Investigating Taxonomic Diversity Within Asteroid Families Through ATLAS Dual-Band Photometry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Binzel, RP (2002). “Phase II of the Small Main-Belt Asteroid
267 Bus, S.J.; Binzel, R.P. (2002). “Phase II of the small main-belt PRELIMINARY SPIN-SHAPE MODEL asteroid spectroscopic survey: A feature-based taxonomy.” Icarus FOR 755 QUINTILLA 158, 146-177. Lorenzo Franco DSFTA (2020). Dipartimento di Scienze Fisiche, della Terra e Balzaretto Observatory (A81), Rome, ITALY dell'Ambiente – Astronomical Observatory. [email protected] https://www.dsfta.unisi.it/en/research/labs - eng/astronomicalobservatory Robert K. Buchheim Altimira Observatory (G76) Durech, J.; Hanus, J.; Ali-Lagoa, V. (2018). “Asteroid model 18 Altimira, Coto de Caza, CA 92679 reconstructed from the Lowell Photometric Database and WISE data.” Astron. Astrophys. 617, A57. Donald Pray Sugarloaf Mountain Observatory Harris, A.W.; Young,J.W.; Scaltriti,F.; Zappala, V.(1984). South Deerfield, MA USA “Lightcurves and phase relations of the asteroids 82 Alkmene and 444 Gyptis.” Icarus 57, 251-258. Michael Fauerbach Florida Gulf Coast University JPL (2020). Small-Body Database Browser. 10501 FGCU Blvd. http://ssd.jpl.nasa.gov/sbdb.cgi#top Ft. Myers, FL33965-6565 Masiero, J.R.; Mainzer, A.K.; Grav, T.; Bauer, J.M.; Cutri, R.M.; Fabio Mortari Dailey,J.; Eisenhardt,P.R.M.; McMillan, R.S.; Spahr,T.B.; Hypatia Observatory (L62), Rimini, ITALY Skrutskie, M.F.; Tholen, D.; Walker, R.G.; Wright, E.L.; DeBaun, E.; Elsbury, D.; Gautier, T. IV; Gomillion, S.; Wilkins, A. (2011 ). Giovanni Battista Casalnuovo, Benedetto Chinaglia “Main Belt Asteroidswith WISE/NEOWISE. I. Preliminary Filzi School Observatory (D12), Laives, ITALY Albedos and Diameters.” Astrophys. J. 741, A68. Giulio Scarfi Masiero, J.R.; Grav, T.; Mainzer, A.K.; Nugent, C.R.; Bauer, Iota Scorpii Observatory (K78), La Spezia, ITALY J.M.; Stevenson, R.; Sonnett, S. -
174 Minor Planet Bulletin 47 (2020) DETERMINING the ROTATIONAL
174 DETERMINING THE ROTATIONAL PERIODS AND LIGHTCURVES OF MAIN BELT ASTEROIDS Shandi Groezinger Kent Montgomery Texas A&M University-Commerce P.O. Box 3011 Commerce, TX 75429-3011 [email protected] (Received: 2020 Feb 21 Revised: 2020 March 20) Lightcurves and rotational periods are presented for six main-belt asteroids. The rotational periods determined are 970 Primula (2.777 ± 0.001 h), 1103 Sequoia (3.1125 ± 0.0004 h), 1160 Illyria (4.103 ± 0.002 h), 1188 Gothlandia (3.52 ± 0.05 h), 1831 Nicholson (3.215 ± 0.004 h) and (11230) 1999 JV57 (7.090 ± 0.003 h). The purpose of this research was to create lightcurves and determine the rotational periods of six asteroids: 970 Primula, 1103 Sequoia, 1160 Illyria, 1188 Gothlandia, 1831 Nicholson and (11230) 1999 JV57. Asteroids were selected for this study from a website that catalogues all known asteroids (CALL). For an asteroid to be chosen in this study, it has to meet the requirements of brightness, declination, and opposition date. For optimum signal to noise ratio (SNR), asteroids of apparent magnitude of 16 or lower were chosen. Asteroids with positive declinations were chosen due to using telescopes located in the northern hemisphere. The data for all the asteroids was typically taken within two weeks from their opposition dates. This would ensure a maximum number of images each night. Asteroid 970 Primula was discovered by Reinmuth, K. at Heidelberg in 1921. This asteroid has an orbital eccentricity of 0.2715 and a semi-major axis of 2.5599 AU (JPL). Asteroid 1103 Sequoia was discovered in 1928 by Baade, W. -
Asteroid Shape and Spin Statistics from Convex Models J
Asteroid shape and spin statistics from convex models J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen To cite this version: J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen. Asteroid shape and spin statistics from convex models. Icarus, Elsevier, 2008, 198 (1), pp.91. 10.1016/j.icarus.2008.07.014. hal-00499092 HAL Id: hal-00499092 https://hal.archives-ouvertes.fr/hal-00499092 Submitted on 9 Jul 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Asteroid shape and spin statistics from convex models J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen PII: S0019-1035(08)00283-2 DOI: 10.1016/j.icarus.2008.07.014 Reference: YICAR 8734 To appear in: Icarus Received date: 18 September 2007 Revised date: 3 July 2008 Accepted date: 7 July 2008 Please cite this article as: J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen, Asteroid shape and spin statistics from convex models, Icarus (2008), doi: 10.1016/j.icarus.2008.07.014 This is a PDF file of an unedited manuscript that has been accepted for publication. -
Journal of the Association of Lunar & Planetary Observers
ISSN-0039-2502 Journal of the Association of Lunar & Planetary Observers The Strolling Astronomer Volume 60, Number 1, Winter 2018 Now in Portable Document Format (PDF) for Macintosh and PC-compatible computers Online and in COLOR at http://www.alpo-astronomy.org Fireball Over Italy!! (see page 2 for details) The Strolling Astronomer Journal of the Inside the ALPO Association of Lunar & Point of View - My Vision for the ALPO ...................2 News of General Interest ..........................................3 Planetary Observers Our Cover: Fireball Over Italy ...............................3 Call for JALPO Papers ..........................................3 The Strolling Astronomer ALPO Interest Section Reports .................................3 ALPO Observing Section Reports ............................4 Volume 60, No.1, Winter 2018 Obituary: Richard Baum (1930 - 2017) ...................17 This issue published in December 2017 for distribution in both Membership Report ................................................20 portable document format (pdf) and hardcopy format. Papers & Presentations This publication is the official journal of the Association of Lunar & Planetary Observers (ALPO). ALPO Board Meeting Minutes, August 27, 2017, Athens, Georgia ...................................................25 The purpose of this journal is to share observation reports, opinions, A Report on Carrington Rotations 2191 through and other news from ALPO members with other members and the 2194 (2017 05 26.8542 to 2017 09 12.7285) ......34 professional -
The Minor Planet Bulletin
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 36, NUMBER 3, A.D. 2009 JULY-SEPTEMBER 77. PHOTOMETRIC MEASUREMENTS OF 343 OSTARA Our data can be obtained from http://www.uwec.edu/physics/ AND OTHER ASTEROIDS AT HOBBS OBSERVATORY asteroid/. Lyle Ford, George Stecher, Kayla Lorenzen, and Cole Cook Acknowledgements Department of Physics and Astronomy University of Wisconsin-Eau Claire We thank the Theodore Dunham Fund for Astrophysics, the Eau Claire, WI 54702-4004 National Science Foundation (award number 0519006), the [email protected] University of Wisconsin-Eau Claire Office of Research and Sponsored Programs, and the University of Wisconsin-Eau Claire (Received: 2009 Feb 11) Blugold Fellow and McNair programs for financial support. References We observed 343 Ostara on 2008 October 4 and obtained R and V standard magnitudes. The period was Binzel, R.P. (1987). “A Photoelectric Survey of 130 Asteroids”, found to be significantly greater than the previously Icarus 72, 135-208. reported value of 6.42 hours. Measurements of 2660 Wasserman and (17010) 1999 CQ72 made on 2008 Stecher, G.J., Ford, L.A., and Elbert, J.D. (1999). “Equipping a March 25 are also reported. 0.6 Meter Alt-Azimuth Telescope for Photometry”, IAPPP Comm, 76, 68-74. We made R band and V band photometric measurements of 343 Warner, B.D. (2006). A Practical Guide to Lightcurve Photometry Ostara on 2008 October 4 using the 0.6 m “Air Force” Telescope and Analysis. Springer, New York, NY. located at Hobbs Observatory (MPC code 750) near Fall Creek, Wisconsin. -
Ice& Stone 2020
Ice & Stone 2020 WEEK 51: DECEMBER 13-19 Presented by The Earthrise Institute # 51 Authored by Alan Hale COMET OF THE WEEK: The Great Comet of 1680 Perihelion: 1680 December 18.49, q = 0.006 AU The Great Comet of 1680 over Rotterdam in The Netherlands, during late December 1680 as painted by the Dutch artist Lieve Verschuier. This particular comet was undoubtedly one of the brightest comets of the 17th Century, but it is also one of the most important comets in history from a scientific perspective, and perhaps even from the perspective of overall human history. While there were certainly plenty of superstitions attached to the comet’s appearance, the scientific investigations made of it were among the beginnings of the era in European history we now call The Enlightenment, and indeed, in a sense the Great Comet of 1680 can perhaps be considered as one of the sparks of that era. The significance began with the comet’s discovery, which was made on the morning of November 14, 1680, by a German astronomer residing in Coburg, Gottfried Kirch – the first comet ever to be discovered by means of a telescope. It was already around 4th magnitude at that time, and located near the star Regulus in the constellation Leo; from that point it traveled eastward and brightened rapidly, being closest to Earth (0.42 AU) on November 30. By that time it was a conspicuous naked-eye object with a tail 20 to 30 degrees long, and it remained visible for another week before disappearing into morning twilight. -
The Minor Planet Bulletin 44 (2017) 142
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 44, NUMBER 2, A.D. 2017 APRIL-JUNE 87. 319 LEONA AND 341 CALIFORNIA – Lightcurves from all sessions are then composited with no TWO VERY SLOWLY ROTATING ASTEROIDS adjustment of instrumental magnitudes. A search should be made for possible tumbling behavior. This is revealed whenever Frederick Pilcher successive rotational cycles show significant variation, and Organ Mesa Observatory (G50) quantified with simultaneous 2 period software. In addition, it is 4438 Organ Mesa Loop useful to obtain a small number of all-night sessions for each Las Cruces, NM 88011 USA object near opposition to look for possible small amplitude short [email protected] period variations. Lorenzo Franco Observations to obtain the data used in this paper were made at the Balzaretto Observatory (A81) Organ Mesa Observatory with a 0.35-meter Meade LX200 GPS Rome, ITALY Schmidt-Cassegrain (SCT) and SBIG STL-1001E CCD. Exposures were 60 seconds, unguided, with a clear filter. All Petr Pravec measurements were calibrated from CMC15 r’ values to Cousins Astronomical Institute R magnitudes for solar colored field stars. Photometric Academy of Sciences of the Czech Republic measurement is with MPO Canopus software. To reduce the Fricova 1, CZ-25165 number of points on the lightcurves and make them easier to read, Ondrejov, CZECH REPUBLIC data points on all lightcurves constructed with MPO Canopus software have been binned in sets of 3 with a maximum time (Received: 2016 Dec 20) difference of 5 minutes between points in each bin. -
Downloaded Freely from the Google Play Portal (
1 2 Spiral Galaxy M51. Herrero, E. Image from Montsec Astronomical Observatory (OAdM) 3 4 5 CONTENTS The Institute 6 Board of trustees 8 Scientific advisory board 9 Board of Directors 9 Staff 10 Scientific Research 16 Scientific results 25 Publications SCI 31 Papers in which only one institute is participating 31 Papers published by two institutes in collaboration 39 Papers published by three institutes in collaboration 40 Publications non SCI 40 Papers in which only one institute is participating 40 Papers published by two institutes in collaboration 46 Books edited 47 Courses 47 Contribution to conferences and seminars 48 Contribution to conferences 48 Seminars 59 Internal seminars 59 External seminars 59 Theses 61 Finished Theses 61 PhD Theses 61 Master theses 62 On going theses 62 PhD Theses 62 Master theses 62 Visiting scientists 64 Technological development activities 65 Technical reports and documents 65 Technical reports and documents developed by only one institute 65 Technical reports and documents developed by three institutes in collaboration 69 Technological development activities 69 Finished activities 69 Ongoing activities 69 Projects managed by the IEEC 69 Finished projects 69 Ongoing projects 70 Other scientific activities 72 Space missions 73 Mission proposals 82 Ground instrument projects 89 Montsec Astronomical Observatoyy (OAdM) 95 European Projects 99 Workshops organized by the IEEC 103 Outreach activities 107 Objectives, indicators and achievement 114 6 IEEC ▪ THE INSTITUTE The Institute of Space Studies of Catalonia (IEEC) was founded in February of 1996 as an initiative of the Fundació Catalana per a la Recerca (FCR), in collaboration with the University of Barcelona (UB), the Autonomous University of Barcelona (UAB), the Polytechnic University of Catalonia (UPC) and the Spanish Research Council (CSIC) with the objective of creating a multi-disciplinary and multi-institutional institute devoted to space research and their applications. -
An Anisotropic Distribution of Spin Vectors in Asteroid Families
Astronomy & Astrophysics manuscript no. families c ESO 2018 August 25, 2018 An anisotropic distribution of spin vectors in asteroid families J. Hanuš1∗, M. Brož1, J. Durechˇ 1, B. D. Warner2, J. Brinsfield3, R. Durkee4, D. Higgins5,R.A.Koff6, J. Oey7, F. Pilcher8, R. Stephens9, L. P. Strabla10, Q. Ulisse10, and R. Girelli10 1 Astronomical Institute, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovickáchˇ 2, 18000 Prague, Czech Republic ∗e-mail: [email protected] 2 Palmer Divide Observatory, 17995 Bakers Farm Rd., Colorado Springs, CO 80908, USA 3 Via Capote Observatory, Thousand Oaks, CA 91320, USA 4 Shed of Science Observatory, 5213 Washburn Ave. S, Minneapolis, MN 55410, USA 5 Hunters Hill Observatory, 7 Mawalan Street, Ngunnawal ACT 2913, Australia 6 980 Antelope Drive West, Bennett, CO 80102, USA 7 Kingsgrove, NSW, Australia 8 4438 Organ Mesa Loop, Las Cruces, NM 88011, USA 9 Center for Solar System Studies, 9302 Pittsburgh Ave, Suite 105, Rancho Cucamonga, CA 91730, USA 10 Observatory of Bassano Bresciano, via San Michele 4, Bassano Bresciano (BS), Italy Received x-x-2013 / Accepted x-x-2013 ABSTRACT Context. Current amount of ∼500 asteroid models derived from the disk-integrated photometry by the lightcurve inversion method allows us to study not only the spin-vector properties of the whole population of MBAs, but also of several individual collisional families. Aims. We create a data set of 152 asteroids that were identified by the HCM method as members of ten collisional families, among them are 31 newly derived unique models and 24 new models with well-constrained pole-ecliptic latitudes of the spin axes. -
Asteroid Family Identification 613
Bendjoya and Zappalà: Asteroid Family Identification 613 Asteroid Family Identification Ph. Bendjoya University of Nice V. Zappalà Astronomical Observatory of Torino Asteroid families have long been known to exist, although only recently has the availability of new reliable statistical techniques made it possible to identify a number of very “robust” groupings. These results have laid the foundation for modern physical studies of families, thought to be the direct result of energetic collisional events. A short summary of the current state of affairs in the field of family identification is given, including a list of the most reliable families currently known. Some likely future developments are also discussed. 1. INTRODUCTION calibrate new identification methods. According to the origi- nal papers published in the literature, Brouwer (1951) used The term “asteroid families” is historically linked to the a fairly subjective criterion to subdivide the Flora family name of the Japanese researcher Kiyotsugu Hirayama, who delineated by Hirayama. Arnold (1969) assumed that the was the first to use the concept of orbital proper elements to asteroids are dispersed in the proper-element space in a identify groupings of asteroids characterized by nearly iden- Poisson distribution. Lindblad and Southworth (1971) cali- tical orbits (Hirayama, 1918, 1928, 1933). In interpreting brated their method in such a way as to find good agree- these results, Hirayama made the hypothesis that such a ment with Brouwer’s results. Carusi and Massaro (1978) proximity could not be due to chance and proposed a com- adjusted their method in order to again find the classical mon origin for the members of these groupings. -
Asteroid Regolith Weathering: a Large-Scale Observational Investigation
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2019 Asteroid Regolith Weathering: A Large-Scale Observational Investigation Eric Michael MacLennan University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation MacLennan, Eric Michael, "Asteroid Regolith Weathering: A Large-Scale Observational Investigation. " PhD diss., University of Tennessee, 2019. https://trace.tennessee.edu/utk_graddiss/5467 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Eric Michael MacLennan entitled "Asteroid Regolith Weathering: A Large-Scale Observational Investigation." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Geology. Joshua P. Emery, Major Professor We have read this dissertation and recommend its acceptance: Jeffrey E. Moersch, Harry Y. McSween Jr., Liem T. Tran Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Asteroid Regolith Weathering: A Large-Scale Observational Investigation A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Eric Michael MacLennan May 2019 © by Eric Michael MacLennan, 2019 All Rights Reserved. -
Clasificación Taxonómica De Asteroides
Clasificación Taxonómica de Asteroides Cercanos a la Tierra por Ana Victoria Ojeda Vera Tesis sometida como requisito parcial para obtener el grado de MAESTRO EN CIENCIAS EN CIENCIA Y TECNOLOGÍA DEL ESPACIO en el Instituto Nacional de Astrofísica, Óptica y Electrónica Agosto 2019 Tonantzintla, Puebla Bajo la supervisión de: Dr. José Ramón Valdés Parra Investigador Titular INAOE Dr. José Silviano Guichard Romero Investigador Titular INAOE c INAOE 2019 El autor otorga al INAOE el permiso de reproducir y distribuir copias parcial o totalmente de esta tesis. II Dedicatoria A mi familia, con gran cariño. A mis sobrinos Ian y Nahil, y a mi pequeña Lia. III Agradecimientos Gracias a mi familia por su apoyo incondicional. A mi mamá Tere, por enseñarme a ser perseverante y dedicada, y por sus miles de muestras de afecto. A mi hermana Fernanda, por darme el tiempo, consejos y cariño que necesitaba. A mi pareja Odi, por su amor y cariño estos tres años, por su apoyo, paciencia y muchas horas de ayuda en la maestría, pero sobre todo por darme el mejor regalo del mundo, nuestra pequeña Lia. Gracias a mis asesores Dr. José R. Valdés y Dr. José S. Guichard, promotores de esta tesis, por su paciencia, consejos y supervisión, y por enseñarme con sus clases divertidas y motivadoras todo lo que se refiere a este trabajo. A los miembros del comité, Dra. Raquel Díaz, Dr. Raúl Mújica y Dr. Sergio Camacho, por tomarse el tiempo de revisar y evaluar mi trabajo. Estoy muy agradecida con todos por sus críticas constructivas y sugerencias.