Programação Do Cbdo 2016

Total Page:16

File Type:pdf, Size:1020Kb

Programação Do Cbdo 2016 PROGRAMAÇÃO DO CBDO 2016 Segunda-feira, 28 de novembro 08:00 – 12:00 Inscrições, entrega de material 14:20 Cerimônia de Abertura do XVIII CBDO 14:40 Cerimônia de Homenagem ao Prof. Sylvio Ferraz-Mello (Fernando V. Roig - ON) 15:30 Palestra de Abertura – Sylvio Ferraz-Mello (USP): Marés anelásticas em satélites e exoplanetas 16:30 Intervalo 16:45 Entrega do Prêmio Wagner Sessin 17:00 – 17h30 Palestrante Vencedor Categoria Astronomia Dinâmica e Planetária: F. Braga-Ribas (UTFPR): Ocultação estelar pelo satélite Vanth (Orcus/1): primeira predição e detecção 17:30 – 18h00 Palestrante Vencedor Categoria Mecânica Orbital e Controle: Diogo Merguizo Sanchez (INPE): On the use of perturbation maps in Astrodynamics and Celestial Mechanics 18:40 Coquetel de recepção. 19:40 Jantar. Terça-feira, 29 de novembro (8:20 – 10:00): Sessão 1 – Mecânica orbital e Controle I – Chair: Elbert Macau 8:20 – 9:20 (60 min) Kathleen Connor Howell (Palestrante convidado, Univ. de Purdue/EUA): Dynamical Systems Methods Applied to Spacecraft Trajectory Design 9:20 – 09:40 Priscilla A. de Sousa-Silva (ITA): Fast low-cost Earth-Moon transfers: a new strategy to compute optimal solutions using patched three- body systems 1 9:40 – 10:00 Jean Carvalho (UFRB): Effects of the solar radiation pressure and the nonsphericity of the planet (J2, J3, C22) in frozen orbits around mercury 10:00 – 10:20 Intervalo 10:20 – 11:20 (60 min) Celso Grebogi (Palestrante convidado, Univ. de Aberdeen/Escócia): Minicurso – Sistemas Dinâmicos, Parte 1: Transient Chaos – Chair: Juliano Oliveira 11:20 Sessão de pôsteres Mecânica orbital e Controle I (MOC I) 12:00 Almoço (14:20 – 16:20): Sessão 2 – Astronomia I - Chair: Sylvio Ferraz Mello 14:20 – 15:20 (60 min) Hauke Hussmann (Palestrante convidado, Centro Aeroespacial/Alemanha): Interior Structure and Dynamics of Satellites in the Outer Solar System 15:20 – 15:40 Hugo Folonier (USP): Titan's Length-of-Day Variation 15:40 – 16:00 Leonardo D.S. Trotta (UNESP): Modelo Dinâmico 3-d para a evolução do sistema Plutão-Caronte 16:00 – 16:20 Rafael Sfair (UNESP): O anel coorbital a Janus e Epimetheus 16:00 – 16h20 Intervalo 16:40 – 17h40 (60 min): Celso Grebogi (Palestrante convidado, Univ. de Aberdeen/Escócia): Minicurso – Sistemas Dinâmicos, Parte 2: Compressive sensing based prediction of complex dynamics and complex networks – Chair: Juliano Oliveira 17:40 Sessão de pôsteres Astronomia I (AST I) 19:00 Jantar. Quarta-feira, 30 de novembro Manhã: Sessão 3 – Sistemas Dinâmicos – Chair: Juliano Oliveira 2 8:00 – 9:00 (60 min) Celso Grebogi (Palestrante convidado, Univ. de Aberdeen/Escócia): Minicurso – Sistemas Dinâmicos, Parte 3: Tipping Point in Networked Dynamical Systems – Chair: Juliano Oliveira 9:00 – 09:20 Teresa J. Stuchi (UFRJ): Não Integrabilidade do hamiltoniano de Armburster-Gukenheimer-Kim com a teoria de Morales-Ramis 9:20 – 09:40 Marisa Roberto (ITA): Tokamaks com desviadores poloidais 9:40 – 10:00 R. Egydio de Carvalho (UNESP): Robust attractor of non-twist systems 10:00 – 10:20 Intervalo 10:20 – 11:20 (60 min) Ricardo Viana (Palestrante convidado, UFPR): Fractal structures in nonlinear plasma physics 11:20 Sessão de pôsteres Sistemas Dinâmicos (SD) 12:00 Almoço Tarde: Sessão 4 – Mecânica Orbital e Controle II – Chair: Marisa Roberto 14:20 – 15:20 (60 min) Hauke Hussmann (Palestrante convidado, Centro Aeroespacial/Alemanha): Laser Altimetry in Planetary Applications 15:20 – 15:40 Jânia Duha (IFPR): The Yarkovsky-Duha effect and the unexpected strong correlation of thermal force with infrared radiation source colatitude 15:40 – 16:00 Jarbas Cordeiro Sampaio (IFBA): Space Debris in the neighborhood of operation artificial satellites 16:00 – 16:20 Liana Dias Gonçalves (INPE): Trajetórias na vizinhança de Fobos visando sobrevoo e aproximação 16:20 – 16h40 Intervalo 16:40 – 17h40 (60 min) Alexander A. Sukhanov (Palestrante convidado, Inst.de Ciências Espaciais/Rússia): Aster Project: First Brazilian Mission to Deep Space 3 17:40 Sessão de pôsteres Geral 19:00 Jantar. Quinta-feira, 01 de dezembro Manhã: Sessão 5 – Astronomia II – Chair: Tadashi Yokoyama 8:00 – 9:00 (60 min) Tabaré Gallardo (Palestrante convidado, Univ. da República/Uruguai): Dynamics of high perihelion Transneptunian Objects 9:00 – 09:20 Carolina Charalambous (UNC/Argentina): Planetary migration and the origin of the 2/1 and 3/2 (near)-resonant population of close-in exoplanets 9:20 – 09:40 Eduardo S. G. Leandro (UFPE): Fatoração do Polinômio de Estabilidade de um Sistema Anular de N Corpos 9:40 – 10:00 Marcelo Assafin (ON): Predição do Ocultações Estelares por Satélites Irregulares até 2020 10:00 – 10:20 Intervalo 10:20 – 11:20 (60 min) Valéry Lainey (Palestrante convidado, Observatório de Paris/França): Quantification of tidal dissipation among giant planets from astrometry 11:20 Sessão de pôsteres Astronomia II (AST II) 12:00 Almoço Tarde: Sessão 6 – Mecânica Orbital e Controle III – Chair: Antonio Bertachini 14:20 – 15:20 (60 min) Mitchell L. R. Walker (Palestrante convidado, Inst. de Tecnologia da Geórgia/EUA): Unique Applications of Electric Propulsion 15:20 – 15:40 Ijar M. da Fonseca (INPE): Critical Applications of Fault Detection Isolation and Recovery for Spacecrat 15:40 – 16:00 Francisco J. T. Salazar (UNESP): Aproveitamento da energia solar por meio de espelhos espaciais 4 16:00 – 16:20 Leandro Baroni (UFABC): Filtro de Kalman para a determinação de atitude de um CubeSat usando sensores de baixo custo 16:20 – 16h40 Intervalo 16:40 – 17h40 (60 min): Georgi Smirnov (Palestrante convidado, Univ. do Minho/Portugal): Mathematical problems of orbital maneuvers with single-input control 17:40 Sessão de pôsteres Mecânica Orbital e Controle II (MOC II) 19:00 Jantar. Sexta-feira, 02 de dezembro Manhã: Sessão 7 – Astronomia III – Chair: Maria Helena Morais 8:00 – 9:00 (60 min) Fathi Namouni (Palestrante convidado, Observ. “de la Côte d'Azur”/França): Resonance dynamics at arbitrary inclination 9:00 – 09:20 André Izidoro (CNRS): Making Planet-9 from the scattering of planetary cores during the accretion of Uranus and Neptune 9:20 – 09:40 Rodney da Silva Gomes (ON): A Inclinação do Eixo de Rotação do Sol pode ser explicada pela Presença de um Planeta Distante 9:40 – 10:00 Fernando V. Roig (ON): Formação de crateras de impacto nos planetas terrestres e na Lua durante a instabilidade dos planetas gigantes 10:00 – 10:20 Intervalo 10:20 – 10:40 Valério Carruba (UNESP): Detection of the YORP Effect for Small Asteroids in the Karin Cluster 11:00 Encerramento. 5 SESSÕES DE PÔSTERES Terça-feira, 29 de novembro Manhã: Sessão 1 – Mecânica orbital e Controle I 11:20 Sessão de pôsteres Mecânica orbital e Controle I (MOC I) Pôsteres MOC I-1 até 48 e MOC II-12 e SD-5 Tarde: Sessão 2 – Astronomia I 17:40 Sessão de pôsteres Astronomia I (AST I) Pôsteres AST I-1 até 31 e AST II-15 e AST II-16 Quarta-feira, 30 de novembro Manhã: Sessão 3 – Sistemas Dinâmicos 11:20 Sessão de pôsteres Sistemas Dinâmicos (SD) Pôsteres SD-1 até 12 Tarde 17:40 Sessão de pôsteres Geral Todas as áreas Quinta-feira, 01 de dezembro Manhã: Sessão 5 – Astronomia II 11:20 Sessão de pôsteres Astronomia II (AST II) Pôsteres AST II-1 até 36 Tarde: Sessão 6 – Mecânica Orbital e Controle III 17:40 Sessão de pôsteres Mecânica Orbital e Controle II (MOC II) Pôsteres MOC II-1 até 38 e MOC I-13 6 RESUMOS DOS TRABALHOS AST I-1 Evolução spin – órbita em sistemas de dois planetas usando modelo viscoelástico de deformação Adrián Rodríguez Colucci (1), Nelson Callegari Jr. (2), Alexandre Correia (3) (1) Observatório do Valongo – UFRJ, (2) DEMAC/UNESP, (3) Universidade de Aveiro Investigamos a evolução das órbitas e da rotação em sistemas de dois planetas que interagem mutuamente, assumindo que o planeta interno é deformado de forma viscoelástica pela força de maré da estrela central. A análise é feita através da resolução numérica das equações exatas do movimento e da deformação instantânea da figura do planeta. A aplicação ao sistema extrassolar CoRoT-7 mostra que, dependendo do tempo de relaxamento da deformação, a rotação do planeta interno pode ficar capturada em ressonância spin-órbita. Para tempos de relaxamento grandes, a excentricidade da órbita interna pode ser exitada e atingir grandes valores, podendo dar uma explicação às altas excentricidades observadas em alguns sistemas de super-Terras quentes com companheiros externos. Agradecimentos: Fapesp AST I-2 Uso de programação GPU para simulações em mecânica celeste Alan Costa de Souza (1), Fernando Roig (1) (1) Observatório Nacional Um dos objetivos da mecânica celeste é tentar prever o comportamento de um sistema de N corpos, no passado ou no futuro, evoluindo sob a ação de certas forças. Para tanto, é necessário conhecer a sua posição e velocidade no presente. Na maioria das vezes, a única alternativa para conseguir isto é utilizando simulações computacionais. Até meados dos anos 90 essas simulações eram realizadas de forma sequencial, porém, o surgimento de processadores multinúcleos tornou possível o desenvolvimento de algoritmos paralelos. Tais algoritmos são mais eficientes que os sequenciais, reduzindo o tempo total gasto nas simulações. 7 Diante disto, nesse trabalho vamos mostrar como uma implementação paralela em GPU[2] pode ser muito mais eficiente que uma implementação sequencial. A modo de exemplo, faremos uma comparação entre um código sequencial usando o algoritmo simplético de quarta ordem de Ruth[1] e a implementação do mesmo algoritmo usando GPU, executando numa placa gráfica inicialmente designada para execução de jogos de computador, mas que atualmente é usada para executar simulações massivamente paralelas em diversas áreas da ciência. Referências [1] Forest, Etienne e Ronald D. Ruth. "Fourth-order Symplectic integration. Physica D: Nonlinear Phenomena 43.1 (1990): 105-117. [2] https://developer.nvidia.com/cuda-zone Agradecimentos: CAPES, CNPq MOC I-1 Análise da sensibilidade dos parâmetros envolvidos em uma manobra de Swing-By propulsada Alessandra F.
Recommended publications
  • Potential Resources on and from the Asteroids/Comets; Threats
    ASTEROIDS AND COMETS: POTENTIAL RESOURCES LECTURE 21 NEEP 533 HARRISON H. SCHMITT EROS C-TYPE NASA/NEAR SHOEMAKER/APL 11X11X34 KM ASTEROIDS IN GENERAL 1.3 GM/CM3 MAIN BELT ASTEROIDS BETWEEN JUPITER AND MARS NEAR EARTH ASTEROIDS SOME MAY BE SPENT COMETS EARTH CROSSING ASTEROIDS SOME MAY BE SPENT COMETS “CENTAUR” ASTEROIDS BETWEEN JUPITER AND URANUS CHIRON, 1979 VA, AND 133P/ELST-PIZARRO ALSO HAVE COMET- LIKE BEHAVIOR “TROJAN” ASTEROIDS JUPITER’S ORBIT AND CONTROLLED BY IT GENERAL CHARACTERISTICS RUBBLE PILES (?) NO ASTEROID >150M ROTATES FASTER THAN ONE REVOLUTION PER 2 HOURS CALCULATED LIMIT FOR RUBBLE TO STAY TOGETHER 1998 KY26 IS 30M IN DIAMETER, ROTATES IN 10.7 MIN. AND MAY BE SOLID MAY BE A TRANSITION IN ORBITAL CHARACTERISTICS AND / OR COMPOSITION BETWEEN SOME ASTEROIDS AND COMETS • S-TYPE OTHER ASTEROIDS – INNER ASTEROID BELT – EVIDENCE OF HEATING AND DIFFERENTIATION – 29 TELESCOPIC SPECTRA (Binzel, et al., 1996) • INTERMEDIATE BETWEEN S-TYPE AND ORDINARY CHONDRITES – 1. DISTINCT ROCK TYPES VS DIVERSE LARGER BODIES – 2. ABUNDANCE OF OPAQUE MATERIALS – 3. FRESH SURFACES (MOST LIKELY) • BASALTIC ACHONDRITES (6%) – 4 VESTA AT 2.36 AU [MAIN BELT PARENT (?)] – TOUTATIS - NEA (RADAR STUDY) • 4.5X2.4X1.9KM, 2.1 GM/CM3, TWO ROTATIONS, I.E., TUMBLING (5.4 AND 7.3 DAYS) – 1459 MAGNYA AT 3.15 AU [FRAGMENT OF LARGER BODY (?)] EROS • (Lazzaro, et al, 2000, Science, 288) C-TYPE (REVISED BY GRS DATA) 11X11X33 KM 2.7 GM/CM3 5.27 HR ROTATION NASA/NEAR SHOEMAKER/APL OTHER ASTEROIDS • D-TYPE CARBONACEOUS CHONDRITE (BEYOND MAIN BELT ASTEROIDS) – TAGISH
    [Show full text]
  • The Mineralogy of Middle- and Outer-Belt Vestoids
    Lunar and Planetary Science XXXIX (2008) 2270.pdf THE MINERALOGY OF MIDDLE- AND OUTER-BELT VESTOIDS. T. H. Burbine1, P. C. Buchanan2 and R. P. Binzel3, 1Department of Astronomy, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA ([email protected]), 2Kilgore College, 1100 Broadway, Kilgore, TX 75662, USA (pbu- [email protected]), 3Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA ([email protected]). Introduction: Asteroid 4 Vesta is commonly (a=3.01 AU) [14], 10537 1991 RY16 (a=2.85 AU) thought to have a basaltic crust due to its spectral simi- [14], 21238 1995 WV7 (a=2.54 AU) [15,16], and larity in the visible and near-infrared to the HED me- 40521 1999 RL5 (a=2.53 AU) [10]. teorites (howardites, eucrites, and diogenites) [1,2]. Roig et al. [10] have calculated that some of the Vesta is located in the inner main-belt with a semi- middle-belt Vestoids could be fragments of Vesta. major axis (a) of 2.36 AU and is one of the few aster- The calculated probability is a function of the size of oids that can be persuasively linked to a group of me- the object since a larger size reduces the efficiency of teorites [3]. the Yarkovsky effect. Roig et al. [10] found that there HEDs are a clan of achondritic meteorites that have is a low probability (~1%) that 21238 1995 WV7 (~5 continuous variations in mineralogy and chemistry [4]. km in diameter) is a fragment of Vesta; however, Eucrites are composed primarily of anorthitic plagio- 40521 1999 RL5 (~3 km in diameter) has a much clase and low-Ca pyroxene with augite exsolution la- higher probability to be related to Vesta due to its mellae, whereas diogenites are predominately mag- slightly smaller estimated diameter.
    [Show full text]
  • ESO's VLT Sphere and DAMIT
    ESO’s VLT Sphere and DAMIT ESO’s VLT SPHERE (using adaptive optics) and Joseph Durech (DAMIT) have a program to observe asteroids and collect light curve data to develop rotating 3D models with respect to time. Up till now, due to the limitations of modelling software, only convex profiles were produced. The aim is to reconstruct reliable nonconvex models of about 40 asteroids. Below is a list of targets that will be observed by SPHERE, for which detailed nonconvex shapes will be constructed. Special request by Joseph Durech: “If some of these asteroids have in next let's say two years some favourable occultations, it would be nice to combine the occultation chords with AO and light curves to improve the models.” 2 Pallas, 7 Iris, 8 Flora, 10 Hygiea, 11 Parthenope, 13 Egeria, 15 Eunomia, 16 Psyche, 18 Melpomene, 19 Fortuna, 20 Massalia, 22 Kalliope, 24 Themis, 29 Amphitrite, 31 Euphrosyne, 40 Harmonia, 41 Daphne, 51 Nemausa, 52 Europa, 59 Elpis, 65 Cybele, 87 Sylvia, 88 Thisbe, 89 Julia, 96 Aegle, 105 Artemis, 128 Nemesis, 145 Adeona, 187 Lamberta, 211 Isolda, 324 Bamberga, 354 Eleonora, 451 Patientia, 476 Hedwig, 511 Davida, 532 Herculina, 596 Scheila, 704 Interamnia Occultation Event: Asteroid 10 Hygiea – Sun 26th Feb 16h37m UT The magnitude 11 asteroid 10 Hygiea is expected to occult the magnitude 12.5 star 2UCAC 21608371 on Sunday 26th Feb 16h37m UT (= Mon 3:37am). Magnitude drop of 0.24 will require video. DAMIT asteroid model of 10 Hygiea - Astronomy Institute of the Charles University: Josef Ďurech, Vojtěch Sidorin Hygiea is the fourth-largest asteroid (largest is Ceres ~ 945kms) in the Solar System by volume and mass, and it is located in the asteroid belt about 400 million kms away.
    [Show full text]
  • The Impact Crater at the Origin of the Julia Family Detected with VLT/SPHERE??,?? P
    A&A 618, A154 (2018) Astronomy https://doi.org/10.1051/0004-6361/201833477 & © ESO 2018 Astrophysics The impact crater at the origin of the Julia family detected with VLT/SPHERE??,?? P. Vernazza1, M. Brož2, A. Drouard1, J. Hanuš2, M. Viikinkoski3, M. Marsset4, L. Jorda1, R. Fetick1, B. Carry5, F. Marchis6, M. Birlan7, T. Fusco1, T. Santana-Ros8, E. Podlewska-Gaca8,9, E. Jehin10, M. Ferrais10, P. Bartczak8, G. Dudzinski´ 8, J. Berthier7, J. Castillo-Rogez11, F. Cipriani12, F. Colas7, C. Dumas13, J. Durechˇ 2, M. Kaasalainen3, A. Kryszczynska8, P. Lamy1, H. Le Coroller1, A. Marciniak8, T. Michalowski8, P. Michel5, M. Pajuelo7,14, P. Tanga5, F. Vachier7, A. Vigan1, B. Warner15, O. Witasse12, B. Yang16, E. Asphaug17, D. C. Richardson18, P. Ševecekˇ 2, M. Gillon10, and Z. Benkhaldoun19 1 Aix-Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille), Marseille, France e-mail: [email protected] 2 Institute of Astronomy, Charles University, Prague, V Holešovickᡠch 2, 18000, Prague 8, Czech Republic 3 Department of Mathematics, Tampere University of Technology, PO Box 553, 33101 Tampere, Finland 4 Astrophysics Research Centre, Queen’s University Belfast, BT7 1NN, UK 5 Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, 06304 Nice Cedex 4, France 6 SETI Institute, Carl Sagan Center, 189 Bernado Avenue, Mountain View CA 94043, USA 7 IMCCE, Observatoire de Paris, 77 avenue Denfert-Rochereau, 75014 Paris Cedex, France 8 Astronomical Observatory Institute, Faculty of Physics, Adam Mickiewicz University,
    [Show full text]
  • 19890009139.Pdf
    FOREWORD This final report describes the design of the "Lunar Orbital Prospector" (LOP), a Lunar orbiting satellite designed by students at Utah State University. This design project has been completed under the sponsorship of NASA/OAST through the Universities Space Research Association (USRA). We at Utah State are very pleased with the results of this design effort. We are proud of the product, the LOP design, and we are excited about the achievement of all our learning objectives. The systems design process is one that cannot be taught, it must be experienced. The opportunity to use our maturing engineering and scientific skills in producing the LOP has been both challenging and rewarding. We are proud of the final design, but, equally important, we are grateful for the skills we have developed in identifying system requirements, spreading them into subsystems specifications, communicating with eachother in all sorts of technical environments, conducting parametric and trade-off studies, and learning to compromise for the good of the system. Elements of this design project have migrated into other forums. In late April, class members presented the final results to the monthly meeting of the Utah Section of the AIM. Also in April, Dr. Frank Redd and Mr. James Cantrell presented a paper on the LOP at the Lunar Bases and Space Activities in the 21st Century conference in Houston. A revised copy of that paper has been submitted for publication in a book to be published from the output of that conference. We wish to gratefully acknowledge the support of NASA/OAST and USRA, without which this experience could never happen.
    [Show full text]
  • Photometry of Asteroids: Lightcurves of 24 Asteroids Obtained in 1993–2005
    ARTICLE IN PRESS Planetary and Space Science 55 (2007) 986–997 www.elsevier.com/locate/pss Photometry of asteroids: Lightcurves of 24 asteroids obtained in 1993–2005 V.G. Chiornya,b,Ã, V.G. Shevchenkoa, Yu.N. Kruglya,b, F.P. Velichkoa, N.M. Gaftonyukc aInstitute of Astronomy of Kharkiv National University, Sumska str. 35, 61022 Kharkiv, Ukraine bMain Astronomical Observatory, NASU, Zabolotny str. 27, Kyiv 03680, Ukraine cCrimean Astrophysical Observatory, Crimea, 98680 Simeiz, Ukraine Received 19 May 2006; received in revised form 23 December 2006; accepted 10 January 2007 Available online 21 January 2007 Abstract The results of 1993–2005 photometric observations for 24 main-belt asteroids: 24 Themis, 51 Nemausa, 89 Julia, 205 Martha, 225 Henrietta, 387 Aquitania, 423 Diotima, 505 Cava, 522 Helga, 543 Charlotte, 663 Gerlinde, 670 Ottegebe, 693 Zerbinetta, 694 Ekard, 713 Luscinia, 800 Kressmania, 1251 Hedera, 1369 Ostanina, 1427 Ruvuma, 1796 Riga, 2771 Polzunov, 4908 Ward, 6587 Brassens and 16541 1991 PW18 are presented. The rotation periods of nine of these asteroids have been determined for the first time and others have been improved. r 2007 Elsevier Ltd. All rights reserved. Keywords: Asteroids; Photometry; Lightcurve; Rotational period; Amplitude 1. Introduction telescope of the Crimean Astrophysics Observatory in Simeiz. Ground-based observations are the main source of knowledge about the physical properties of the asteroid 2. Observations and their reduction population. The photometric lightcurves are used to determine rotation periods, pole coordinates, sizes and Photometric observations of the asteroids were carried shapes of asteroids, as well as to study the magnitude-phase out in 1993–1994 using one-channel photoelectric photo- relation of different type asteroids.
    [Show full text]
  • 1922MNRAS..82..149G Jan. 1922. Long-Period Inequalities In
    Jan. 1922. Long-Period Inequalities in Movements of Asteroids. 149 In the case = an integer ~ is a multiple of and the solutions X2 X2 a1 1922MNRAS..82..149G with period nearly equal to — may also be regarded as periodic solution» Ai with period nearly equal to —-. A . But we have not been able (in the case when ^ is an integer) to A2 prove the existence of periodic solutions with period ^ which are not A2 • • • 2 TT at the same time periodic with period nearly equal to — . Ax Note.—The above work was completed in 1920 November, before the appearance of Moulton’s Periodic Orbits. The details of the exist- ence proofs are different from those of Buck, and it is hoped that they may be of interest. In Buck’s paper, which apparently was completed in 1912 or earlier, the equations of motion are transformed and the jacobians take a relatively simple form. In this paper only two of the families of periodic orbits treated by Buck are discussed. A full account of the other families, and also of the actual development in series of the periodic solutions, is given in Back’s paper. On Long-Period Inequalities in the Movements of Asteroids ivhose Mean Motions are nearly half that of Mars. By Wt M. H. Greaves, B. A., Isaac Newton Student in the University of Cambridge. (Communicated by Professor H. F. Baker.) In the ordinary theory of the movements of the planets as developed by Laplace and Le Verrier, the equations of motion are integrated by a method of successive approximation with regard to the masses.
    [Show full text]
  • Occultation Newsletter Volume 8, Number 4
    Volume 12, Number 1 January 2005 $5.00 North Am./$6.25 Other International Occultation Timing Association, Inc. (IOTA) In this Issue Article Page The Largest Members Of Our Solar System – 2005 . 4 Resources Page What to Send to Whom . 3 Membership and Subscription Information . 3 IOTA Publications. 3 The Offices and Officers of IOTA . .11 IOTA European Section (IOTA/ES) . .11 IOTA on the World Wide Web. Back Cover ON THE COVER: Steve Preston posted a prediction for the occultation of a 10.8-magnitude star in Orion, about 3° from Betelgeuse, by the asteroid (238) Hypatia, which had an expected diameter of 148 km. The predicted path passed over the San Francisco Bay area, and that turned out to be quite accurate, with only a small shift towards the north, enough to leave Richard Nolthenius, observing visually from the coast northwest of Santa Cruz, to have a miss. But farther north, three other observers video recorded the occultation from their homes, and they were fortuitously located to define three well- spaced chords across the asteroid to accurately measure its shape and location relative to the star, as shown in the figure. The dashed lines show the axes of the fitted ellipse, produced by Dave Herald’s WinOccult program. This demonstrates the good results that can be obtained by a few dedicated observers with a relatively faint star; a bright star and/or many observers are not always necessary to obtain solid useful observations. – David Dunham Publication Date for this issue: July 2005 Please note: The date shown on the cover is for subscription purposes only and does not reflect the actual publication date.
    [Show full text]
  • SMALL BODIES: SHAPES of THINGS to COME 8:30 A.M
    40th Lunar and Planetary Science Conference (2009) sess404.pdf Wednesday, March 25, 2009 SMALL BODIES: SHAPES OF THINGS TO COME 8:30 a.m. Waterway Ballroom 6 Chairs: Al Conrad Debra Buczkowski 8:30 a.m. Conrad A. R. * Merline W. J. Drummond J. D. Carry B. Dumas C. Campbell R. D. Goodrich R. W. Chapman C. R. Tamblyn P. M. Recent Results from Imaging Asteroids with Adaptive Optics [#2414] We report results from recent high-angular-resolution observations of asteroids using adaptive optics (AO) on large telescopes. 8:45 a.m. Marchis F. * Descamps P. Durech J. Emery J. P. Harris A. W. Kaasalainen M. Berthier J. The Cybele Binary Asteroid 121 Hermione Revisited [#1336] The combination of adaptive optics, photometric and Spitzer mid-IR observations of the 121 Hermione binary asteroid system allowed us to confirm the bilobated nature of the primary derived a bulk density of 1.4 g/cc implying a rubble-pile interior. 9:00 a.m. Schmidt B. E. * Thomas P. C. Bauer J. M. Li J. -Y. Radcliffe S. C. McFadden L. A. Mutchler M. J. Parker J. Wm. Rivkin A. S. Russell C. T. Stern S. A. The 3D Figure and Surface of Pallas from HST [#2421] We present Pallas in three dimensions and surface maps. 9:15 a.m. Besse S. * Groussin O. Jorda L. Lamy P. Kaasalainen M. Gesquiere G. Remy E. OSIRIS Team 3-Dimensional Reconstruction of Asteroid 2867 Steins [#1545] The OSIRIS imaging experiment has imaged asteroid Steins. We have combined three methods to retrieve the shape: limbs, Point of Interest and light curves.
    [Show full text]
  • Perturbations in the Motion of the Quasicomplanar Minor Planets For
    Publications of the Department of Astronom} - Beograd, N2 ID, 1980 UDC 523.24; 521.1/3 osp PERTURBATIONS IN THE MOTION OF THE QUASICOMPLANAR MI­ NOR PLANETS FOR THE CASE PROXIMITIES ARE UNDER 10000 KM J. Lazovic and M. Kuzmanoski Institute of Astronomy, Faculty of Sciences, Beograd Received January 30, 1980 Summary. Mutual gravitational action during proximities of 12 quasicomplanar minor pla­ nets pairs have been investigated, whose minimum distances were under 10000 km. In five of the pairs perturbations of several orbital elements have been stated, whose amounts are detectable by observations from the Earth. J. Lazovic, M. Kuzmanoski, POREMECAJI ELEMENATA KRETANJA KVAZIKOM­ PLANARNIH MALIH PLANETA U PROKSIMITETIMA NJIHOVIH PUTANJA SA DA­ LJINAMA MANJIM OD 10000 KM - Ispitali smo medusobna gravitaciona de;stva pri proksi­ mitetima 12 parova kvazikomplanarnih malih planeta sa minimalnim daljinama ispod 10000 km. Kod pet parova nadeni su poremecaji u vi~e putanjskih elemenata, ~iji bi se iznosi mogli ustano­ viti posmatranjima sa Zemlje. Earlier we have found out 13 quasicomplanar minor planets pairs (the angle I between their orbital planes less than O~500), whose minimum mutual distances (pmin) were less than 10000 km (Lazovic, Kuzmanoski, 1978). The shortest pro­ ximity distance of only 600 km among these pairs has been stated with minor planet pair (215) Oenone and 1851 == 1950 VA. The corresponding perturbation effects in this pair have been calculated (Lazovic, Kuzmanoski, 1979a). This motivated us to investigate the mutual perturbing actions in the 12 remaining minor planets pairs for the case they found themselves within the proximities of their correspon­ ding orbits.
    [Show full text]
  • Orbital Stability Assessments of Satellites Orbiting Small Solar System Bodies a Case Study of Eros
    Delft University of Technology, Faculty of Aerospace Engineering Thesis report Orbital stability assessments of satellites orbiting Small Solar System Bodies A case study of Eros Author: Supervisor: Sjoerd Ruevekamp Jeroen Melman, MSc 1012150 August 17, 2009 Preface i Contents 1 Introduction 2 2 Small Solar System Bodies 4 2.1 Asteroids . .5 2.1.1 The Tholen classification . .5 2.1.2 Asteroid families and belts . .7 2.2 Comets . 11 3 Celestial Mechanics 12 3.1 Principles of astrodynamics . 12 3.2 Many-body problem . 13 3.3 Three-body problem . 13 3.3.1 Circular restricted three-body problem . 14 3.3.2 The equations of Hill . 16 3.4 Two-body problem . 17 3.4.1 Conic sections . 18 3.4.2 Elliptical orbits . 19 4 Asteroid shapes and gravity fields 21 4.1 Polyhedron Modelling . 21 4.1.1 Implementation . 23 4.2 Spherical Harmonics . 24 4.2.1 Implementation . 26 4.2.2 Implementation of the associated Legendre polynomials . 27 4.3 Triaxial Ellipsoids . 28 4.3.1 Implementation of method . 29 4.3.2 Validation . 30 5 Perturbing forces near asteroids 34 5.1 Third-body perturbations . 34 5.1.1 Implementation of the third-body perturbations . 36 5.2 Solar Radiation Pressure . 36 5.2.1 The effect of solar radiation pressure . 38 5.2.2 Implementation of the Solar Radiation Pressure . 40 6 About the stability disturbing effects near asteroids 42 ii CONTENTS 7 Integrators 44 7.1 Runge-Kutta Methods . 44 7.1.1 Runge-Kutta fourth-order integrator . 45 7.1.2 Runge-Kutta-Fehlberg Method .
    [Show full text]
  • A Low Density of 0.8 G Cm-3 for the Trojan Binary Asteroid 617 Patroclus
    Publisher: NPG; Journal: Nature:Nature; Article Type: Physics letter DOI: 10.1038/nature04350 A low density of 0.8 g cm−3 for the Trojan binary asteroid 617 Patroclus Franck Marchis1, Daniel Hestroffer2, Pascal Descamps2, Jérôme Berthier2, Antonin H. Bouchez3, Randall D. Campbell3, Jason C. Y. Chin3, Marcos A. van Dam3, Scott K. Hartman3, Erik M. Johansson3, Robert E. Lafon3, David Le Mignant3, Imke de Pater1, Paul J. Stomski3, Doug M. Summers3, Frederic Vachier2, Peter L. Wizinovich3 & Michael H. Wong1 1Department of Astronomy, University of California, 601 Campbell Hall, Berkeley, California 94720, USA. 2Institut de Mécanique Céleste et de Calculs des Éphémérides, UMR CNRS 8028, Observatoire de Paris, 77 Avenue Denfert-Rochereau, F-75014 Paris, France. 3W. M. Keck Observatory, 65-1120 Mamalahoa Highway, Kamuela, Hawaii 96743, USA. The Trojan population consists of two swarms of asteroids following the same orbit as Jupiter and located at the L4 and L5 stable Lagrange points of the Jupiter–Sun system (leading and following Jupiter by 60°). The asteroid 617 Patroclus is the only known binary Trojan1. The orbit of this double system was hitherto unknown. Here we report that the components, separated by 680 km, move around the system’s centre of mass, describing a roughly circular orbit. Using this orbital information, combined with thermal measurements to estimate +0.2 −3 the size of the components, we derive a very low density of 0.8 −0.1 g cm . The components of 617 Patroclus are therefore very porous or composed mostly of water ice, suggesting that they could have been formed in the outer part of the Solar System2.
    [Show full text]