The Mineralogy of Middle- and Outer-Belt Vestoids

Total Page:16

File Type:pdf, Size:1020Kb

The Mineralogy of Middle- and Outer-Belt Vestoids Lunar and Planetary Science XXXIX (2008) 2270.pdf THE MINERALOGY OF MIDDLE- AND OUTER-BELT VESTOIDS. T. H. Burbine1, P. C. Buchanan2 and R. P. Binzel3, 1Department of Astronomy, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA ([email protected]), 2Kilgore College, 1100 Broadway, Kilgore, TX 75662, USA (pbu- [email protected]), 3Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA ([email protected]). Introduction: Asteroid 4 Vesta is commonly (a=3.01 AU) [14], 10537 1991 RY16 (a=2.85 AU) thought to have a basaltic crust due to its spectral simi- [14], 21238 1995 WV7 (a=2.54 AU) [15,16], and larity in the visible and near-infrared to the HED me- 40521 1999 RL5 (a=2.53 AU) [10]. teorites (howardites, eucrites, and diogenites) [1,2]. Roig et al. [10] have calculated that some of the Vesta is located in the inner main-belt with a semi- middle-belt Vestoids could be fragments of Vesta. major axis (a) of 2.36 AU and is one of the few aster- The calculated probability is a function of the size of oids that can be persuasively linked to a group of me- the object since a larger size reduces the efficiency of teorites [3]. the Yarkovsky effect. Roig et al. [10] found that there HEDs are a clan of achondritic meteorites that have is a low probability (~1%) that 21238 1995 WV7 (~5 continuous variations in mineralogy and chemistry [4]. km in diameter) is a fragment of Vesta; however, Eucrites are composed primarily of anorthitic plagio- 40521 1999 RL5 (~3 km in diameter) has a much clase and low-Ca pyroxene with augite exsolution la- higher probability to be related to Vesta due to its mellae, whereas diogenites are predominately mag- slightly smaller estimated diameter. nesian orthopyroxene. Howardites are polymict brec- In this study, near-infrared spectra of two of these cias containing fragments of both lithologies and are middle- and outer-belt Vestoids, 1459 Magnya and the primary evidence that almost all HEDs are derived 21238 1995 WV7, are analyzed. Our goal is to deter- from one parent body. Oxygen isotopes [5,6] also are mine whether the average pyroxene mineralogies of consistent with almost all HEDs originating on the these objects are consistent with HEDs. Could they be same parent body. fragments of the HED parent body? Pyroxenes have distinctive absorption features [7] Observations: Both 1459 Magnya and 21238 that are centered near 0.9 and 1.9 μm and are due to 1995 WV7 were observed using SpeX. SpeX is a me- the presence of Fe2+ in pyroxenes. Reflectance spectra dium-resolution near-infrared spectrograph [17], of Vesta, Vestoids [8,9], and HEDs all have these dis- which is used on the NASA Infrared Telescope Facil- tinctive features, which move to longer wavelengths ity (IRTF) located on Mauna Kea. A Magnya near- for increasing contents of Fe2+ and/or Ca2+ in pyrox- infrared spectrum was previously obtained and ana- enes. It is important to note that although most po- lyzed by Hardersen et al. [10]. Appropriate standard lymict HED breccias contain a wide variety of pyrox- stars were used to produce the final spectra. enes, the resulting reflectance spectrum of each of Results: Spectra of Magnya and 1995 WV7 are these breccias has a single Band I minimum and a sin- plotted in Figure 1. Both objects have the characteris- gle Band II minimum. Hence, the average pyroxene tic absorption features of Vestoids. The most notable composition of a breccia controls the positions of these difference in the two spectra is that the Band II mini- minima. mum of 1995 WV7 is at a much shorter wavelength Vesta is the largest body (~500 km in diameter) in than the Band II of Magnya. an asteroid family. A large number of these objects in the Vesta family have spectra similar to HEDs and are 3 commonly called Vestoids. Vestoids are also found 2.5 21238 1995 WV7 outside the Vesta family. Almost all of the inner-belt 2 Vestoids are thought to be fragments of Vesta. Vestoids have also been identified past the 3:1 1.5 1459 Magnya resonance (~2.5 AU). Asteroids in this resonance have 1 very unstable orbits and it appears very difficult for 0.5 Normalized Reflectance Normalized objects to cross this resonance [10]. For example, the 00.511.522.5 first one identified was outer-belt 1459 Magnya [11], which has a semi-major axis of 3.14 AU. It is dynami- Wavelength (μm) cally difficult [12] to derive Magnya from Vesta. Magnya has an estimated diameter of ~17 km [13]. Figure 1. Reflectance spectra of 1459 Magnya and 21238 Other identified Vestoids include 7472 Kumakiri 1995 WV7. The spectra are offset in reflectance. Lunar and Planetary Science XXXIX (2008) 2270.pdf Analysis: The Band I and Band II of each spec- Magnya is consistent with a eucrite. The Gaffey et al. trum were fit to determine band centers. The reddened [19] formulas suggest that it may be a noncumulate continua of the Band I and II of the Magnya spectrum eucrite, whereas the Burbine et al. [20] formulas sug- and Band I of the 1995 WV7 spectrum were first di- gest it may be a cumulate eucrite. vided out. As recommended by Storm et al. [18], we For 1995 WV7, the Gaffey et al. [19] formulas pro- then fit a 2nd order polynomial over one-third of each duce average pyroxene compositions with Wo contents band to determine the band centers. Error bars were that are higher than diogenite pyroxenes; Fs contents only estimated, but will be calculated later using the are intermediate between the compositions of dio- method of Storm et al. [18]. genite and cumulate eucrite pyroxenes. The Burbine et The Band I center for Magnya is calculated to be al. [20] formulas produce average pyroxene composi- 0.93±0.01 μm whereas its Band II center is at tions for WV7 that are consistent with a cumulate 1.96±0.02 μm. Within these estimated error bars, eucrite. It is also possible that both of these asteroids these band centers are the same as those calculated for have surfaces composed of polymict breccias similar Magnya by Hardersen et al. [9]. The Band I center for to howardites. Hence, considering all of the uncertain- 1995 WV7 is calculated to be 0.93±0.01 μm whereas ties, both asteroids have average pyroxene composi- its Band II center is at 1.89±0.02 μm. tions consistent with HEDs. Magnya appears to be To calculate the pyroxene mineralogies of these evidence that other HED-like bodies formed in the objects using the formulas of Gaffey et al. [19] or Bur- belt, while 1995 WV7 could be a fragment of Vesta. bine et al. [20], the band positions must be corrected References: [1] McCord T. B. et al. (1970) Sci- for the temperatures on asteroids [21,22]. The surface ence, 168, 1445-1447. [2] Larson H. P. and Fink U. temperature for Magnya when it was observed is calculated (1975) Icarus, 26, 420-427. [3] Pieters C. M. et al. to be ~130 K while 1995 WV7 is slightly warmer (~150 K) (2005) Asteroids, Comets, Meteors, Proceedings IAU if both objects have Magnya’s albedo (0.37) [13]. From the Symposium No. 229, 273-288. [4] Mittlefehldt D. W. work of Moroz et al. [22] on the reflectance spectra of py- et al. (1998) Reviews in Mineralogy, Vol. 36, Plane- roxenes at low temperatures, only the Band II center appears tary Materials, 4-1-4-195. [5] Wiechert U. H. et al. significantly shifted for asteroid temperatures. To correct for (2004) EPSL, 221, 373-382. [6] Greenwood R. C. et the low temperatures, we added 0.02-0.03 μm to the Band al. (2005) Nature, 435, 916-918. [7] Burns R. G. II center position of each asteroid. The temperature- (1993) Mineralogical Applications of Crystal Field adjusted Band II center for Magnya was ~1.98-1.99 Theory, 2nd edition. [8] Kelley M. S. et al.(2003) (±0.02) μm and the Band II center for 1995 WV7 was Icarus, 165, 215-218. [9] Hardersen P. S. et al. (2004) 1.91-1.92 (±0.02) μm. Icarus, 167, 170-177. [10] Roig F. et al. (2008) Icarus, Using the Gaffey et al. [19] formulas on our tem- in press. [11] Lazzaro D. et al. (2000) Science, 288, perature-corrected band centers, we calculated average 2033-2035. [12] Michtchenko T. A. et al. (2002) pyroxene mineralogies of Fs47-50±5Wo9±4 for Magnya Icarus, 158, 343-359. [13] Delbo M. et al. (2006) and Fs29-31±5Wo9±4 for 1995 WV7. Using updated Bur- Icarus, 181, 618-622. [14] Duffard R. and Roig F. bine et al. [20] formulas, we calculated average pyrox- (2007) arXiv:0704.0230v1. [15] Hammergren M. et al. ene mineralogies of Fs41-42±3Wo9±1 for Magnya and (2006) arXiv:astro-ph/0609420v1. [16] Binzel R. P. et Fs33-34±3Wo6±1 for 1995 WV7 for these band center al. (2006) BAAS, 38, 627. [17] Rayner J. T. et al. positions. Our calculated Fs content for Magnya is (2003) PASP, 115, 362-382. [18] Storm S. et al. higher than that calculated by Hardersen et al. [9] due (2007) BAAS, 39, 448. [19] Gaffey M. J. et al. (2002) to our Band II center position being at a slightly higher Asteroids III, 183-204. [20] Burbine T. H. et al. (2007) wavelength (but within error bars) and our use of a LPS XXXVIII, Abstract #2117.
Recommended publications
  • Potential Resources on and from the Asteroids/Comets; Threats
    ASTEROIDS AND COMETS: POTENTIAL RESOURCES LECTURE 21 NEEP 533 HARRISON H. SCHMITT EROS C-TYPE NASA/NEAR SHOEMAKER/APL 11X11X34 KM ASTEROIDS IN GENERAL 1.3 GM/CM3 MAIN BELT ASTEROIDS BETWEEN JUPITER AND MARS NEAR EARTH ASTEROIDS SOME MAY BE SPENT COMETS EARTH CROSSING ASTEROIDS SOME MAY BE SPENT COMETS “CENTAUR” ASTEROIDS BETWEEN JUPITER AND URANUS CHIRON, 1979 VA, AND 133P/ELST-PIZARRO ALSO HAVE COMET- LIKE BEHAVIOR “TROJAN” ASTEROIDS JUPITER’S ORBIT AND CONTROLLED BY IT GENERAL CHARACTERISTICS RUBBLE PILES (?) NO ASTEROID >150M ROTATES FASTER THAN ONE REVOLUTION PER 2 HOURS CALCULATED LIMIT FOR RUBBLE TO STAY TOGETHER 1998 KY26 IS 30M IN DIAMETER, ROTATES IN 10.7 MIN. AND MAY BE SOLID MAY BE A TRANSITION IN ORBITAL CHARACTERISTICS AND / OR COMPOSITION BETWEEN SOME ASTEROIDS AND COMETS • S-TYPE OTHER ASTEROIDS – INNER ASTEROID BELT – EVIDENCE OF HEATING AND DIFFERENTIATION – 29 TELESCOPIC SPECTRA (Binzel, et al., 1996) • INTERMEDIATE BETWEEN S-TYPE AND ORDINARY CHONDRITES – 1. DISTINCT ROCK TYPES VS DIVERSE LARGER BODIES – 2. ABUNDANCE OF OPAQUE MATERIALS – 3. FRESH SURFACES (MOST LIKELY) • BASALTIC ACHONDRITES (6%) – 4 VESTA AT 2.36 AU [MAIN BELT PARENT (?)] – TOUTATIS - NEA (RADAR STUDY) • 4.5X2.4X1.9KM, 2.1 GM/CM3, TWO ROTATIONS, I.E., TUMBLING (5.4 AND 7.3 DAYS) – 1459 MAGNYA AT 3.15 AU [FRAGMENT OF LARGER BODY (?)] EROS • (Lazzaro, et al, 2000, Science, 288) C-TYPE (REVISED BY GRS DATA) 11X11X33 KM 2.7 GM/CM3 5.27 HR ROTATION NASA/NEAR SHOEMAKER/APL OTHER ASTEROIDS • D-TYPE CARBONACEOUS CHONDRITE (BEYOND MAIN BELT ASTEROIDS) – TAGISH
    [Show full text]
  • Polarimetric Survey of Main-Belt Asteroids V
    A&A 599, A114 (2017) Astronomy DOI: 10.1051/0004-6361/201628485 & c ESO 2017 Astrophysics Polarimetric survey of main-belt asteroids V. The unusual polarimetric behavior of V-type asteroids? R. Gil-Hutton1; 2, C. López-Sisterna1, and M. F. Calandra1 1 Grupo de Ciencias Planetarias, Complejo Astronómico El Leoncito, UNLP-UNC-UNSJ-CONICET, Av. España 1512 sur, J5402DSP San Juan, Argentina e-mail: [email protected] 2 Universidad Nacional de San Juan, J. I. de la Roza 590 oeste, 5400 Rivadavia, San Juan, Argentina Received 10 March 2016 / Accepted 20 December 2016 ABSTRACT Aims. We present the results of a polarimetric survey of main-belt asteroids at Complejo Astronómico El Leoncito (CASLEO), San Juan, Argentina. The aims of this survey are to increase the database of asteroid polarimetry, to estimate diversity in polarimet- ric properties of asteroids that belong to different taxonomic classes, and to search for objects that exhibit anomalous polarimetric properties. Methods. The data were obtained using the CASPROF and CASPOL polarimeters at the 2:15 m telescope. The CASPROF polarimeter is a two-hole aperture polarimeter with rapid modulation and CASPOL is a polarimeter based on a CCD detector, which allows us to observe fainter objects with better signal-to-noise ratio. Results. The survey began in 1995 and data on a large sample of asteroids were obtained until 2012. A second period began in 2013 using a polarimeter with a more sensitive detector in order to study small asteroids, families, and special taxonomic groups. We obtained 55 polarimetric measurements for 28 V-type main belt asteroids, all of them polarimetrically observed for the first time.
    [Show full text]
  • Mineralogies and Source Regions of Near-Earth Asteroids ⇑ Tasha L
    Icarus 222 (2013) 273–282 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Mineralogies and source regions of near-Earth asteroids ⇑ Tasha L. Dunn a, , Thomas H. Burbine b, William F. Bottke Jr. c, John P. Clark a a Department of Geography-Geology, Illinois State University, Normal, IL 61790, United States b Department of Astronomy, Mount Holyoke College, South Hadley, MA 01075, United States c Southwest Research Institute, Boulder, CO 80302, United States article info abstract Article history: Near-Earth Asteroids (NEAs) offer insight into a size range of objects that are not easily observed in the Received 8 October 2012 main asteroid belt. Previous studies on the diversity of the NEA population have relied primarily on mod- Revised 8 November 2012 eling and statistical analysis to determine asteroid compositions. Olivine and pyroxene, the dominant Accepted 8 November 2012 minerals in most asteroids, have characteristic absorption features in the visible and near-infrared Available online 21 November 2012 (VISNIR) wavelengths that can be used to determine their compositions and abundances. However, formulas previously used for deriving compositions do not work very well for ordinary chondrite Keywords: assemblages. Because two-thirds of NEAs have ordinary chondrite-like spectral parameters, it is essential Asteroids, Composition to determine accurate mineralogies. Here we determine the band area ratios and Band I centers of 72 Meteorites Spectroscopy NEAs with visible and near-infrared spectra and use new calibrations to derive the mineralogies 47 of these NEAs with ordinary chondrite-like spectral parameters. Our results indicate that the majority of NEAs have LL-chondrite mineralogies.
    [Show full text]
  • The Compositional Diversity of Non-Vesta Basaltic Asteroids
    The compositional diversity of non-Vesta basaltic asteroids The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Leith, Thomas B. et al. "The compositional diversity of non-Vesta basaltic asteroids." Icarus 295 (October 2017): 61-73 © 2017 Elsevier As Published http://dx.doi.org/10.1016/j.icarus.2017.05.007 Publisher Elsevier BV Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/127640 Terms of Use Creative Commons Attribution-NonCommercial-NoDerivs License Detailed Terms http://creativecommons.org/licenses/by-nc-nd/4.0/ The compositional diversity of non-Vesta basaltic asteroids Thomas B. Leitha,b, Nicholas A. Moskovitza, Rhiannon G. Maynec, Francesca E. DeMeod, Driss Takire, Brian J. Burta,d, Richard P. Binzeld, Dimitra Pefkoud aLowell Observatory, Flagstaff, AZ, 86001, USA bHarvard-Smithsonian Center for Astrophysics, Cambridge, MA, 02138, USA cMonnig Meteorite Collection, Texas Christian University, Fort Worth, TX, 76129, USA dMassachusetts Institute of Technology, Cambridge, MA, 02139, USA eAstrogeology Science Center, United States Geological Survey, Flagstaff, AZ, 86001, USA Abstract We present near-infrared (0.78-2.45 µm) reflectance spectra for nine middle and outer main belt (a > 2:5 AU) basaltic asteroids. Three of these objects are spectrally distinct from all classifications in the Bus-DeMeo system and could represent spectral end members in the existing taxonomy or be representatives of a new spectral type. The remainder of the sample are classified as V- or R- type. All of these asteroids are dynamically detached from the Vesta collisional family, but are too small to be intact differentiated parent bodies, implying that they originated from differentiated planetesimals which have since been destroyed or ejected from the solar system.
    [Show full text]
  • Asteroid Research Data Primer
    Asteroid Research Data Primer: A Case Study of one Team in the Exploration of the Moon and Asteroids by Secondary Students (ExMASS) Program Jimmy Newland & Jennifer Wang, Bellaire High School, Houston, TX This document is meant to be a starting point for student researchers when it comes to questions and research techniques in asteroid science. This document was written by the Bellaire High School student team leader during the 2014-2015 school year, Jennifer Wang, and the team’s teacher, Mr. Jimmy Newland. Speaking from personal experience – as a high schooler with a limited skill set and even more limited knowledge base – finding a suitable research topic is one of the biggest challenges presented by the ExMASS research program. The dearth of easily attainable data on asteroids only increases the difficulty. The Jet Propulsion Laboratory (JPL) has wonderful data on a large range of asteroids, but this data is incomplete in regards to most asteroids, because not enough studies have been performed, or some points remain controversial. Presented below is an account of how we acquired a topic and the subsequent data for our project - hypothesizing the former existence of a differentiated protoplanet in the 5:2 Kirkwood Gap between Mars and Jupiter. To start students off, the ExMASS program has several required readings: a general introduction to asteroids, including information about meteorite types, asteroid formation, mineralogy, relation to meteorites and various other properties. Whereas this information is essential to form a basic understanding, it is mostly facts and history – which is nowhere near detailed enough to help find a research topic.
    [Show full text]
  • The Minor Planet Bulletin Is Open to Papers on All Aspects of 6500 Kodaira (F) 9 25.5 14.8 + 5 0 Minor Planet Study
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 32, NUMBER 3, A.D. 2005 JULY-SEPTEMBER 45. 120 LACHESIS – A VERY SLOW ROTATOR were light-time corrected. Aspect data are listed in Table I, which also shows the (small) percentage of the lightcurve observed each Colin Bembrick night, due to the long period. Period analysis was carried out Mt Tarana Observatory using the “AVE” software (Barbera, 2004). Initial results indicated PO Box 1537, Bathurst, NSW, Australia a period close to 1.95 days and many trial phase stacks further [email protected] refined this to 1.910 days. The composite light curve is shown in Figure 1, where the assumption has been made that the two Bill Allen maxima are of approximately equal brightness. The arbitrary zero Vintage Lane Observatory phase maximum is at JD 2453077.240. 83 Vintage Lane, RD3, Blenheim, New Zealand Due to the long period, even nine nights of observations over two (Received: 17 January Revised: 12 May) weeks (less than 8 rotations) have not enabled us to cover the full phase curve. The period of 45.84 hours is the best fit to the current Minor planet 120 Lachesis appears to belong to the data. Further refinement of the period will require (probably) a group of slow rotators, with a synodic period of 45.84 ± combined effort by multiple observers – preferably at several 0.07 hours. The amplitude of the lightcurve at this longitudes. Asteroids of this size commonly have rotation rates of opposition was just over 0.2 magnitudes.
    [Show full text]
  • MIDI Observations of 1459 Magnya: First Attempt of Interferometric Observations of Asteroids with the VLTI ✩
    Icarus 181 (2006) 618–622 www.elsevier.com/locate/icarus Note MIDI observations of 1459 Magnya: First attempt of interferometric observations of asteroids with the VLTI ✩ Marco Delbo a,∗, Mario Gai a, Mario G. Lattanzi a, Sebastiano Ligori a, Davide Loreggia a, Laura Saba a, Alberto Cellino a, Davide Gandolfi b, Domenico Licchelli c, Carlo Blanco b, Massimo Cigna b, Markus Wittkowski d a INAF-Osservatorio Astronomico di Torino, Strada Osservatorio 20, 10025 Pino Torinese (TO), Italy b Dipartimento di Fisica e Astronomia, Università degli studi di Catania, Via S. Sofia 78, 95123 Catania, Italy c Department of Physics, University of Lecce, Via per Arnesano, 73100 Lecce, Italy d European Southern Observatory, Karl-Schwarzschild-Straße, 2 D-85748 Garching bei München, Germany Received 23 August 2005; revised 21 December 2005 Available online 17 February 2006 Abstract The Very Large Telescope Interferometer (VLTI) of the European Southern Observatory (ESO) can be used to obtain direct determination of the sizes and the albedos of asteroids. We present results of the first attempt to carry out interferometric observations of asteroids with the Mid Infrared Interferometric Instrument (MIDI) at the VLTI. Our target was 1459 Magnya. This is the only V-type asteroid known to exist in the outer main-belt, and its IRAS-albedo turns out to be rather low for an object of this taxonomic class. Interferometric fringes were not detected, very likely due to the fact that the flux emitted by the asteroid was lower than expected and below the MIDI threshold for fringe detection. However, by fitting the Standard Thermal Model to the N-band infrared flux measured by MIDI in photometric mode and to the visible absolute magnitude, obtained from quasi-simultaneous B- and V-band photometric observations, we have derived a geometric visible albedo of 0.37 ± 0.06 and an effective diameter of 17 ± 1 km.
    [Show full text]
  • Programação Do Cbdo 2016
    PROGRAMAÇÃO DO CBDO 2016 Segunda-feira, 28 de novembro 08:00 – 12:00 Inscrições, entrega de material 14:20 Cerimônia de Abertura do XVIII CBDO 14:40 Cerimônia de Homenagem ao Prof. Sylvio Ferraz-Mello (Fernando V. Roig - ON) 15:30 Palestra de Abertura – Sylvio Ferraz-Mello (USP): Marés anelásticas em satélites e exoplanetas 16:30 Intervalo 16:45 Entrega do Prêmio Wagner Sessin 17:00 – 17h30 Palestrante Vencedor Categoria Astronomia Dinâmica e Planetária: F. Braga-Ribas (UTFPR): Ocultação estelar pelo satélite Vanth (Orcus/1): primeira predição e detecção 17:30 – 18h00 Palestrante Vencedor Categoria Mecânica Orbital e Controle: Diogo Merguizo Sanchez (INPE): On the use of perturbation maps in Astrodynamics and Celestial Mechanics 18:40 Coquetel de recepção. 19:40 Jantar. Terça-feira, 29 de novembro (8:20 – 10:00): Sessão 1 – Mecânica orbital e Controle I – Chair: Elbert Macau 8:20 – 9:20 (60 min) Kathleen Connor Howell (Palestrante convidado, Univ. de Purdue/EUA): Dynamical Systems Methods Applied to Spacecraft Trajectory Design 9:20 – 09:40 Priscilla A. de Sousa-Silva (ITA): Fast low-cost Earth-Moon transfers: a new strategy to compute optimal solutions using patched three- body systems 1 9:40 – 10:00 Jean Carvalho (UFRB): Effects of the solar radiation pressure and the nonsphericity of the planet (J2, J3, C22) in frozen orbits around mercury 10:00 – 10:20 Intervalo 10:20 – 11:20 (60 min) Celso Grebogi (Palestrante convidado, Univ. de Aberdeen/Escócia): Minicurso – Sistemas Dinâmicos, Parte 1: Transient Chaos – Chair: Juliano Oliveira 11:20 Sessão de pôsteres Mecânica orbital e Controle I (MOC I) 12:00 Almoço (14:20 – 16:20): Sessão 2 – Astronomia I - Chair: Sylvio Ferraz Mello 14:20 – 15:20 (60 min) Hauke Hussmann (Palestrante convidado, Centro Aeroespacial/Alemanha): Interior Structure and Dynamics of Satellites in the Outer Solar System 15:20 – 15:40 Hugo Folonier (USP): Titan's Length-of-Day Variation 15:40 – 16:00 Leonardo D.S.
    [Show full text]
  • On the V-Type Asteroids Outside the Vesta Family
    Astronomy & Astrophysics manuscript no. aa3355-05 (DOI: will be inserted by hand later) On the V-type asteroids outside the Vesta family I. Interplay of nonlinear secular resonances and the Yarkovsky effect: the cases of 956 Elisa and 809 Lundia V. Carruba1,T.A.Michtchenko1,F.Roig2, S. Ferraz-Mello1, and D. Nesvorný3 1 IAG, Universidade de São Paulo, São Paulo, SP 05508-900, Brazil e-mail: [email protected] 2 Observatório Nacional, Rio de Janeiro, RJ 20921-400, Brazil e-mail: [email protected] 3 Southwest Research Institute, Department of Space Studies, Boulder, Colorado 80302, USA e-mail: [email protected] Received 2 May 2005 / Accepted 22 June 2005 Abstract. Among the largest objects in the main belt, asteroid 4 Vesta is unique in showing a basaltic crust. It is also the biggest member of the Vesta family, which is supposed to originate from a large cratering event about 1 Gyr ago (Marzari et al. 1996). Most of the members of the Vesta family for which a spectral classification is available show a V-type spectra. Due to their characteristic infrared spectrum, V-type asteroids are easily distinguished. Before the discovery of 1459 Magnya (Lazzaro et al. 2000) and of several V-type NEA (Xu 1995), all the known V-type asteroids were members of the Vesta family. Recently two V-type asteroids, 809 Lundia and 956 Elisa, (Florczak et al. 2002) have been discovered well outside the limits of the family, near the Flora family. We currently know 22 V-type asteroids outside the family, in the inner asteroid belt (see Table 2).
    [Show full text]
  • Discovery of a Basaltic Asteroid in the Outer Main Belt D
    Discovery of a Basaltic Asteroid in the Outer Main Belt D. Lazzaro et al. Science 288, 2033 (2000); DOI: 10.1126/science.288.5473.2033 This copy is for your personal, non-commercial use only. If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here. Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here. The following resources related to this article are available online at www.sciencemag.org (this information is current as of December 18, 2012 ): Updated information and services, including high-resolution figures, can be found in the online version of this article at: on December 18, 2012 http://www.sciencemag.org/content/288/5473/2033.full.html This article cites 19 articles, 3 of which can be accessed free: http://www.sciencemag.org/content/288/5473/2033.full.html#ref-list-1 This article has been cited by 42 article(s) on the ISI Web of Science This article has been cited by 3 articles hosted by HighWire Press; see: http://www.sciencemag.org/content/288/5473/2033.full.html#related-urls This article appears in the following subject collections: www.sciencemag.org Planetary Science http://www.sciencemag.org/cgi/collection/planet_sci Downloaded from Science (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. Copyright 2000 by the American Association for the Advancement of Science; all rights reserved.
    [Show full text]
  • Geological History of Asteroid 4 Vesta: the “Smallest Terrestrial Planet”
    Keil: Geological History of 4 Vesta 573 Geological History of Asteroid 4 Vesta: The “Smallest Terrestrial Planet” Klaus Keil University of Hawai‘i The asteroid 4 Vesta is the only known differentiated asteroid with an intact internal structure, probably consisting of a metal core, an ultramafic mantle, and a basaltic crust. Considerable evidence suggests that the HED meteorites are impact ejecta from Vesta, and detailed studies of these meteorites in terrestrial laboratories, combined with ever more sophisticated remote sensing studies of the asteroid, have resulted in a good understanding of the geological evolution of this fascinating object. Extensive mineralogical, petrological, geochemical, isotopic, and chro- nological data suggest that heating, melting, and formation of a metal core, a mantle, and a basaltic crust took place in the first few million years of solar system history. It is likely that many more Vesta-like asteroids formed at the dawn of the solar system but were destroyed by impact, with the iron meteorites being remnants of their cores. Such differentiated objects may have played an important role in the accretion and formation of the terrestrial planets, and it is therefore highly desirable to explore by spacecraft this world that can be viewed as the smallest of the terrestrial planets. 1. INTRODUCTION pyroxenites (diogenites), and breccia mixtures principally of these two rock types (howardites) (e.g., Mason, 1962; Takeda The world’s collections contain meteorites from at least et al., 1976; Takeda, 1979; Mittlefehldt et al., 1998, and ref- three sources: asteroids (tens of thousands), Earth’s Moon erences therein) are, in all likelihood, impact-produced frag- (~26), and Mars (~26).
    [Show full text]
  • Palomar and IRTF Results for 48 Objects Including Spacecraft Targets (9969) Braille and (10302) 1989 ML
    Icarus 151, 139–149 (2001) doi:10.1006/icar.2001.6613, available online at http://www.idealibrary.com on Spectral Properties of Near-Earth Objects: Palomar and IRTF Results for 48 Objects Including Spacecraft Targets (9969) Braille and (10302) 1989 ML Richard P. Binzel Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 E-mail: [email protected] Alan W. Harris Jet Propulsion Laboratory, Pasadena, California 91109 Schelte J. Bus Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and Thomas H. Burbine Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560 Received July 24, 2000; revised February 1, 2001 INTRODUCTION We present results of visible wavelength spectroscopic measure- ments for 48 near-Earth objects (NEOs) obtained with the 5-m tele- One of the most fundamental goals in the study of primi- scope at Palomar Mountain Observatory during 1998, 1999, and tive bodies in the Solar System is to achieve an understanding early 2000. The compositional interpretations for 15 of these ob- of the relationships between asteroids, comets, and meteorites. jects have been enhanced by the addition of near-infrared spectra Because asteroids, comets, and the immediate source bodies for obtained with the NASA Infrared Telescope Facility. One-third of meteorites exist within the near-Earth object (NEO) population, our sampled objects fall in the Sq and Q classes and resemble ordi- a compositional investigation of this population provides the best nary chondrite meteorites. Overall our sample shows a clear tran- basis for understanding these relationships.
    [Show full text]