The Minor Planet Bulletin

Total Page:16

File Type:pdf, Size:1020Kb

The Minor Planet Bulletin THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 41, NUMBER 4, A.D. 2014 OCTOBER-DECEMBER 203. LIGHTCURVE ANALYSIS FOR 4167 RIEMANN Amy Zhao, Ashok Aggarwal, and Caroline Odden Phillips Academy Observatory (I12) 180 Main Street Andover, MA 01810 USA [email protected] (Received: 10 June) Photometric observations of 4167 Riemann were made over six nights in 2014 April. A synodic period of P = 4.060 ± 0.001 hours was derived from the data. 4167 Riemann is a main-belt asteroid discovered in 1978 by L. V. Period analysis was carried out by the authors using MPO Canopus Zhuraveya. Observations of the asteroid were conducted at the and its Fourier analysis feature developed by Harris (Harris et al., Phillips Academy Observatory, which is equipped with a 0.4-m f/8 1989). The resulting lightcurve consists of 288 data points. The reflecting telescope by DFM Engineering. Images were taken with period spectrum strongly favors the bimodal solution. The an SBIG 1301-E CCD camera that has a 1280x1024 array of 16- resulting lightcurve has synodic period P = 4.060 ± 0.001 hours micron pixels. The resulting image scale was 1.0 arcsecond per and amplitude 0.17 mag. Dips in the period spectrum were also pixel. Exposures were 300 seconds and taken primarily at –35°C. noted at 8.1200 hours (2P) and at 6.0984 hours (3/2P). A search of All images were guided, unbinned, and unfiltered. Images were the Asteroid Lightcurve Database (Warner et al., 2009) and other dark and flat-field corrected with Maxim DL. Processed images sources did not reveal previously reported lightcurve results for were measured with MPO Canopus (BDW Publishing) using a this asteroid. differential photometry technique. Comparison stars in the image Acknowledgements field were chosen to have near-solar color with the “comp star selector” feature of MPO Canopus. Research at the Phillips Academy Observatory is supported by the Israel Family Foundation. Harris, A.W., Young, J.W., Bowell, E., Martin, L.J., Millis, R.L., Poutanen, M., Scaltriti, F., Zappala, V., Schober, H.J., Debehogne, H., Zeigler, K. (1989). “Photoelectric Observations of Asteroids 3, 24, 60, 261, and 863.” Icarus 77, 171-186. Warner, B.D. (2010). The MPO Users Guide: A Companion Guide to the MPO Canopus/PhotoRed Reference Manuals. BDW Publishing, Colorado Springs, CO. Warner, B.D., Harris, A.W., Pravec, P. (2009). “The asteroid lightcurve database.” Icarus 202, 134-146. Updated 2014 February 28. http://www.minorplanet.info/lightcurvedatabase.html Minor Planet Bulletin 41 (2014) Available on line http://www.minorplanet.info/mpbdownloads.html 204 ROTATION PERIOD DETERMINATION FOR 308 POLYXO La Silla in May 1978.” Astron. Astrophys. Suppl. Ser. 39, 163- 165. Frederick Pilcher Organ Mesa Observatory Harris, A.W., and Young, J.W. (1983). "Asteroid Rotation IV. 4438 Organ Mesa Loop 1979 Observations," Icarus 54, 59-109. Las Cruces, NM 88011 USA [email protected] Harris, A.W., Young, J.W., Bowell, E., Martin, J.L., Millis, R.L., Poutanen, M., Scaltriti, F., Zappala, V., Schober, H.J., Debehogne, Luca Pietro Strabla, Ulisse Quadri, Roberto Girelli H., and Zeigler, K. (1989). “Photoelectric Observations of Observatory of Bassano Bresciano Asteroids 3, 24, 60, 261, and 863.” Icarus 77, 171-186. via San Michele 4 Bassano Bresciano (BS) Italy Higgins, D. (2011). “Period Determination of Asteroid Targets (Received: 23 April) Observed at Hunters Hill Observatory: May 2009 - September 2010.” Minor Planet Bull. 38, 41-46. Lightcurves of 308 Polyxo were obtained by a collaboration between Bassano Bresciano Observatory and Organ Mesa Observatory. For 308 Polyxo the period is 12.029 ± 0.001 hours, amplitude 0.15 ± 0.02 magnitudes with an irregular lightcurve. Previous period determinations are by Debehogne and Zappala (1980), 12.032 hours; Harris and Young (1983), 12.02 hours; and Higgins (2011), 12.01 hours. Due to the very near commensurability with Earth's period all of their lightcurves were incomplete. To sample the complete lightcurve, observers Pilcher at Organ Mesa Observatory (G50) and Strabla at Bassano Bresciano Observatory (565) collaborated. Equipment at Organ Mesa Observatory consists of a 0.35 meter Meade LX200 GPS Schmidt-Cassegrain, SBIG STL-1001E CCD, with a clear filter, 60 second exposure time, unguided. At Bassano Bresciano Observatory a 0.32 meter Schmidt telescope operating at F/3.1 and Starlight CCD camera MX-916 applied at direct focus was used with 120 second exposure time, unfiltered, unguided. MPO Canopus (BDW Publishing, 2010) was used to measure the images photometrically. Comparison stars from the APASS catalog with near solar colors were selected with the Comparison Star Selector included in this software. A Fourier analysis algorithm developed by Harris et al. (1989) was utilized to obtain the period which satisfied the data with minimum residual. Even with the use of APASS magnitudes, it was necessary to adjust the instrumental magnitudes of the individual sessions by several x 0.01 magnitude for the minimum residual fit displayed in the lightcurve. Photometric data from a total of 7 sessions 2014 Feb. 11 - Apr. 18 provide a good fit to a synodic rotation period 12.029 ± 0.001 hours, amplitude 0.15 ± 0.02 magnitudes, with a somewhat irregular lightcurve. Observatory Date Phase Time Num Angle h. Obs Organ Mesa 2014-02-11 13.0 7.5 288 Organ Mesa 2014-02-14 12.1 7.3 356 Organ Mesa 2014-02-21 9.7 7.3 349 Bassano Br. 2014-03-07 4.0 7.2 163 Organ Mesa 2014-03-20 1.4 7.7 390 Bassano Br. 2014-03-28 2.9 6.0 292 Organ Mesa 2014-04-18 12.7 5.0 236 References BDW Publishing (2010) MPO Canopus Software, version 10 http://minorplanetobserver.com Debehogne, H., and Zappala, V. (1980). “Photoelectric Lightcurves and Rotation Period of 308 Polyxo, Obtained at ESO- Minor Planet Bulletin 41 (2014) 205 ANOTHER ASTEROID WITH A CHANGING LIGHTCURVE: 232 RUSSIA Frederick Pilcher 4438 Organ Mesa Loop Las Cruces, New Mexico 88011 USA [email protected] (Received: 27 May) During its early 2014 apparition the lightcurve shape and inferred synodic rotation period for 232 Russia changed considerably. The best fit to data in the entire interval 2014 Mar. 25 - May 25 is with a lightcurve with a period 21.905 ± 0.001 hours, amplitude 0.14 ± 0.01 magnitudes. Changes in asteroid lightcurves caused by changing phase angle and viewing aspect are frequently noted when the observations Figure 1. Lightcurve of 232 Russia in the interval 2014 Mar. 25 - include a large range of phase angles. They provide information Apr. 7 useful for spin/shape modeling. The photometric observations of 232 Russia in the interval 2014 Mar. 25 - May 25 constitute an example of an unusually large change in lightcurve appearance. Previously published rotation periods for 232 Russia are by Behrend (2005), 21.72 hours with only partial phase coverage; Torno et al. (2008), 21.8 hours from a very sparse data set; and Ruthroff (2009), 21.91 hours from a dense data set which looks convincing. New observations of 232 Russia have been made at the Organ Mesa Observatory with a 35.4 cm Meade LX200 GPS S-C and SBIG STL 1001-E CCD. Photometric measurement and lightcurve construction are with MPO Canopus software. All exposures are 60 second exposure time, unguided, clear filter. To reduce the number of points on the lightcurves and make them easier to read data points have been binned in sets of 3 with maximum time difference 5 minutes. Observations on 8 nights 2014 March 25 - April 7 at phase angles 21.5 degrees to 17.0 degrees provide a good fit to a lightcurve with period 22.016 ± 0.004 hours, amplitude 0.15 ± 0.01 magnitudes, Figure 2. Lightcurve of 232 Russia in the interval 2014 Apr. 28 - with full phase coverage. A second set of observations on 8 nights May 25 2014 Apr 28 - May 25 at phase angles between 5.2 degrees and 9.6 degrees provides a good fit to a lightcurve with period 21.904 ± 0.002 hours, amplitude 0.14 ± 0.01 magnitudes, again with full phase coverage. When all 16 sessions are plotted on a single lightcurve a large misfit is shown between the March 25 - Apr 7 large phase angle observations and the April 28 - May 25 small phase angle observations. The synodic period which best represents all 16 sessions is 21.905 ± 0.001 hours. This value is consistent with all of the previous period determinations. References Behrend, R. (2005). Observatoire de Geneve web site, http://obswww.unige.ch/~behrend/page_cou.html Ruthroff, J. (2009). “Photometric Observations and Lightcurve Analysis of Asteroids 129 Antigone, 174 Phaedra, 232 Russia, 291 Alice, and 343 Ostara.” Minor Planet Bull. 36, 121-122. Torno, S., Oliver, R. L., Ditteon, R. (2008). “Asteroid Lightcurve Analysis at the Oakley Southern Sky Observatory - October 2007.” Figure 3. Lightcurve of 232 Russia in the interval 2014 Mar. 25 - Minor Planet Bull. 35, 54-55. May 25 Minor Planet Bulletin 41 (2014) 206 LIGHTCURVES FOR INVERSION MODEL CANDIDATES mag. Lucus et al. (2012) presented a 3-D shape model using data from 3 apparitions (2006, 2008, and 2009). We observed 446 Daniel A. Klinglesmith III, Jesse Hanowell, Curtis Alan Warren Aeternitas on 7 nights between 2014 May 9 and June 7. Our period Etscorn Campus Observatory, New Mexico Tech of 15.745 ± 0.001 h is consistent with previous determinations. 101 East Road The lightcurve amplitude is 0.47 ± 0.05 mag. Socorro, NM USA 87801 [email protected] 502 Sigune is a main-belt asteroid discovered by M.
Recommended publications
  • Dynamical Evolution of the Hungaria Asteroids ⇑ Firth M
    Icarus 210 (2010) 644–654 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Dynamical evolution of the Hungaria asteroids ⇑ Firth M. McEachern, Matija C´ uk , Sarah T. Stewart Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, MA 02138, USA article info abstract Article history: The Hungarias are a stable asteroid group orbiting between Mars and the main asteroid belt, with high Received 29 June 2009 inclinations (16–30°), low eccentricities (e < 0.18), and a narrow range of semi-major axes (1.78– Revised 2 August 2010 2.06 AU). In order to explore the significance of thermally-induced Yarkovsky drift on the population, Accepted 7 August 2010 we conducted three orbital simulations of a 1000-particle grid in Hungaria a–e–i space. The three simu- Available online 14 August 2010 lations included asteroid radii of 0.2, 1.0, and 5.0 km, respectively, with run times of 200 Myr. The results show that mean motion resonances—martian ones in particular—play a significant role in the destabili- Keywords: zation of asteroids in the region. We conclude that either the initial Hungaria population was enormous, Asteroids or, more likely, Hungarias must be replenished through collisional or dynamical means. To test the latter Asteroids, Dynamics Resonances, Orbital possibility, we conducted three more simulations of the same radii, this time in nearby Mars-crossing space. We find that certain Mars crossers can be trapped in martian resonances, and by a combination of chaotic diffusion and the Yarkovsky effect, can be stabilized by them.
    [Show full text]
  • 2016 Publication Year 2020-12-21T10:07:06Z
    Publication Year 2016 Acceptance in OA@INAF 2020-12-21T10:07:06Z Title Spectral characterization of V-type asteroids - II. A statistical analysis Authors IEVA, Simone; DOTTO, Elisabetta; Lazzaro, D.; PERNA, Davide; Fulvio, D.; et al. DOI 10.1093/mnras/stv2510 Handle http://hdl.handle.net/20.500.12386/29033 Journal MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY Number 455 MNRAS 455, 2871–2888 (2016) doi:10.1093/mnras/stv2510 Spectral characterization of V-type asteroids – II. A statistical analysis S. Ieva,1‹ E. Dotto,1 D. Lazzaro,2 D. Perna,3 D. Fulvio4 and M. Fulchignoni3 1INAF–Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monteporzio Catone (Roma), Italy 2Observatorio Nacional, Rua General Jose´ Cristino, 77 – Sao˜ Cristov´ ao,˜ Rio de Janeiro – RJ-20921-400, Brazil 3LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universites,´ UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cite,´ 5 place Jules Janssen, F-92195 Meudon, France 4Departamento de Fis´ıca, Pontif´ıcia Universidade Catolica´ do Rio de Janeiro, Rua Marques de Sao˜ Vicente 225, Rio de Janeiro 22451-900, Brazil Downloaded from https://academic.oup.com/mnras/article/455/3/2871/2892629 by guest on 06 November 2020 Accepted 2015 October 23. Received 2015 October 22; in original form 2015 August 9 ABSTRACT In recent years, several small basaltic V-type asteroids have been identified all around the main belt. Most of them are members of the Vesta dynamical family, but an increasingly large number appear to have no link with it. The question that arises is whether all these basaltic objects do indeed come from Vesta.
    [Show full text]
  • Alactic Observer
    alactic Observer G John J. McCarthy Observatory Volume 14, No. 2 February 2021 International Space Station transit of the Moon Composite image: Marc Polansky February Astronomy Calendar and Space Exploration Almanac Bel'kovich (Long 90° E) Hercules (L) and Atlas (R) Posidonius Taurus-Littrow Six-Day-Old Moon mosaic Apollo 17 captured with an antique telescope built by John Benjamin Dancer. Dancer is credited with being the first to photograph the Moon in Tranquility Base England in February 1852 Apollo 11 Apollo 11 and 17 landing sites are visible in the images, as well as Mare Nectaris, one of the older impact basins on Mare Nectaris the Moon Altai Scarp Photos: Bill Cloutier 1 John J. McCarthy Observatory In This Issue Page Out the Window on Your Left ........................................................................3 Valentine Dome ..............................................................................................4 Rocket Trivia ..................................................................................................5 Mars Time (Landing of Perseverance) ...........................................................7 Destination: Jezero Crater ...............................................................................9 Revisiting an Exoplanet Discovery ...............................................................11 Moon Rock in the White House....................................................................13 Solar Beaming Project ..................................................................................14
    [Show full text]
  • Asteroid Family Ages. 2015. Icarus 257, 275-289
    Icarus 257 (2015) 275–289 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Asteroid family ages ⇑ Federica Spoto a,c, , Andrea Milani a, Zoran Knezˇevic´ b a Dipartimento di Matematica, Università di Pisa, Largo Pontecorvo 5, 56127 Pisa, Italy b Astronomical Observatory, Volgina 7, 11060 Belgrade 38, Serbia c SpaceDyS srl, Via Mario Giuntini 63, 56023 Navacchio di Cascina, Italy article info abstract Article history: A new family classification, based on a catalog of proper elements with 384,000 numbered asteroids Received 6 December 2014 and on new methods is available. For the 45 dynamical families with >250 members identified in this Revised 27 April 2015 classification, we present an attempt to obtain statistically significant ages: we succeeded in computing Accepted 30 April 2015 ages for 37 collisional families. Available online 14 May 2015 We used a rigorous method, including a least squares fit of the two sides of a V-shape plot in the proper semimajor axis, inverse diameter plane to determine the corresponding slopes, an advanced error model Keywords: for the uncertainties of asteroid diameters, an iterative outlier rejection scheme and quality control. The Asteroids best available Yarkovsky measurement was used to estimate a calibration of the Yarkovsky effect for each Asteroids, dynamics Impact processes family. The results are presented separately for the families originated in fragmentation or cratering events, for the young, compact families and for the truncated, one-sided families. For all the computed ages the corresponding uncertainties are provided, and the results are discussed and compared with the literature. The ages of several families have been estimated for the first time, in other cases the accu- racy has been improved.
    [Show full text]
  • (121514) 1999 UJ7: a Primitive, Slow-Rotating Martian Trojan G
    A&A 618, A178 (2018) https://doi.org/10.1051/0004-6361/201732466 Astronomy & © ESO 2018 Astrophysics ? (121514) 1999 UJ7: A primitive, slow-rotating Martian Trojan G. Borisov1,2, A. A. Christou1, F. Colas3, S. Bagnulo1, A. Cellino4, and A. Dell’Oro5 1 Armagh Observatory and Planetarium, College Hill, Armagh BT61 9DG, Northern Ireland, UK e-mail: [email protected] 2 Institute of Astronomy and NAO, Bulgarian Academy of Sciences, 72, Tsarigradsko Chaussée Blvd., 1784 Sofia, Bulgaria 3 IMCCE, Observatoire de Paris, UPMC, CNRS UMR8028, 77 Av. Denfert-Rochereau, 75014 Paris, France 4 INAF – Osservatorio Astrofisico di Torino, via Osservatorio 20, 10025 Pino Torinese (TO), Italy 5 INAF – Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125, Firenze, Italy Received 15 December 2017 / Accepted 7 August 2018 ABSTRACT Aims. The goal of this investigation is to determine the origin and surface composition of the asteroid (121514) 1999 UJ7, the only currently known L4 Martian Trojan asteroid. Methods. We have obtained visible reflectance spectra and photometry of 1999 UJ7 and compared the spectroscopic results with the spectra of a number of taxonomic classes and subclasses. A light curve was obtained and analysed to determine the asteroid spin state. Results. The visible spectrum of 1999 UJ7 exhibits a negative slope in the blue region and the presence of a wide and deep absorption feature centred around ∼0.65 µm. The overall morphology of the spectrum seems to suggest a C-complex taxonomy. The photometric behaviour is fairly complex. The light curve shows a primary period of 1.936 d, but this is derived using only a subset of the photometric data.
    [Show full text]
  • On the Accuracy of Restricted Three-Body Models for the Trojan Motion
    DISCRETE AND CONTINUOUS Website: http://AIMsciences.org DYNAMICAL SYSTEMS Volume 11, Number 4, December 2004 pp. 843{854 ON THE ACCURACY OF RESTRICTED THREE-BODY MODELS FOR THE TROJAN MOTION Frederic Gabern1, Angel` Jorba1 and Philippe Robutel2 Departament de Matem`aticaAplicada i An`alisi Universitat de Barcelona Gran Via 585, 08007 Barcelona, Spain1 Astronomie et Syst`emesDynamiques IMCCE-Observatoire de Paris 77 Av. Denfert-Rochereau, 75014 Paris, France2 Abstract. In this note we compare the frequencies of the motion of the Trojan asteroids in the Restricted Three-Body Problem (RTBP), the Elliptic Restricted Three-Body Problem (ERTBP) and the Outer Solar System (OSS) model. The RTBP and ERTBP are well-known academic models for the motion of these asteroids, and the OSS is the standard model used for realistic simulations. Our results are based on a systematic frequency analysis of the motion of these asteroids. The main conclusion is that both the RTBP and ERTBP are not very accurate models for the long-term dynamics, although the level of accuracy strongly depends on the selected asteroid. 1. Introduction. The Restricted Three-Body Problem models the motion of a particle under the gravitational attraction of two point masses following a (Keple- rian) solution of the two-body problem (a general reference is [17]). The goal of this note is to discuss the degree of accuracy of such a model to study the real motion of an asteroid moving near the Lagrangian points of the Sun-Jupiter system. To this end, we have considered two restricted three-body problems, namely: i) the Circular RTBP, in which Sun and Jupiter describe a circular orbit around their centre of mass, and ii) the Elliptic RTBP, in which Sun and Jupiter move on an elliptic orbit.
    [Show full text]
  • Comet Section Observing Guide
    Comet Section Observing Guide 1 The British Astronomical Association Comet Section www.britastro.org/comet BAA Comet Section Observing Guide Front cover image: C/1995 O1 (Hale-Bopp) by Geoffrey Johnstone on 1997 April 10. Back cover image: C/2011 W3 (Lovejoy) by Lester Barnes on 2011 December 23. © The British Astronomical Association 2018 2018 December (rev 4) 2 CONTENTS 1 Foreword .................................................................................................................................. 6 2 An introduction to comets ......................................................................................................... 7 2.1 Anatomy and origins ............................................................................................................................ 7 2.2 Naming .............................................................................................................................................. 12 2.3 Comet orbits ...................................................................................................................................... 13 2.4 Orbit evolution .................................................................................................................................... 15 2.5 Magnitudes ........................................................................................................................................ 18 3 Basic visual observation ........................................................................................................
    [Show full text]
  • Jjmonl 1710.Pmd
    alactic Observer John J. McCarthy Observatory G Volume 10, No. 10 October 2017 The Last Waltz Cassini’s final mission and dance of death with Saturn more on page 4 and 20 The John J. McCarthy Observatory Galactic Observer New Milford High School Editorial Committee 388 Danbury Road Managing Editor New Milford, CT 06776 Bill Cloutier Phone/Voice: (860) 210-4117 Production & Design Phone/Fax: (860) 354-1595 www.mccarthyobservatory.org Allan Ostergren Website Development JJMO Staff Marc Polansky Technical Support It is through their efforts that the McCarthy Observatory Bob Lambert has established itself as a significant educational and recreational resource within the western Connecticut Dr. Parker Moreland community. Steve Barone Jim Johnstone Colin Campbell Carly KleinStern Dennis Cartolano Bob Lambert Route Mike Chiarella Roger Moore Jeff Chodak Parker Moreland, PhD Bill Cloutier Allan Ostergren Doug Delisle Marc Polansky Cecilia Detrich Joe Privitera Dirk Feather Monty Robson Randy Fender Don Ross Louise Gagnon Gene Schilling John Gebauer Katie Shusdock Elaine Green Paul Woodell Tina Hartzell Amy Ziffer In This Issue INTERNATIONAL OBSERVE THE MOON NIGHT ...................... 4 SOLAR ACTIVITY ........................................................... 19 MONTE APENNINES AND APOLLO 15 .................................. 5 COMMONLY USED TERMS ............................................... 19 FAREWELL TO RING WORLD ............................................ 5 FRONT PAGE ...............................................................
    [Show full text]
  • HUBBLE ULTRAVIOLET SPECTROSCOPY of JUPITER TROJANS Ian Wong1†, Michael E
    Draft version March 11, 2019 Preprint typeset using LATEX style emulateapj v. 12/16/11 HUBBLE ULTRAVIOLET SPECTROSCOPY OF JUPITER TROJANS Ian Wong1y, Michael E. Brown2, Jordana Blacksberg3, Bethany L. Ehlmann2,3, and Ahmed Mahjoub3 1Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; [email protected] 2Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 3Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA y51 Pegasi b Postdoctoral Fellow Draft version March 11, 2019 ABSTRACT We present the first ultraviolet spectra of Jupiter Trojans. These observations were carried out using the Space Telescope Imaging Spectrograph on the Hubble Space Telescope and cover the wavelength range 200{550 nm at low resolution. The targets include objects from both of the Trojan color sub- populations (less-red and red). We do not observe any discernible absorption features in these spectra. Comparisons of the averaged UV spectra of less-red and red targets show that the subpopulations are spectrally distinct in the UV. Less-red objects display a steep UV slope and a rollover at around 450 nm to a shallower visible slope, whereas red objects show the opposite trend. Laboratory spectra of irradiated ices with and without H2S exhibit distinct UV absorption features; consequently, the featureless spectra observed here suggest H2S alone is not responsible for the observed color bimodal- ity of Trojans, as has been previously hypothesized. We propose some possible explanations for the observed UV-visible spectra, including complex organics, space weathering of iron-bearing silicates, and masked features due to previous cometary activity.
    [Show full text]
  • Ages of Asteroid Families Estimated Using the YORP-Eye Method
    MNRAS 484, 1815–1828 (2019) doi:10.1093/mnras/sty3446 Advance Access publication 2018 December 31 Ages of asteroid families estimated using the YORP-eye method Paolo Paolicchi ,1‹ F. Spoto,2‹ Z. Knezeviˇ c´3‹ and A. Milani4† 1Department of Physics, University of Pisa, Largo Pontecorvo 3, I-56127 Pisa, Italy 2IMMCE, Observatoire de Paris, Av. Denfert–Rochereau 77, F-75014 Paris, France 3Serbian Academy of Sciences and Arts, Kneza Mihaila 35, 11000 Belgrade, Serbia Downloaded from https://academic.oup.com/mnras/article-abstract/484/2/1815/5267148 by Università di Pisa user on 27 February 2019 4Department of Mathematics, University of Pisa, Largo Pontecorvo 5, I-56127 Pisa, Italy Accepted 2018 December 14. Received 2018 December 13; in original form 2018 October 18 ABSTRACT Recently, we have shown that it is possible, despite several biases and uncertainties, to find footprints of the Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP) effect, concerning the members of asteroid dynamical families, in a plot of the proper semimajor axis versus magnitude (the so-called V-plot). In our previous work, we introduced the concept of the YORP-eye, the depopulated region in the V-plot, whose location can be used to diagnose the age of the family. In this present paper, we complete the analysis using an improved algorithm and an extended data base of families, and we discuss the potential errors arising from uncertainties and from the dispersion of the astronomical data. We confirm that the analysis connected to the search for the YORP-eye can lead to an estimate of the age, which is similar and strongly correlated to that obtained by the analysis of the V-slope size-dependent spreading due to the Yarkovsky effect.
    [Show full text]
  • Astrocladistics of the Jovian Trojan Swarms
    MNRAS 000,1–26 (2020) Preprint 23 March 2021 Compiled using MNRAS LATEX style file v3.0 Astrocladistics of the Jovian Trojan Swarms Timothy R. Holt,1,2¢ Jonathan Horner,1 David Nesvorný,2 Rachel King,1 Marcel Popescu,3 Brad D. Carter,1 and Christopher C. E. Tylor,1 1Centre for Astrophysics, University of Southern Queensland, Toowoomba, QLD, Australia 2Department of Space Studies, Southwest Research Institute, Boulder, CO. USA. 3Astronomical Institute of the Romanian Academy, Bucharest, Romania. Accepted XXX. Received YYY; in original form ZZZ ABSTRACT The Jovian Trojans are two swarms of small objects that share Jupiter’s orbit, clustered around the leading and trailing Lagrange points, L4 and L5. In this work, we investigate the Jovian Trojan population using the technique of astrocladistics, an adaptation of the ‘tree of life’ approach used in biology. We combine colour data from WISE, SDSS, Gaia DR2 and MOVIS surveys with knowledge of the physical and orbital characteristics of the Trojans, to generate a classification tree composed of clans with distinctive characteristics. We identify 48 clans, indicating groups of objects that possibly share a common origin. Amongst these are several that contain members of the known collisional families, though our work identifies subtleties in that classification that bear future investigation. Our clans are often broken into subclans, and most can be grouped into 10 superclans, reflecting the hierarchical nature of the population. Outcomes from this project include the identification of several high priority objects for additional observations and as well as providing context for the objects to be visited by the forthcoming Lucy mission.
    [Show full text]
  • An Anisotropic Distribution of Spin Vectors in Asteroid Families
    Astronomy & Astrophysics manuscript no. families c ESO 2018 August 25, 2018 An anisotropic distribution of spin vectors in asteroid families J. Hanuš1∗, M. Brož1, J. Durechˇ 1, B. D. Warner2, J. Brinsfield3, R. Durkee4, D. Higgins5,R.A.Koff6, J. Oey7, F. Pilcher8, R. Stephens9, L. P. Strabla10, Q. Ulisse10, and R. Girelli10 1 Astronomical Institute, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovickáchˇ 2, 18000 Prague, Czech Republic ∗e-mail: [email protected] 2 Palmer Divide Observatory, 17995 Bakers Farm Rd., Colorado Springs, CO 80908, USA 3 Via Capote Observatory, Thousand Oaks, CA 91320, USA 4 Shed of Science Observatory, 5213 Washburn Ave. S, Minneapolis, MN 55410, USA 5 Hunters Hill Observatory, 7 Mawalan Street, Ngunnawal ACT 2913, Australia 6 980 Antelope Drive West, Bennett, CO 80102, USA 7 Kingsgrove, NSW, Australia 8 4438 Organ Mesa Loop, Las Cruces, NM 88011, USA 9 Center for Solar System Studies, 9302 Pittsburgh Ave, Suite 105, Rancho Cucamonga, CA 91730, USA 10 Observatory of Bassano Bresciano, via San Michele 4, Bassano Bresciano (BS), Italy Received x-x-2013 / Accepted x-x-2013 ABSTRACT Context. Current amount of ∼500 asteroid models derived from the disk-integrated photometry by the lightcurve inversion method allows us to study not only the spin-vector properties of the whole population of MBAs, but also of several individual collisional families. Aims. We create a data set of 152 asteroids that were identified by the HCM method as members of ten collisional families, among them are 31 newly derived unique models and 24 new models with well-constrained pole-ecliptic latitudes of the spin axes.
    [Show full text]