that smaller bodies in or- ments from Vesta. However, the discovery of a basaltic asteroid in bits between Vesta and the 3:1 mean motion resonance with Jupiter the outer main belt (Lazzaro et al. 2000) can be regarded as the have spectra similar to Vesta (Binzel & Xu 1993), confirming a ge- iceberg tip on the presence and extension of differentiated mate- netic link between them and suggesting a suitable transport mecha- rial in the asteroid belt. Nowadays basaltic asteroids with no dy- nism. Another was the discovery from HST images of a giant crater namical link with Vesta have been discovered all over the main in the south pole of Vesta (Thomas et al. 1997). The Dawn mission belt (Nesvornyetal.´ 2008): some of them can be traced back recently identified not just one, but two craters in the south pole of to Vesta trough dynamical pathways that involve non-linear sec- ular resonances (Carruba et al. 2005); others could derive from a distinct differentiated body than Vesta. Moreover, laboratory E-mail: [email protected] studies on the oxygen isotopic composition of HED meteorites C 2015 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2872 S. Ieva et al. suggest that not all can be related to a unique parent body (Scott other, with those of a sample of HED meteorites and with spectral et al. 2009). parameters of the surface of Vesta as taken by VIR instrument on Asteroids have been classified as V-type if showing a spectrum board the Dawn spacecraft. In the next section, we describe the similar to that of Vesta(Tholen & Barucci 1989; Bus & Binzel 2002; selected sample, while the statistical analysis of the data is given DeMeo et al. 2009) or ‘putative’ V-type if presenting compatible in Section 3. The study of the mineralogy for the subsample with photometric colours (Roig & Gil-Hutton 2006; Carvano et al. 2010; infrared data is given in Section 4. Finally, we conclude discussing DeMeo & Carry, 2013). Extensive numerical simulations of the the results we obtained and their implications on the study of V-type dynamical evolution of Vesta’s ejected fragments over time-scales asteroids in the main belt. comparable to the family age have shown that a relatively large fraction of the original Vesta family members may have evolved 2 THE V-TYPE SAMPLE out the family borders, and be considered as ‘fugitives’ (Nesvorny´ et al. 2008). However, from a dynamical point of view it is quite The selected sample is composed of 190 spectra in the visible and/or difficult to explain large V-type objects in the middle and outer NIR for 117 asteroids classified as V-type according to the most re- Downloaded from https://academic.oup.com/mnras/article/455/3/2871/2892629 by guest on 06 November 2020 main belt. According to Roig et al. (2008) the probability of an cent taxonomy (DeMeo et al. 2009). In order to better investigate asteroid with a mean diameter larger than 5 km to evolve from the similarities between different populations, we divided our sample Vesta family, cross the 3:1 mean motion resonance with Jupiter, into six groups according to their dynamical properties. The highest and reach a stable orbit in the middle belt is almost 1 per cent. It concentration of V-type asteroids is found in the inner main belt (at is noteworthy that the estimated diameters (assuming an albedo of semimajor axis a < 2.5 au), where we identified four dynamical 0.4 typical for basaltic surfaces) for the middle belt asteroids 10537 groups: vestoids or Vesta family objects, fugitives, low inclina- 1991 RY16 and 21238 Panarea are about 7 and 5 km, respectively, tion (low-i) and inner other (IOs). Outside the inner main belt two while for the outer belt asteroid 1459 Magnya, thermal observation other V-type groups were defined: NEAs and Middle/Outer V-types have determined a diameter of 17 km (Delbo et al. 2006). Moreover, (MOVs). Objects outside the limits of the Vesta dynamical fam- these are the three unique V-type asteroids in the middle and outer ily (fugitives, low-i, IOs and MOVs) are often grouped together in belt whose basaltic nature has been confirmed through visible and literature as non-vestoids. Therefore, we considered as follows. near-infrared spectra. In the last decade, several works have been devoted to the ob- (i) A vestoid is a V-type member of the Vesta dynamical family, 1 servation of V-type asteroids, in order to answer the question of as defined by Nesvorny´ using the hierarchical clustering method their origin (Duffard et al. 2004; Moskovitz et al. 2008a,b; Burbine (HCM). et al. 2009; Moskovitz et al. 2010; De Sanctis et al. 2011a,b). In (ii) A fugitive, following the definition of Nesvorny´ et al. (2008), < most of these works, the focus has been to identify mineralogical is a V-type asteroid with a 2.3 au and comparable e and i with differences and/or similarities between V-type asteroids belonging the Vesta family. and not belonging to the Vesta dynamical family. No definitive (iii) Also according to Nesvorny´ et al. (2008) a low-i is a V-type < ◦ < < conclusion has been reached by the diverse authors, with the only asteroid having i 6 and 2.3 a 2.5 au. exception of 1459 Magnya, which mineralogy has been shown to (iv) The remaining V-type asteroids in the inner main belt were be distinct from that of Vesta (Hardersen, Gaffey & Abell 2004).
Recommended publications
  • Asteroid Family Ages. 2015. Icarus 257, 275-289
    Icarus 257 (2015) 275–289 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Asteroid family ages ⇑ Federica Spoto a,c, , Andrea Milani a, Zoran Knezˇevic´ b a Dipartimento di Matematica, Università di Pisa, Largo Pontecorvo 5, 56127 Pisa, Italy b Astronomical Observatory, Volgina 7, 11060 Belgrade 38, Serbia c SpaceDyS srl, Via Mario Giuntini 63, 56023 Navacchio di Cascina, Italy article info abstract Article history: A new family classification, based on a catalog of proper elements with 384,000 numbered asteroids Received 6 December 2014 and on new methods is available. For the 45 dynamical families with >250 members identified in this Revised 27 April 2015 classification, we present an attempt to obtain statistically significant ages: we succeeded in computing Accepted 30 April 2015 ages for 37 collisional families. Available online 14 May 2015 We used a rigorous method, including a least squares fit of the two sides of a V-shape plot in the proper semimajor axis, inverse diameter plane to determine the corresponding slopes, an advanced error model Keywords: for the uncertainties of asteroid diameters, an iterative outlier rejection scheme and quality control. The Asteroids best available Yarkovsky measurement was used to estimate a calibration of the Yarkovsky effect for each Asteroids, dynamics Impact processes family. The results are presented separately for the families originated in fragmentation or cratering events, for the young, compact families and for the truncated, one-sided families. For all the computed ages the corresponding uncertainties are provided, and the results are discussed and compared with the literature. The ages of several families have been estimated for the first time, in other cases the accu- racy has been improved.
    [Show full text]
  • The Solar System
    5 The Solar System R. Lynne Jones, Steven R. Chesley, Paul A. Abell, Michael E. Brown, Josef Durech,ˇ Yanga R. Fern´andez,Alan W. Harris, Matt J. Holman, Zeljkoˇ Ivezi´c,R. Jedicke, Mikko Kaasalainen, Nathan A. Kaib, Zoran Kneˇzevi´c,Andrea Milani, Alex Parker, Stephen T. Ridgway, David E. Trilling, Bojan Vrˇsnak LSST will provide huge advances in our knowledge of millions of astronomical objects “close to home’”– the small bodies in our Solar System. Previous studies of these small bodies have led to dramatic changes in our understanding of the process of planet formation and evolution, and the relationship between our Solar System and other systems. Beyond providing asteroid targets for space missions or igniting popular interest in observing a new comet or learning about a new distant icy dwarf planet, these small bodies also serve as large populations of “test particles,” recording the dynamical history of the giant planets, revealing the nature of the Solar System impactor population over time, and illustrating the size distributions of planetesimals, which were the building blocks of planets. In this chapter, a brief introduction to the different populations of small bodies in the Solar System (§ 5.1) is followed by a summary of the number of objects of each population that LSST is expected to find (§ 5.2). Some of the Solar System science that LSST will address is presented through the rest of the chapter, starting with the insights into planetary formation and evolution gained through the small body population orbital distributions (§ 5.3). The effects of collisional evolution in the Main Belt and Kuiper Belt are discussed in the next two sections, along with the implications for the determination of the size distribution in the Main Belt (§ 5.4) and possibilities for identifying wide binaries and understanding the environment in the early outer Solar System in § 5.5.
    [Show full text]
  • Comet Section Observing Guide
    Comet Section Observing Guide 1 The British Astronomical Association Comet Section www.britastro.org/comet BAA Comet Section Observing Guide Front cover image: C/1995 O1 (Hale-Bopp) by Geoffrey Johnstone on 1997 April 10. Back cover image: C/2011 W3 (Lovejoy) by Lester Barnes on 2011 December 23. © The British Astronomical Association 2018 2018 December (rev 4) 2 CONTENTS 1 Foreword .................................................................................................................................. 6 2 An introduction to comets ......................................................................................................... 7 2.1 Anatomy and origins ............................................................................................................................ 7 2.2 Naming .............................................................................................................................................. 12 2.3 Comet orbits ...................................................................................................................................... 13 2.4 Orbit evolution .................................................................................................................................... 15 2.5 Magnitudes ........................................................................................................................................ 18 3 Basic visual observation ........................................................................................................
    [Show full text]
  • Color Study of Asteroid Families Within the MOVIS Catalog David Morate1,2, Javier Licandro1,2, Marcel Popescu1,2,3, and Julia De León1,2
    A&A 617, A72 (2018) Astronomy https://doi.org/10.1051/0004-6361/201832780 & © ESO 2018 Astrophysics Color study of asteroid families within the MOVIS catalog David Morate1,2, Javier Licandro1,2, Marcel Popescu1,2,3, and Julia de León1,2 1 Instituto de Astrofísica de Canarias (IAC), C/Vía Láctea s/n, 38205 La Laguna, Tenerife, Spain e-mail: [email protected] 2 Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain 3 Astronomical Institute of the Romanian Academy, 5 Cu¸titulde Argint, 040557 Bucharest, Romania Received 6 February 2018 / Accepted 13 March 2018 ABSTRACT The aim of this work is to study the compositional diversity of asteroid families based on their near-infrared colors, using the data within the MOVIS catalog. As of 2017, this catalog presents data for 53 436 asteroids observed in at least two near-infrared filters (Y, J, H, or Ks). Among these asteroids, we find information for 6299 belonging to collisional families with both Y J and J Ks colors defined. The work presented here complements the data from SDSS and NEOWISE, and allows a detailed description− of− the overall composition of asteroid families. We derived a near-infrared parameter, the ML∗, that allows us to distinguish between four generic compositions: two different primitive groups (P1 and P2), a rocky population, and basaltic asteroids. We conducted statistical tests comparing the families in the MOVIS catalog with the theoretical distributions derived from our ML∗ in order to classify them according to the above-mentioned groups. We also studied the background populations in order to check how similar they are to their associated families.
    [Show full text]
  • Ice& Stone 2020
    Ice & Stone 2020 WEEK 51: DECEMBER 13-19 Presented by The Earthrise Institute # 51 Authored by Alan Hale COMET OF THE WEEK: The Great Comet of 1680 Perihelion: 1680 December 18.49, q = 0.006 AU The Great Comet of 1680 over Rotterdam in The Netherlands, during late December 1680 as painted by the Dutch artist Lieve Verschuier. This particular comet was undoubtedly one of the brightest comets of the 17th Century, but it is also one of the most important comets in history from a scientific perspective, and perhaps even from the perspective of overall human history. While there were certainly plenty of superstitions attached to the comet’s appearance, the scientific investigations made of it were among the beginnings of the era in European history we now call The Enlightenment, and indeed, in a sense the Great Comet of 1680 can perhaps be considered as one of the sparks of that era. The significance began with the comet’s discovery, which was made on the morning of November 14, 1680, by a German astronomer residing in Coburg, Gottfried Kirch – the first comet ever to be discovered by means of a telescope. It was already around 4th magnitude at that time, and located near the star Regulus in the constellation Leo; from that point it traveled eastward and brightened rapidly, being closest to Earth (0.42 AU) on November 30. By that time it was a conspicuous naked-eye object with a tail 20 to 30 degrees long, and it remained visible for another week before disappearing into morning twilight.
    [Show full text]
  • Asteroid Regolith Weathering: a Large-Scale Observational Investigation
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2019 Asteroid Regolith Weathering: A Large-Scale Observational Investigation Eric Michael MacLennan University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation MacLennan, Eric Michael, "Asteroid Regolith Weathering: A Large-Scale Observational Investigation. " PhD diss., University of Tennessee, 2019. https://trace.tennessee.edu/utk_graddiss/5467 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Eric Michael MacLennan entitled "Asteroid Regolith Weathering: A Large-Scale Observational Investigation." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Geology. Joshua P. Emery, Major Professor We have read this dissertation and recommend its acceptance: Jeffrey E. Moersch, Harry Y. McSween Jr., Liem T. Tran Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Asteroid Regolith Weathering: A Large-Scale Observational Investigation A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Eric Michael MacLennan May 2019 © by Eric Michael MacLennan, 2019 All Rights Reserved.
    [Show full text]
  • Chaotic Diffusion of the Vesta Family Induced by Close Encounters with Massive Asteroids
    A&A 540, A118 (2012) Astronomy DOI: 10.1051/0004-6361/201118339 & c ESO 2012 Astrophysics Chaotic diffusion of the Vesta family induced by close encounters with massive asteroids J.-B. Delisle and J. Laskar ASD, IMCCE-CNRS UMR8028, Observatoire de Paris, UPMC, 77 Av. Denfert-Rochereau, 75014 Paris, France e-mail: [email protected] Received 26 October 2011 / Accepted 1 March 2012 ABSTRACT We numerically estimate the semi-major axis chaotic diffusion of the Vesta family asteroids induced by close encounters with 11 mas- sive main-belt asteroids: (1) Ceres, (2) Pallas, (3) Juno, (4) Vesta, (7) Iris, (10) Hygiea, (15) Eunomia, (19) Fortuna, (324) Bamberga, (532) Herculina, (704) Interamnia. We find that most of the diffusion is caused by Ceres and Vesta. By extrapolating our results, we are able to constrain the global effect of close encounters with all main-belt asteroids. A comparison of this drift estimate with the one expected for the Yarkovsky effect shows that for asteroids whose diameter is larger than about 40 km, close encounters dominate the Yarkovsky effect. Overall, our findings confirm the standard scenario for the history of the Vesta family. Key words. celestial mechanics – minor planets, asteroids: general – chaos – methods: numerical 1. Introduction (in terms of the number of asteroids taken into account) con- cerned the Gefion and Adeona families and was conducted by It is now common consent that most of the V-type near-Earth as- Carruba et al. (2003). The authors considered all 682 asteroids teroids (NEAs) and howardite, eucrite, and diogenite (HED) me- of radius larger than 50 km for encounters with members of teorites are fragments of a collision between Vesta and another the families.
    [Show full text]
  • 2016 Publication Year 2020-12-21T11:43:55Z
    Publication Year 2016 Acceptance in OA@INAF 2020-12-21T11:43:55Z Title Spectral characterization of V-type asteroids - I. Space weathering effects and implications for V-type NEAs Authors Fulvio, Daniele; PERNA, Davide; IEVA, Simone; Brunetto, Rosario; Kanuchova, Zuzana; et al. DOI 10.1093/mnras/stv2300 Handle http://hdl.handle.net/20.500.12386/29048 Journal MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY Number 455 MNRAS 455, 584–595 (2016) doi:10.1093/mnras/stv2300 Spectral characterization of V-type asteroids – I. Space weathering effects and implications for V-type NEAs Daniele Fulvio,1‹ Davide Perna,2 Simone Ieva,3 Rosario Brunetto,4 Zuzana Kanuchova,5 Carlo Blanco,6,7 Giovanni Strazzulla6 and Elisabetta Dotto3 1Departamento de F´ısica, Pontif´ıcia Universidade Catolica´ do Rio de Janeiro, Rua Marquesˆ de Sao˜ Vicente 225, 22451-900 Rio de Janeiro, RJ, Brazil 2LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universites,´ UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cite,´ 5 place Jules Janssen, F-92195 Meudon, France 3INAF – Osservatorio Astronomico di Roma, Via Frascati 33, I-00040 Monte Porzio Catone, Roma, Italy 4Institut d’Astrophysique Spatiale, CNRS, UMR-8617, Universite´ Paris-Sud, batimentˆ 121, F-91405 Orsay Cedex, France Downloaded from https://academic.oup.com/mnras/article/455/1/584/984768 by guest on 06 November 2020 5Astronomical Institute of the Slovak Academy of Sciences, 059 60 Tatranska´ Lomnica, Slovakia 6INAF – Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania, Italy 7Dipartimento di Fisica e Astronomia, Universita` di Catania, Via S. Sofia 78, I-95123 Catania, Italy Accepted 2015 October 1.
    [Show full text]
  • Closing in on HED Meteorite Sources
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Earth Planets Space, 53, 1077–1083, 2001 Closing in on HED meteorite sources Mark V. Sykes1 and Faith Vilas2 1Steward Observatory, University of Arizona, Tucson, Arizona 85721, U.S.A. 2NASA Johnson Space Center, SN3, Houston, Texas 77058, U.S.A. (Received March 25, 2001; Revised June 1, 2001; Accepted June 28, 2001) Members of the Vesta dynamical family have orbital elements consistent with ejecta from a single large exca- vating collision from a single hemisphere of Vesta. The portion of Vesta’s orbit at which such an event must have occurred is slightly constrained and depends on the hemisphere impacted. There is some evidence for subsequent disruptions of these ejected objects. Spectroscopy suggests that the dynamical family members are associated with material from Vesta’s interior that was excavated by the event giving rise to the crater covering much of Vesta’s southern hemisphere. The 505-nm pyroxene feature seen in HED meteorites is relatively absent in a sample of Vesta dynamical family members raising the question of whether this collisional event was the source of the HED meteorites. Asteroids spectroscopically associated with Vesta that possess this feature are dynamically distinct and could have arisen from a different collisional event on Vesta or originated from a body geochemically similar to Vesta that was disrupted early in the history of the solar system. 1. Introduction discovery of asteroid families by Hirayama (1918), such dy- The howardite-eucrite-diogenite (HED) meteorites com- namical clusters of objects have been thought to arise from prise ∼6% of present meteorite falls (McSween, 1999).
    [Show full text]
  • Vesta and the HED Meteorites: Mid-Infrared Modeling of Minerals and Their Abundances
    Vesta and the HED meteorites: Mid-infrared modeling of minerals and their abundances Item Type Article; text Authors Donaldson Hanna, K.; Sprague, A. L. Citation Donaldson Hanna, K., & Sprague, A. L. (2009). Vesta and the HED meteorites: Midinfrared modeling of minerals and their abundances. Meteoritics & Planetary Science, 44(11), 1755-1770. DOI 10.1111/j.1945-5100.2009.tb01205.x Publisher The Meteoritical Society Journal Meteoritics & Planetary Science Rights Copyright © The Meteoritical Society Download date 24/09/2021 12:48:06 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/656640 Meteoritics & Planetary Science 44, Nr 11, 1755–1770 (2009) Abstract available online at http://meteoritics.org Vesta and the HED meteorites: Mid-infrared modeling of minerals and their abundances Kerri DONALDSON HANNA1, 2* and Ann L. SPRAGUE1 1Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Blvd., Tucson, Arizona 85721–0092, USA 2Present address: Department of Geological Sciences, Brown University, Box 1846, Providence, Rhode Island 02912, USA *Corresponding author. E-mail: [email protected] (Received 29 October 2007; revision accepted 12 August 2009) Abstract–We demonstrate that the use of an established spectral deconvolution algorithm with mid- infrared spectral libraries of mineral separates of varying grain sizes is capable of identifying the known mineral compositions and abundances of a selection of howardite, eucrite, and diogenite (HED) meteorite samples. In addition, we apply the same technique to mid-infrared spectral emissivity measurements of Vesta that have been obtained from Cornell’s Mid-Infrared Asteroid Spectroscopy (MIDAS) Survey and the Infrared Space Observatory (ISO).
    [Show full text]
  • (2000) Forging Asteroid-Meteorite Relationships Through Reflectance
    Forging Asteroid-Meteorite Relationships through Reflectance Spectroscopy by Thomas H. Burbine Jr. B.S. Physics Rensselaer Polytechnic Institute, 1988 M.S. Geology and Planetary Science University of Pittsburgh, 1991 SUBMITTED TO THE DEPARTMENT OF EARTH, ATMOSPHERIC, AND PLANETARY SCIENCES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN PLANETARY SCIENCES AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY FEBRUARY 2000 © 2000 Massachusetts Institute of Technology. All rights reserved. Signature of Author: Department of Earth, Atmospheric, and Planetary Sciences December 30, 1999 Certified by: Richard P. Binzel Professor of Earth, Atmospheric, and Planetary Sciences Thesis Supervisor Accepted by: Ronald G. Prinn MASSACHUSES INSTMUTE Professor of Earth, Atmospheric, and Planetary Sciences Department Head JA N 0 1 2000 ARCHIVES LIBRARIES I 3 Forging Asteroid-Meteorite Relationships through Reflectance Spectroscopy by Thomas H. Burbine Jr. Submitted to the Department of Earth, Atmospheric, and Planetary Sciences on December 30, 1999 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Planetary Sciences ABSTRACT Near-infrared spectra (-0.90 to ~1.65 microns) were obtained for 196 main-belt and near-Earth asteroids to determine plausible meteorite parent bodies. These spectra, when coupled with previously obtained visible data, allow for a better determination of asteroid mineralogies. Over half of the observed objects have estimated diameters less than 20 k-m. Many important results were obtained concerning the compositional structure of the asteroid belt. A number of small objects near asteroid 4 Vesta were found to have near-infrared spectra similar to the eucrite and howardite meteorites, which are believed to be derived from Vesta.
    [Show full text]
  • The Compositional Diversity of Non-Vesta Basaltic Asteroids
    The compositional diversity of non-Vesta basaltic asteroids The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Leith, Thomas B. et al. "The compositional diversity of non-Vesta basaltic asteroids." Icarus 295 (October 2017): 61-73 © 2017 Elsevier As Published http://dx.doi.org/10.1016/j.icarus.2017.05.007 Publisher Elsevier BV Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/127640 Terms of Use Creative Commons Attribution-NonCommercial-NoDerivs License Detailed Terms http://creativecommons.org/licenses/by-nc-nd/4.0/ The compositional diversity of non-Vesta basaltic asteroids Thomas B. Leitha,b, Nicholas A. Moskovitza, Rhiannon G. Maynec, Francesca E. DeMeod, Driss Takire, Brian J. Burta,d, Richard P. Binzeld, Dimitra Pefkoud aLowell Observatory, Flagstaff, AZ, 86001, USA bHarvard-Smithsonian Center for Astrophysics, Cambridge, MA, 02138, USA cMonnig Meteorite Collection, Texas Christian University, Fort Worth, TX, 76129, USA dMassachusetts Institute of Technology, Cambridge, MA, 02139, USA eAstrogeology Science Center, United States Geological Survey, Flagstaff, AZ, 86001, USA Abstract We present near-infrared (0.78-2.45 µm) reflectance spectra for nine middle and outer main belt (a > 2:5 AU) basaltic asteroids. Three of these objects are spectrally distinct from all classifications in the Bus-DeMeo system and could represent spectral end members in the existing taxonomy or be representatives of a new spectral type. The remainder of the sample are classified as V- or R- type. All of these asteroids are dynamically detached from the Vesta collisional family, but are too small to be intact differentiated parent bodies, implying that they originated from differentiated planetesimals which have since been destroyed or ejected from the solar system.
    [Show full text]