Palomar and IRTF Results for 48 Objects Including Spacecraft Targets (9969) Braille and (10302) 1989 ML

Total Page:16

File Type:pdf, Size:1020Kb

Palomar and IRTF Results for 48 Objects Including Spacecraft Targets (9969) Braille and (10302) 1989 ML Icarus 151, 139–149 (2001) doi:10.1006/icar.2001.6613, available online at http://www.idealibrary.com on Spectral Properties of Near-Earth Objects: Palomar and IRTF Results for 48 Objects Including Spacecraft Targets (9969) Braille and (10302) 1989 ML Richard P. Binzel Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 E-mail: [email protected] Alan W. Harris Jet Propulsion Laboratory, Pasadena, California 91109 Schelte J. Bus Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and Thomas H. Burbine Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560 Received July 24, 2000; revised February 1, 2001 INTRODUCTION We present results of visible wavelength spectroscopic measure- ments for 48 near-Earth objects (NEOs) obtained with the 5-m tele- One of the most fundamental goals in the study of primi- scope at Palomar Mountain Observatory during 1998, 1999, and tive bodies in the Solar System is to achieve an understanding early 2000. The compositional interpretations for 15 of these ob- of the relationships between asteroids, comets, and meteorites. jects have been enhanced by the addition of near-infrared spectra Because asteroids, comets, and the immediate source bodies for obtained with the NASA Infrared Telescope Facility. One-third of meteorites exist within the near-Earth object (NEO) population, our sampled objects fall in the Sq and Q classes and resemble ordi- a compositional investigation of this population provides the best nary chondrite meteorites. Overall our sample shows a clear tran- basis for understanding these relationships. In addition, the NEO sition between S-type and Q-type compositional classes over visible population poses a long-term collisional hazard to the Earth as and near-infrared wavelengths. Taken together these results point well as the future opportunity for utilization of space resources, toward an abundance of near-Earth asteroids capable of providing sources for ordinary chondrite meteorites. Our sampling strategy thus providing a highly important and practical rationale for its favors targeting the smallest observable objects and we report re- study. sults for the 15-m diameter object 1998 BT13, the smallest spectro- We report the results of our ground-based reconnaissance pro- scopically measured NEO to date. NEOs show a greater spectral gram of NEOs conducted using the 5-m (200-inch) telescope diversity than main-belt asteroids, and our small sample includes at Palomar Mountain Observatory from January 1998 through objects falling in the rare categories of K, L, O, and V classes. The K- January 2000. Our targets were chosen primarily from the sam- class object 1999 JD6 is found to match CV chondrite meteorites. ple of known NEOs that lacked previous spectroscopic mea- Potential spacecraft targets received top priority for observation, surements and from discoveries made just prior to or during with the ordinary chondrite-like composition of (9969) Braille be- our observing runs. Priority was given to those targets having ing reported prior to the Deep Space-1 encounter. The relatively the greatest H magnitude values, as these objects are presumed accessible asteroid (10302) 1989 ML displays a neutral spectrum to be smallest in size. We reached a limit of H = 26 for 1998 that may be interpreted as a shock-darkened ordinary chondrite. BT13, estimated to have a size in the range of 15–20 m (for c 2001 Academic Press Key Words: asteroids, composition; meteorites; surfaces, aster- albedo 0.25 to 0.15), smaller than the size of the Palomar 200- oids. inch dome where we were observing! (See Fig. 1.) We addition- ally performed directed measurements of objects identified as 139 0019-1035/01 $35.00 Copyright c 2001 by Academic Press All rights of reproduction in any form reserved. 140 BINZEL ET AL. FIG. 1. Schematic diagram for the smallest near-Earth object spectroscopically measured to date, 1998 BT13, which has an estimated size of only 15–20 m. At this size, 1998 BT13 is smaller than the dome of the 200-inch telescope where observations were made. destinations for spacecraft encounters: (9969) Braille as the tar- 0.92 m, thus providing roughly 0.09 m of spectral overlap get for Deep Space 1 (DS-1) and (10302) 1989 ML as a formerly with the blue channel. This overlap is possible since the dichroic designated target for MUSES-C. Although not on the target list does not reach maximum transmission before 0.62 m. Still, for any currently approved mission, interest in (10302) 1989 ML the reflectivity of the dichroic averages less than 10% over the remains high because of its relatively easy accessibility from interval of 0.52 to 0.62 m, so that the usefulness of this overlap Earth. region in matching the vertical scaling of the spectral halves is generally limited to the brighter asteroids. PALOMAR INSTRUMENTATION, OBSERVING, A relatively wide 6-arcsec slit was utilized to maximize the AND REDUCTION PROCEDURES amount of light being sent to the detectors from our faint pro- gram objects. The length of the slit was sufficient to provide a Our Palomar measurements consist of visible wavelength region of sky 50 arcsec wide on either side of the object spec- spectra obtained using the Double Spectrograph (Oke and Gunn trum. This allows for a proper subtraction of the sky during 1982). This instrument uses a pair of charge–coupled device the data reduction. The slit remained fixed in a N–S orientation (CCD) cameras to simultaneously record the blue and red halves throughout all observations, and great care was taken to make of a long-slit spectrum. To increase the signal-to-noise per pixel, all observations as close to the meridian as possible, minimizing and greatly reduce the readout time for our observations, the the effects of differential atmospheric refraction. The capability readout for each 1024 1024 CCD array was binned by a factor for the telescope to track at nonsidereal rates in both coordi- of 2 2, and only that fraction of each CCD image containing nates allowed for accurately maintaining fast-moving targets in the spectrum and surrounding sky was stored. Due to different the slit. This tracking was monitored and manually corrected focal lengths for the two CCD cameras, the resulting spatial as necessary through the use of a sensitive slit-viewing cam- scales for the blue and red channels are 1.25 and 0.94 arcsec per era. Under good seeing conditions, the limiting magnitude for binned pixel, respectively. measurements extends below V = 19. For our observations, separation between the blue and red Standard data-reduction procedures were followed using pack- channels was accomplished using the “D-52” dichroic, which ages contained in image reduction and analysis facility (IRAF). has a steep cutoff in transmission shortward of 0.52 m. For Preprocessing of the CCD images involved bias and flat-fielding the blue channel, we utilized the 300 line/mm grating (blazed at corrections, using calibration images taken nightly at the tele- 0.399 m) that gives a dispersion of 7 A˚ per binned pixel over scope. The procedures used to produce the extracted one-dimen- the usable spectral range of 0.36 to 0.62 m. For the red channel sional spectra are detailed by Bus (1999) and are essentially we utilized the 158 line/mm grating (blazed at 0.75 m) to give the same as described by Xu et al. (1995). Upon extraction, 10 A˚ per binned pixel dispersion over the range from 0.53 to each spectrum was rebinned to a uniform dispersion of 25 A˚ PALOMAR AND IRTF SPECTRAL MEASUREMENTS OF NEOS 141 per pixel. The normalization of these spectra to units of relative Light first passes through a 1.2-arcsec slit before entering the flat reflectance was provided by observations of bright solar analog face of the grism. Dispersed light from the grism then passes stars. For this program, we utilized the widely accepted stan- through a PK50 filter to block the transmission of thermal ra- dards Hyades 64 and 16 Cyg B as well as the United Kingdom in- diation to the thermally sensitive detector. The grism and the frared telescope (UKIRT) standard FS13 and Landolt 102-1081, PK50 reside within the CVF wheel of the NSFCAM system. fainter stars which we found to be comparable in their quality The wavelength range for usable spectra is determined by a pair as solar analogs. All objects were reduced in exactly the same of blocking filters residing within the NSFCAM filter wheel. manner and as a check, bright main-belt asteroids having pre- This combination consists of a short pass filter that transmits viously known spectral characteristics were also occasionally radiation shortward of 2 m and a long pass filter that trans- observed. All main-belt results proved consistent with previous mits radiation longward of 0.85 m. (All cut-on and cut-off measurements. These objects are included within Results. wavelengths are the half-power points for steep regions of the To accurately merge the blue and red halves of the calibrated spectral transmission curves.) The resulting light that reaches spectrum, a third-order polynomial was fit repeatedly over the the NSFCAM 256 256 InSb array covers the range of 0.85 wavelength range of 0.44 to 0.66 m and the vertical scaling to 2 m. Only the light from the first-order spectrum, covering of the blue half was adjusted with respect to the red half. The approximately 0.85 to 1.65 m is usable as the second-order best scaling factor was found when the value of chi-squared was spectrum begins contaminating the region 1.7 to 2.0 m.
Recommended publications
  • Potential Resources on and from the Asteroids/Comets; Threats
    ASTEROIDS AND COMETS: POTENTIAL RESOURCES LECTURE 21 NEEP 533 HARRISON H. SCHMITT EROS C-TYPE NASA/NEAR SHOEMAKER/APL 11X11X34 KM ASTEROIDS IN GENERAL 1.3 GM/CM3 MAIN BELT ASTEROIDS BETWEEN JUPITER AND MARS NEAR EARTH ASTEROIDS SOME MAY BE SPENT COMETS EARTH CROSSING ASTEROIDS SOME MAY BE SPENT COMETS “CENTAUR” ASTEROIDS BETWEEN JUPITER AND URANUS CHIRON, 1979 VA, AND 133P/ELST-PIZARRO ALSO HAVE COMET- LIKE BEHAVIOR “TROJAN” ASTEROIDS JUPITER’S ORBIT AND CONTROLLED BY IT GENERAL CHARACTERISTICS RUBBLE PILES (?) NO ASTEROID >150M ROTATES FASTER THAN ONE REVOLUTION PER 2 HOURS CALCULATED LIMIT FOR RUBBLE TO STAY TOGETHER 1998 KY26 IS 30M IN DIAMETER, ROTATES IN 10.7 MIN. AND MAY BE SOLID MAY BE A TRANSITION IN ORBITAL CHARACTERISTICS AND / OR COMPOSITION BETWEEN SOME ASTEROIDS AND COMETS • S-TYPE OTHER ASTEROIDS – INNER ASTEROID BELT – EVIDENCE OF HEATING AND DIFFERENTIATION – 29 TELESCOPIC SPECTRA (Binzel, et al., 1996) • INTERMEDIATE BETWEEN S-TYPE AND ORDINARY CHONDRITES – 1. DISTINCT ROCK TYPES VS DIVERSE LARGER BODIES – 2. ABUNDANCE OF OPAQUE MATERIALS – 3. FRESH SURFACES (MOST LIKELY) • BASALTIC ACHONDRITES (6%) – 4 VESTA AT 2.36 AU [MAIN BELT PARENT (?)] – TOUTATIS - NEA (RADAR STUDY) • 4.5X2.4X1.9KM, 2.1 GM/CM3, TWO ROTATIONS, I.E., TUMBLING (5.4 AND 7.3 DAYS) – 1459 MAGNYA AT 3.15 AU [FRAGMENT OF LARGER BODY (?)] EROS • (Lazzaro, et al, 2000, Science, 288) C-TYPE (REVISED BY GRS DATA) 11X11X33 KM 2.7 GM/CM3 5.27 HR ROTATION NASA/NEAR SHOEMAKER/APL OTHER ASTEROIDS • D-TYPE CARBONACEOUS CHONDRITE (BEYOND MAIN BELT ASTEROIDS) – TAGISH
    [Show full text]
  • The Mineralogy of Middle- and Outer-Belt Vestoids
    Lunar and Planetary Science XXXIX (2008) 2270.pdf THE MINERALOGY OF MIDDLE- AND OUTER-BELT VESTOIDS. T. H. Burbine1, P. C. Buchanan2 and R. P. Binzel3, 1Department of Astronomy, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA ([email protected]), 2Kilgore College, 1100 Broadway, Kilgore, TX 75662, USA (pbu- [email protected]), 3Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA ([email protected]). Introduction: Asteroid 4 Vesta is commonly (a=3.01 AU) [14], 10537 1991 RY16 (a=2.85 AU) thought to have a basaltic crust due to its spectral simi- [14], 21238 1995 WV7 (a=2.54 AU) [15,16], and larity in the visible and near-infrared to the HED me- 40521 1999 RL5 (a=2.53 AU) [10]. teorites (howardites, eucrites, and diogenites) [1,2]. Roig et al. [10] have calculated that some of the Vesta is located in the inner main-belt with a semi- middle-belt Vestoids could be fragments of Vesta. major axis (a) of 2.36 AU and is one of the few aster- The calculated probability is a function of the size of oids that can be persuasively linked to a group of me- the object since a larger size reduces the efficiency of teorites [3]. the Yarkovsky effect. Roig et al. [10] found that there HEDs are a clan of achondritic meteorites that have is a low probability (~1%) that 21238 1995 WV7 (~5 continuous variations in mineralogy and chemistry [4]. km in diameter) is a fragment of Vesta; however, Eucrites are composed primarily of anorthitic plagio- 40521 1999 RL5 (~3 km in diameter) has a much clase and low-Ca pyroxene with augite exsolution la- higher probability to be related to Vesta due to its mellae, whereas diogenites are predominately mag- slightly smaller estimated diameter.
    [Show full text]
  • Polarimetric Survey of Main-Belt Asteroids V
    A&A 599, A114 (2017) Astronomy DOI: 10.1051/0004-6361/201628485 & c ESO 2017 Astrophysics Polarimetric survey of main-belt asteroids V. The unusual polarimetric behavior of V-type asteroids? R. Gil-Hutton1; 2, C. López-Sisterna1, and M. F. Calandra1 1 Grupo de Ciencias Planetarias, Complejo Astronómico El Leoncito, UNLP-UNC-UNSJ-CONICET, Av. España 1512 sur, J5402DSP San Juan, Argentina e-mail: [email protected] 2 Universidad Nacional de San Juan, J. I. de la Roza 590 oeste, 5400 Rivadavia, San Juan, Argentina Received 10 March 2016 / Accepted 20 December 2016 ABSTRACT Aims. We present the results of a polarimetric survey of main-belt asteroids at Complejo Astronómico El Leoncito (CASLEO), San Juan, Argentina. The aims of this survey are to increase the database of asteroid polarimetry, to estimate diversity in polarimet- ric properties of asteroids that belong to different taxonomic classes, and to search for objects that exhibit anomalous polarimetric properties. Methods. The data were obtained using the CASPROF and CASPOL polarimeters at the 2:15 m telescope. The CASPROF polarimeter is a two-hole aperture polarimeter with rapid modulation and CASPOL is a polarimeter based on a CCD detector, which allows us to observe fainter objects with better signal-to-noise ratio. Results. The survey began in 1995 and data on a large sample of asteroids were obtained until 2012. A second period began in 2013 using a polarimeter with a more sensitive detector in order to study small asteroids, families, and special taxonomic groups. We obtained 55 polarimetric measurements for 28 V-type main belt asteroids, all of them polarimetrically observed for the first time.
    [Show full text]
  • Updated Inflight Calibration of Hayabusa2's Optical Navigation Camera (ONC) for Scientific Observations During the C
    Updated Inflight Calibration of Hayabusa2’s Optical Navigation Camera (ONC) for Scientific Observations during the Cruise Phase Eri Tatsumi1 Toru Kouyama2 Hidehiko Suzuki3 Manabu Yamada 4 Naoya Sakatani5 Shingo Kameda6 Yasuhiro Yokota5,7 Rie Honda7 Tomokatsu Morota8 Keiichi Moroi6 Naoya Tanabe1 Hiroaki Kamiyoshihara1 Marika Ishida6 Kazuo Yoshioka9 Hiroyuki Sato5 Chikatoshi Honda10 Masahiko Hayakawa5 Kohei Kitazato10 Hirotaka Sawada5 Seiji Sugita1,11 1 Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan 2 National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan 3 Meiji University, Kanagawa, Japan 4 Planetary Exploration Research Center, Chiba Institute of Technology, Chiba, Japan 5 Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Kanagawa, Japan 6 Rikkyo University, Tokyo, Japan 7 Kochi University, Kochi, Japan 8 Nagoya University, Aichi, Japan 9 Department of Complexity Science and Engineering, The University of Tokyo, Chiba, Japan 10 The University of Aizu, Fukushima, Japan 11 Research Center of the Early Universe, The University of Tokyo, Tokyo, Japan 6105552364 Abstract The Optical Navigation Camera (ONC-T, ONC-W1, ONC-W2) onboard Hayabusa2 are also being used for scientific observations of the mission target, C-complex asteroid 162173 Ryugu. Science observations and analyses require rigorous instrument calibration. In order to meet this requirement, we have conducted extensive inflight observations during the 3.5 years of cruise after the launch of Hayabusa2 on 3 December 2014. In addition to the first inflight calibrations by Suzuki et al. (2018), we conducted an additional series of calibrations, including read- out smear, electronic-interference noise, bias, dark current, hot pixels, sensitivity, linearity, flat-field, and stray light measurements for the ONC.
    [Show full text]
  • A Survey of the Planets Mercury Difficult to Observe
    A Survey of the Planets Earth [Slides] N ,O ,H 0 atmosphere Mercury 2 2 2 Difficult to observe - never more than Surface area 71% H20 28 degree angle from the Sun. Prograde rotation 23hr 56min 04.1sec Mariner 10 flyby (1974) =>Why do we use a 24 hour clock? Found cratered terrain. Weathered, tectonic, volcanic, Messenger Orbiter (Launch 2004; Orbit 2009) and cratered surface. Rotation is 59 days (discovered by MIT) Thin sodium (Na) atmosphere - recent discovery One satellite (large relative to its primary). No Moons. Moon Venus Cratered surface - formed by impacts A near twin to Earth in size and mass Mare - (“seas”) formed by lava flows Dense CO atmosphere 2 Regolith - soil Surface pressure ~90 bars (earth atm = 1 bar) Age: 4.5 Gy - same as rest of solar system Surface temperature ~750 K (0 K = -273 C) 9 Retrograde rotation, 243 days (Gy = 10 years) 0 - 0.5 Gy -heavy bombardment (Prograde rotation is West -> East) (Retrograde rotation is East ->West) 1.0 - 2.5 Gy - lava flows forming Mare Surface volcanic features, vast resurfacing 2.5-4.5 Gy - less frequent bombardment of entire planet about 1 billion years ago. Origin of the Moon? No Moons. Mariner, Pioneer, Venera: Flybys, orbiters, landers (1960s, 1970s) Magellan Mission 1989 - Radar mapping to 100m resolution (headed by MIT). 1 2 Mars Asteroids First one (Ceres) discovered in 1801 Thin CO2 atmosphere Surface Pressure ~6 mbar (0.6% of Earth) Location (2.8 AU) fit Bode!s Rule There are >10,000 known asteroids Surface Temperature: 190 to 240 K (-83 C to -33 C) Most orbit between Mars and Jupiter, region called the “asteroid belt” Rotation is 24.5 hours, prograde Sizes range from boulders - 1000 km A Disrupted planet? <----No Cratered surface, volcanoes, chasms Probably left-over planetesimals from Evidence for water flow! (Where is it now?) formation of the solar system.
    [Show full text]
  • Asteroid Touring Nanosatellite Fleet
    Asteroid Touring Nanosatellite Fleet S Mihkel Pajusalu Postdoctoral fellow Massachusetts Institute of Technology (and Tartu Observatory) [email protected] + Pekka Janhunen, Andris Slavinskis, and the MAT collaboration Bio • 2010 MSc in Physics, University of Tartu, Estonia • 2010-2015 ESTCube-1 team, leader of Electrical Power Subsystem • 2014 PhD in Physics University of Tartu, Estonia • 2015 - 2019 Postdoc at MIT, Seager Group (astrobiology and instrumentation development for the MAT mission) Only 12 asteroids have been visited this far 1 Ceres Image Credit: NASA / 4 253 Mathilde 433 Eros JPL-Caltech / UCLA / Vesta NEAR /NASA NEAR Shoemaker MPS / DLR / IDA / Justin NASA/JPL/JHUAPL Cowart 951 Gaspra 243 Ida and 2867 Šteins 21 Lutetia Dactyl Galileo/NASA Rosetta ESA MPS ESA 2010 MPS for Galileo/NASA / JPL/USGS for OSIRIS Team OSIRIS Team MPS/UPD/LAM/IAA MPS/UPD/LAM/IAA/RSS D/INTA/UPM/DASP/IDA 9969 Braille 5535 Annefrank Deep Space 25143 Itokawa 4179 Toutatis Stardust/JPL/NASA 1/NASA/JPL/USGS Hayabusa/JAXA Chang’e/CNSA Multiple Asteroid Touring (MAT) mission See Slavinskis et al, “Nanospacecraft Fleet for Multi-asteroid Touring with Electric Solar Wind Sails”, IEEE Aerospace conference, 2018 Mission details • The reference mission contains 50 identical CubeSats • Estimated total cost <100 million USD • Each to visit 6 targets on average • 100 km – 1000 km flybys • Total of 300 visits during 3.2 years • Even if 50% are successful, number of visited asteroids would increase by a factor of 10 • First published concept from Finnish Meteorological
    [Show full text]
  • Properties of Cometary Nuclei
    Properties of Cometary Nuclei J, Rahe, NASA Headquarters, Washington, DC V. Vanysek, Charles University, Prague, Czech Republic P. R. Weissman Jet Propulsion Laboratory, Pasadena, CA Abstract: Active long- and short-period comets contribute about 20 to 30% of the major impactors on the Earth. Cometary nuclei are irregular bodies, typically a few to ten kilometers in diameter, with masses in the range 10*5 to 10’8 g. The nuclei are composed of an intimate mixture of volatile ices, mostly water ice, and hydrocarbon and silicate grains. The composition is the closest to solar composition of any known bodies in the solar system. The nuclei appear to be weakly bonded agglomerations of smaller icy planetesimals, and material strengths estimated from observed tidal disruption events are fairly low, typically 1& to ld N m-2. Density estimates range between 0.2 and 1.2 g cm-3 but are very poorly determined, if at all. As comets age they develop nonvolatile crusts on their surfaces which eventually render them inactive, similar in appearance to carbonaceous asteroids. However, dormant comets may continue to show sporadic activity and outbursts for some time before they become truly extinct. The source of the long-period comets is the Oort cloud, a vast spherical cloud of perhaps 1012 to 10’3 comets surrounding the solar system and extending to interstellar distances. The likely source of the short-period comets is the Kuiper belt, a ring of perhaps 108 to 1010 remnant icy planetesimals beyond the orbit of Neptune, though some short-period comets may also be long- pcriod comets from the Oort cloud which have been perturbed to short-period orbits.
    [Show full text]
  • Mineralogies and Source Regions of Near-Earth Asteroids ⇑ Tasha L
    Icarus 222 (2013) 273–282 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Mineralogies and source regions of near-Earth asteroids ⇑ Tasha L. Dunn a, , Thomas H. Burbine b, William F. Bottke Jr. c, John P. Clark a a Department of Geography-Geology, Illinois State University, Normal, IL 61790, United States b Department of Astronomy, Mount Holyoke College, South Hadley, MA 01075, United States c Southwest Research Institute, Boulder, CO 80302, United States article info abstract Article history: Near-Earth Asteroids (NEAs) offer insight into a size range of objects that are not easily observed in the Received 8 October 2012 main asteroid belt. Previous studies on the diversity of the NEA population have relied primarily on mod- Revised 8 November 2012 eling and statistical analysis to determine asteroid compositions. Olivine and pyroxene, the dominant Accepted 8 November 2012 minerals in most asteroids, have characteristic absorption features in the visible and near-infrared Available online 21 November 2012 (VISNIR) wavelengths that can be used to determine their compositions and abundances. However, formulas previously used for deriving compositions do not work very well for ordinary chondrite Keywords: assemblages. Because two-thirds of NEAs have ordinary chondrite-like spectral parameters, it is essential Asteroids, Composition to determine accurate mineralogies. Here we determine the band area ratios and Band I centers of 72 Meteorites Spectroscopy NEAs with visible and near-infrared spectra and use new calibrations to derive the mineralogies 47 of these NEAs with ordinary chondrite-like spectral parameters. Our results indicate that the majority of NEAs have LL-chondrite mineralogies.
    [Show full text]
  • Autonomous Spacecraft Guidance for Small-Body Proximity Missions
    Autonomous Spacecraft Guidance for Small-Body Proximity Missions Antonio Canale Delft University of Technology AUTONOMOUS SPACECRAFT GUIDANCEFOR SMALL-BODY PROXIMITY MISSIONS by Antonio Canale 4522958 as part of MSc Thesis in MSc Aerospace Engineering Delft University of Technology Supervisors: Dr. Ir. Erwin Mooij Astrodynamics and Space Missions at TU Delft Prof. Maruthi Akella Aerospace Engineering at UT Austin i To Sergeant Pilot Larry Darrell ii ABSTRACT Low-thrust transfers in the proximity of a celestial body are characterized by a spiral shape, formed by many revolutions, due to the fact that the thrust to mass ratio is usually smaller than the gravity acceleration. From their use for primary purposes on board the Deep Space 1, these propulsion systems have acquired more and more importance. Due to their high specific impulse compared to chemical rockets, resulting in huge propellant mass savings, these systems have been enabling the exploration and the interaction with celestial bodies at increasing distance, up to orders of tens of light minutes. In particular, a special atten- tion has been dedicated to the so-called small-bodies, defined as all the objects in the Solar System not classifiable as planets, dwarf planets or satellites: this interest is not over yet, as confirmed by the future Lucy and Psyche missions by NASA. Although seen as intermedi- ate steps towards interplanetary manned missions, providing incremental capabilities at a low risk, the small-bodies are characterised by environments often not well-known before arrival, tiny standard gravitational parameters and irregularities in their shape, with en- hanced effects, the closer the spacecraft is to their surface.
    [Show full text]
  • Appendix 1 1311 Discoverers in Alphabetical Order
    Appendix 1 1311 Discoverers in Alphabetical Order Abe, H. 28 (8) 1993-1999 Bernstein, G. 1 1998 Abe, M. 1 (1) 1994 Bettelheim, E. 1 (1) 2000 Abraham, M. 3 (3) 1999 Bickel, W. 443 1995-2010 Aikman, G. C. L. 4 1994-1998 Biggs, J. 1 2001 Akiyama, M. 16 (10) 1989-1999 Bigourdan, G. 1 1894 Albitskij, V. A. 10 1923-1925 Billings, G. W. 6 1999 Aldering, G. 4 1982 Binzel, R. P. 3 1987-1990 Alikoski, H. 13 1938-1953 Birkle, K. 8 (8) 1989-1993 Allen, E. J. 1 2004 Birtwhistle, P. 56 2003-2009 Allen, L. 2 2004 Blasco, M. 5 (1) 1996-2000 Alu, J. 24 (13) 1987-1993 Block, A. 1 2000 Amburgey, L. L. 2 1997-2000 Boattini, A. 237 (224) 1977-2006 Andrews, A. D. 1 1965 Boehnhardt, H. 1 (1) 1993 Antal, M. 17 1971-1988 Boeker, A. 1 (1) 2002 Antolini, P. 4 (3) 1994-1996 Boeuf, M. 12 1998-2000 Antonini, P. 35 1997-1999 Boffin, H. M. J. 10 (2) 1999-2001 Aoki, M. 2 1996-1997 Bohrmann, A. 9 1936-1938 Apitzsch, R. 43 2004-2009 Boles, T. 1 2002 Arai, M. 45 (45) 1988-1991 Bonomi, R. 1 (1) 1995 Araki, H. 2 (2) 1994 Borgman, D. 1 (1) 2004 Arend, S. 51 1929-1961 B¨orngen, F. 535 (231) 1961-1995 Armstrong, C. 1 (1) 1997 Borrelly, A. 19 1866-1894 Armstrong, M. 2 (1) 1997-1998 Bourban, G. 1 (1) 2005 Asami, A. 7 1997-1999 Bourgeois, P. 1 1929 Asher, D.
    [Show full text]
  • Small Solar System Bodies As Granular Media D
    Small Solar System Bodies as granular media D. Hestroffer, P. Sanchez, L Staron, A. Campo Bagatin, S. Eggl, W. Losert, N. Murdoch, E. Opsomer, F. Radjai, D. C. Richardson, et al. To cite this version: D. Hestroffer, P. Sanchez, L Staron, A. Campo Bagatin, S. Eggl, et al.. Small Solar System Bodiesas granular media. Astronomy and Astrophysics Review, Springer Verlag, 2019, 27 (1), 10.1007/s00159- 019-0117-5. hal-02342853 HAL Id: hal-02342853 https://hal.archives-ouvertes.fr/hal-02342853 Submitted on 4 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Astron Astrophys Rev manuscript No. (will be inserted by the editor) Small solar system bodies as granular media D. Hestroffer · P. S´anchez · L. Staron · A. Campo Bagatin · S. Eggl · W. Losert · N. Murdoch · E. Opsomer · F. Radjai · D. C. Richardson · M. Salazar · D. J. Scheeres · S. Schwartz · N. Taberlet · H. Yano Received: date / Accepted: date Made possible by the International Space Science Institute (ISSI, Bern) support to the inter- national team \Asteroids & Self Gravitating Bodies as Granular Systems" D. Hestroffer IMCCE, Paris Observatory, universit´ePSL, CNRS, Sorbonne Universit´e,Univ.
    [Show full text]
  • (2000) Forging Asteroid-Meteorite Relationships Through Reflectance
    Forging Asteroid-Meteorite Relationships through Reflectance Spectroscopy by Thomas H. Burbine Jr. B.S. Physics Rensselaer Polytechnic Institute, 1988 M.S. Geology and Planetary Science University of Pittsburgh, 1991 SUBMITTED TO THE DEPARTMENT OF EARTH, ATMOSPHERIC, AND PLANETARY SCIENCES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN PLANETARY SCIENCES AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY FEBRUARY 2000 © 2000 Massachusetts Institute of Technology. All rights reserved. Signature of Author: Department of Earth, Atmospheric, and Planetary Sciences December 30, 1999 Certified by: Richard P. Binzel Professor of Earth, Atmospheric, and Planetary Sciences Thesis Supervisor Accepted by: Ronald G. Prinn MASSACHUSES INSTMUTE Professor of Earth, Atmospheric, and Planetary Sciences Department Head JA N 0 1 2000 ARCHIVES LIBRARIES I 3 Forging Asteroid-Meteorite Relationships through Reflectance Spectroscopy by Thomas H. Burbine Jr. Submitted to the Department of Earth, Atmospheric, and Planetary Sciences on December 30, 1999 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Planetary Sciences ABSTRACT Near-infrared spectra (-0.90 to ~1.65 microns) were obtained for 196 main-belt and near-Earth asteroids to determine plausible meteorite parent bodies. These spectra, when coupled with previously obtained visible data, allow for a better determination of asteroid mineralogies. Over half of the observed objects have estimated diameters less than 20 k-m. Many important results were obtained concerning the compositional structure of the asteroid belt. A number of small objects near asteroid 4 Vesta were found to have near-infrared spectra similar to the eucrite and howardite meteorites, which are believed to be derived from Vesta.
    [Show full text]