Fiscal Year 1973, and Are the EROS Program Also Supports the ERTS Data Proiected at Almost $1 Million for Fiscal Year 1974

Total Page:16

File Type:pdf, Size:1020Kb

Fiscal Year 1973, and Are the EROS Program Also Supports the ERTS Data Proiected at Almost $1 Million for Fiscal Year 1974 Aeronautics and Space Report of the President r973 Activities NOTE TO READERS: ALL PRINTED PAGES ARE INCLUDED, UNNUMBERED BLANK PAGES DURING SCANNING AND QUALITY CONTROL CHECK HAVE BEEN DELETED Aeronautics and Space Report of the President 1973 A c tivities National Aeronautics and Space Administration Washington, D.C. 20546 President’s Message of Transmittal To the Congress of the United States: the European Space Conference has agreed to con- struct a space laboratory-Spacelab-for use with the I am pleased to transmit this report on our Nation’s Shuttle. progress in aeronautics and space activities during Notable progress has also been made with the Soviet 1973. Union in preparing the Apollo-Soyuz Test Project This year has been particularly significant in that scheduled for 1975. We are continuing to cooperate many past efforts to apply the benefits of space tech- with other nations in space activities and sharing of nology and information to the solution of problems on scientific information. These efforts contribute to global Earth are now coming to fruition. Experimental data peace and prosperity. from the manned Skylab station and the unmanned While we stress the use of current technology to solve Earth Resources Technology Satellite are already being current problems, we are employing unmanned space- used operationally for resource discovery and manage- craft to stimulate further advances in technology and ment, environmental information, land use planning, to obtain knowledge that can aid us in solving future and other applications. problems. Pioneer 10 gave us our first closeup glimpse Communications satellites have become one of the of Jupiter and transmitted data which will enhance principal methods of international communication our knowledge of Jupiter, the solar system, and ulti- and are an important factor in meeting national de- mately our own planet. The spacecraft took almost two fense needs. They will also add another dimension to years to make the trip. It has traveled over 94,000 miles our domestic telecommunications systems when the per hour-faster than any other man-made object- first of four authorized domestic satellite systems is and will become the first man-made object to leave our launched in 1974. Similarly, weather satellites are now solar system and enter the distant reaches of space. our chief source of synoptic global and local weather Advances in military aircraft technology contribute data. Efforts are continuing to develop capabilities for to our ability to defend our Nation. In civil aeronautics, worldwide two-week weather forecasts by the begin- the principal research efforts have been aimed at re- ning of the next decade. The use of satellites for effi- ducing congestion and producing quieter, safer, more cient and safe routing of civilian and military ships and economical and efficient aircraft which will conserve airplanes is being studied. Demonstration programs are energy and have a minimum impact on our environ- now underway aimed at improving our health and ment. education delivery systems using space-age techniques. It is with considerable satisfaction that I submit this Skylab has given us new information on the energy report of our ongoing efforts in space and aeronautics, characteristics of our sun. This knowledge should help efforts which help not only our own country but other our understanding of thermo-nuclear processes and nations and peoples as well. We are now beginning to contribute to the future development of new energy harvest the benefits of our past hard work and invest- sources. Knowledge of these processes may also help ments, and we can anticipate new operational services us understand the sun’s effect on our planet. based on aerospace technology to be made available Skylab has proven that man can effectively work and for the public good in the years ahead on a routine live in space for extended periods of time. Experiments basis. in space manufacturing may also lead to new and im- proved materials for use on Earth. The WHITEHOUSE, Development of the reusable Space Shuttle Nineteen Hundred and Seventy-four. progressed during 1973. The Shuttle will reduce the costs of space activity by providing an efficient, eco- nomical means of launching, servicing and retrieving space payloads. Recognithg the Shuttle’s importance, iii Table of Contents Page Page I . U.S. Aeronautics and Space Activitiesin 1973 . 1 XI1 . United States Information Agency-Continued Introduction .... 1 Motion Pictures and Television .......... 83 1 88 4 89~~ 7 XI11 . National Science Foundatio ......... 91 9 Introduction ........... 91 9 91 10 92 14 93 20 93 28 94 39 94 40 94 42 42 emy of Engineering, National Research 43 Council ................................ 95.. 43 Introduction .......................... 95 Space Activities .............. 44 Space Science Board .... 95 Space Ground Support ................. 46 96 Aeronautical Activities ................. 46 96 Supporting Research and Development ... 48 96 Relationship With NASA ...... 50 97 53 Commission on Natural Resources ....... 97 53 Division of Earth Sciences .............. 97 53 Division of Chemistry and Chemical Nuclear Propulsion Program Termination . 54 ..................... 98 Isotopic Heat for Spacecraft Thermal Division of Engineering ................ 98 Functions .......................... 55 Division of Physical Sciences ... 98 VI . Department of State .............. 57 Office of Scientific Personnel ............ 99 Introduction .......................... 57 XV. The Smithsonian Institution ................ 101 Activities Within the United Nations .. 57 Introduction .... 101 International Cooperation .............. 58 Smithsonian Astr ...101 Satellite Services ...................... 59 National Museum of Natural History ..... 103 Support to Federal Agencies ............ 60 National Air and Space Museum ........ 103 VI1. Department of Transportation . 61 Center for Short-Lived Phenomena ...... 103 Introduction ............. 61 XVI . Office of Telecommunications Policy ......... 105 Air Traffic Control and Navigation ...... 61 Introduction .... .... 105 Use of Satellites in Air and Water TrafFic Aerosat .............................. 105 Control ............................ 64 Direct Broadcast Satellites .............. 105 Aviation Safety Research and DeveloD- ............. 105 ment .............................. 65 106 Environmental Programs ............... 66 Satellite Launch Insurance ...... 106 Energy .............................. 67 107 Aerospace Technology Utilization ....... 67 107 VI11. Arms Control and Disarmament Agency ...... 69 107 Specialized Satellite Services ............ 108 IX. Department of the Interior ................. 71 111 Introduction .......................... 71.. Introduction .......................... 111 ......... 71 Aeronautics .......................... 111 73 112 76 .............. 113 77 77 Remote Sensing and Space Activities ..... 77 Append ixes Other Activities ....................... 78 A.1 . U.S. Spacecraft Record .................... 115 XI . Department of Commerce ........... 79 A-2 . World Record of Space Launchings Successful Introduction .......................... 79 in Attaining Earth Orbit or Beyond ........ 115 Use of Satellites in Environmental Moni- A-3 . Successful U.S. Launches-1973 ............. 116 toring and Prediction ................ 79 B . US. Applications Satellites, 1958-73 ......... 122 Other Satellite and Space Applications ... 82 C. History of United States and Soviet Manned 82 Space Flights ........................... 126 83 D . U.S. Space Launch Vehicles ................ 128 84 E . Nuclear Power Systems for Space Application . 129 85 F-1 . Space Activities of the U.S. Government ...... 130 XI1. United States Informat 87 U.S. Space Budget-New Obligational Author- Introduction ..... 87 ity .................................... 130 Radio ............................... 87 F-2 . Space Activities Budget .................... 131 Press and Publications ... 87 Aeronautics Budget. ....................... 131 V Benefits From Space Space provides a unique vantage point, a unique base for operations and a unique environment. Each of these elements has been employed as a basis for Earth applications. Mineral and Energy Exploration For example, the unique capability provided by satellite imagery for detecting large scale geological features not readily detectable by any other known means, makes such imagery particularly applicable for mineral and energy exploration. Thus, in a Northern Alaska area where petroleum exploration was not cur- rently underway, this Earth Resources Survey Satellite imagery identified geological trends which may indi- cate substantially larger oil reserves than previously assumed. Space Processing The unique zero gravity environment of space is now being explored for the processing and pioneering of materials and products that we have thus far been unable to produce on Earth due to effects induced by gravity. The picture on the left is that of an Indium- Antimonide Crystal that was grown to near chemical perfection aboard Skylab 3. These first experiments show the way to process more complex and important materials in space. For example, manufacture on Earth of integrated circuits for computers and other elec- tronic devices has been hindered by the poor yield of acceptable quality electronic crystals. Structurally and chemically more perfect crystals could substantially widen their use. I United States Aeronautics and Space Activities in 1973 Introduction
Recommended publications
  • University of Iowa Instruments in Space
    University of Iowa Instruments in Space A-D13-089-5 Wind Van Allen Probes Cluster Mercury Earth Venus Mars Express HaloSat MMS Geotail Mars Voyager 2 Neptune Uranus Juno Pluto Jupiter Saturn Voyager 1 Spaceflight instruments designed and built at the University of Iowa in the Department of Physics & Astronomy (1958-2019) Explorer 1 1958 Feb. 1 OGO 4 1967 July 28 Juno * 2011 Aug. 5 Launch Date Launch Date Launch Date Spacecraft Spacecraft Spacecraft Explorer 3 (U1T9)58 Mar. 26 Injun 5 1(U9T68) Aug. 8 (UT) ExpEloxrpelro r1e r 4 1915985 8F eJbu.l y1 26 OEGxOpl o4rer 41 (IMP-5) 19697 Juunlye 2 281 Juno * 2011 Aug. 5 Explorer 2 (launch failure) 1958 Mar. 5 OGO 5 1968 Mar. 4 Van Allen Probe A * 2012 Aug. 30 ExpPloiorenre 3er 1 1915985 8M Oarc. t2. 611 InEjuxnp lo5rer 45 (SSS) 197618 NAouvg.. 186 Van Allen Probe B * 2012 Aug. 30 ExpPloiorenre 4er 2 1915985 8Ju Nlyo 2v.6 8 EUxpKlo 4r e(rA 4ri1el -(4IM) P-5) 197619 DJuenc.e 1 211 Magnetospheric Multiscale Mission / 1 * 2015 Mar. 12 ExpPloiorenre 5e r 3 (launch failure) 1915985 8A uDge.c 2. 46 EPxpiolonreeerr 4130 (IMP- 6) 19721 Maarr.. 313 HMEaRgCnIe CtousbpeShaetr i(cF oMxu-1ltDis scaatelell itMe)i ssion / 2 * 2021081 J5a nM. a1r2. 12 PionPeioenr e1er 4 1915985 9O cMt.a 1r.1 3 EExpxlpolorerer r4 457 ( S(IMSSP)-7) 19721 SNeopvt.. 1263 HMaalogSnaett oCsupbhee Sriact eMlluitlet i*scale Mission / 3 * 2021081 M5a My a2r1. 12 Pioneer 2 1958 Nov. 8 UK 4 (Ariel-4) 1971 Dec. 11 Magnetospheric Multiscale Mission / 4 * 2015 Mar.
    [Show full text]
  • Information Summaries
    TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical
    [Show full text]
  • Istanbul Technical University Institute of Science And
    İSTANBUL TECHNICAL UNIVERSITY « INSTITUTE OF SCIENCE AND TECHNOLOGY DESIGN STUDY OF A COMMUNICATION SUBSYSTEM AND GROUND STATION FOR ITU-pSAT II M.Sc. Thesis by Melih FİDANOĞLU Department : Institue of Science and Technology Programme : Defence Technologies JANUARY 2011 İSTANBUL TECHNICAL UNIVERSITY « INSTITUTE OF SCIENCE AND TECHNOLOGY DESIGN STUDY OF A COMMUNICATION SUBSYSTEM AND GROUND STATION FOR ITU-pSAT II M.Sc. Thesis by Melih FİDANOĞLU (514071013) Date of submission : 20 December 2010 Date of defence examination: 24 January 2011 Supervisor (Chairman) : Assoc. Prof. Dr. Gökhan İNALHAN (ITU) Members of the Examining Committee : Prof. Dr. İbrahim ÖZKOL (ITU) Prof. Dr. Metin Orhan KAYA (ITU) JANUARY 2011 İSTANBUL TEKNİK ÜNİVERSİTESİ « FEN BİLİMLERİ ENSTİTÜSÜ ITU-pSAT II İÇİN İLETİŞİM ALTSİSTEMİ VE YER İSTASYONU TASARIM ÇALIŞMASI YÜKSEK LİSANS TEZİ Melih FİDANOĞLU (514071013) Tezin Enstitüye Verildiği Tarih : 20 Aralık 2010 Tezin Savunulduğu Tarih : 24 Ocak 2011 Tez Danışmanı : Doç. Dr. Gökhan İnalhan (İTÜ) Diğer Jüri Üyeleri : Prof. Dr. İbrahim Özkol (İTÜ) Prof. Dr. Metin Orhan Kaya (İTÜ) OCAK 2011 FOREWORD First of all, I would like to thank my advisor, Gökhan İnalhan for the opportunity to work in the fantastic setup of Control and Avionics Laboratory and to work with the research team here. I would like to thank ITU-pSAT II project team including Emre Koyuncu, Melahat Cihan, Elgiz Başkaya and Soner Işıksal for being my project teammates. Also, my sincere thanks goes to Control and Avionics Lab's fellow labmates, including, but not limited to, Serdar Ateş, Oktay Arslan and Nazım Kemal Üre. A special thanks goes to TÜBİTAK. Without their contributions, this project would not be possible.
    [Show full text]
  • Maxar Technologies with Respect to Future Events, Financial Performance and Operational Capabilities
    Leading Innovation in the New Space Economy Howard L. Lance President and Chief Executive Officer Forward-Looking Statement This presentation contains forward-looking statements and information, which reflect the current view of Maxar Technologies with respect to future events, financial performance and operational capabilities. The forward-looking statements in this presentation include statements as to managements’ expectations with respect to: the benefits of the transaction and strategic and integration opportunities; the company’s plans, objectives, expectations and intentions; expectations for sales growth, synergies, earnings and performance; shareholder value; and other statements that are not historical facts. Although management of the Company believes that the expectations and assumptions on which such forward-looking statements are based are reasonable, undue reliance should not be placed on the forward-looking statements because the Company can give no assurance that they will prove to be correct. Any such forward-looking statements are subject to various risks and uncertainties which could cause actual results and experience to differ materially from the anticipated results or expectations expressed in this presentation. Additional information concerning these risk factors can be found in the Company’s filings with Canadian securities regulatory authorities, which are available online under the Company’s profile at www.sedar.com, the Company’s filings with the United States Securities and Exchange Commission, or on the Company’s website at www.maxar.com, and in DigitalGlobe’s filings with the SEC, including Item 1A of DigitalGlobe’s Annual Report on Form 10-K for the year ended December 31, 2016. The forward-looking statements contained in this presentation are expressly qualified in their entirety by the foregoing cautionary statements and are based upon data available as of the date of this release and speak only as of such date.
    [Show full text]
  • Photographs Written Historical and Descriptive
    CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY HAER FL-8-B BUILDING AE HAER FL-8-B (John F. Kennedy Space Center, Hanger AE) Cape Canaveral Brevard County Florida PHOTOGRAPHS WRITTEN HISTORICAL AND DESCRIPTIVE DATA HISTORIC AMERICAN ENGINEERING RECORD SOUTHEAST REGIONAL OFFICE National Park Service U.S. Department of the Interior 100 Alabama St. NW Atlanta, GA 30303 HISTORIC AMERICAN ENGINEERING RECORD CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY BUILDING AE (Hangar AE) HAER NO. FL-8-B Location: Hangar Road, Cape Canaveral Air Force Station (CCAFS), Industrial Area, Brevard County, Florida. USGS Cape Canaveral, Florida, Quadrangle. Universal Transverse Mercator Coordinates: E 540610 N 3151547, Zone 17, NAD 1983. Date of Construction: 1959 Present Owner: National Aeronautics and Space Administration (NASA) Present Use: Home to NASA’s Launch Services Program (LSP) and the Launch Vehicle Data Center (LVDC). The LVDC allows engineers to monitor telemetry data during unmanned rocket launches. Significance: Missile Assembly Building AE, commonly called Hangar AE, is nationally significant as the telemetry station for NASA KSC’s unmanned Expendable Launch Vehicle (ELV) program. Since 1961, the building has been the principal facility for monitoring telemetry communications data during ELV launches and until 1995 it processed scientifically significant ELV satellite payloads. Still in operation, Hangar AE is essential to the continuing mission and success of NASA’s unmanned rocket launch program at KSC. It is eligible for listing on the National Register of Historic Places (NRHP) under Criterion A in the area of Space Exploration as Kennedy Space Center’s (KSC) original Mission Control Center for its program of unmanned launch missions and under Criterion C as a contributing resource in the CCAFS Industrial Area Historic District.
    [Show full text]
  • Navy Space and Astronautics Orientation. INSTITUTION Bureau of Naval Personnel, Washington, D
    DOCUMENT RESUME ED 070 566 SE 013 889 AUTHOR Herron, R. G. TITLE Navy Space and Astronautics Orientation. INSTITUTION Bureau of Naval Personnel, Washington, D. C.; Naval Personnel Program Support Activity, Washington, D. C. REPORT NO NAVPERS- 10488 PUB DATE 67 NOTE 235p. '2 EDRS PRICE MF-$0.65 HC-$9.87 DESCRIPTORS Aerospace Education; AerospaceTechnology; *Instructional Materials; Military Science; *Military Training; Navigatioti; *Post Secondary Education; *Space Sciences; *Supplementary Textbooks; Textbooks ABSTRACT Fundamental concepts of the spatial environment, technologies, and applications are presented in this manual prepared for senior officers and key civilian employees. Following basic information on the atmosphere, solar system, and intergalactic space, a detailed review is included of astrodynamics, rocket propulsion, bioastronautics, auxiliary spacecraft survival systems, and atmospheric entry.Subsequentlythere is an analysis of naval space facilities, and satellite applications, especially those of naval interests, are discussed with a background of launch techniques, spatial data gathering, communications programs ,of)servation techniques, measurements by geodetic and navigation systems. Included is a description of space defense and future developments of both national and international space programs. Moreover, commercial systems are mentioned, such as the 85-pound Early Bird (Intelsat I) Intelsat II series, global Intelsat III series, and Soviet-made elMolnlyan satellites. The total of 29 men and one woman orbiting the earth In-1961-67 are tabulated in terms of their names, flight series, launching dates, orbit designations, or biting periods,. stand-up periods, and extra vehicular activity records. Besides numerous illustrations, a list ofsignificantspace launches and a glossary of special terms are included in the manual appendices along with two tables of frequencybanddesignation.
    [Show full text]
  • Reliability Considerations for Communication Satellites
    Copyright Warning & Restrictions The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be liable for copyright infringement, This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law. Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation Printing note: If you do not wish to print this page, then select “Pages from: first page # to: last page #” on the print dialog screen The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty. RELIABILITY CONSIDERATIONS FOR COMMUNICATION SATELLITES BY FRANK POLIZZI A THESIS PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MANAGEMENT ENGINEERING AT NEWARK COLLEGE OF ENGINEERING This thesis is to be used only with due regard to the rights of the author(s). Bibliographical references may be noted, but passages must not be copied without permission of the College and without credit being given in subsequent written or published work.
    [Show full text]
  • Go Los Angeles Explorer Pass - Los Angeles, CA for Up-To-Date Information on Available Attractions, Please Check Out: Gocity.Com/Los-Angeles/En-Us/EXP-Guide
    Leisure Pass Group - Go Los Angeles Explorer Pass - Los Angeles, CA For up-to-date information on available attractions, please check out: gocity.com/los-angeles/en-us/EXP-Guide Explore LA’s top attractions and get up to 60% off admission with the Go Los Angeles Explorer Pass. Choose 3, 4, 5 or 7 activities from a list of over 30 attractions and tours. Go behind the scenes at Warner Bros. Studios, hop on and off a Big Bus tour, take a selfie with your favorite celebrity at Madame Tussauds Hollywood, or ride thrilling roller coasters at Six Flags Magic Mountain. Browse the free guidebook to plan your itinerary as you go. Your pass is fully digital and valid for 30 days from first attraction visit. Free admission to ALL of these attractions! Big Bus LA 1-Day Classic Ticket Perry’s Beach Café and Rentals – Mountain Warner Bros. Studio Tour (R) Bike OR Roller Skates (All Day) Madame Tussauds Hollywood The Huntington Library, Art Collection & Aquarium of the Pacific* Botanical Gardens Night Star Tour K1 Speed Indoor Karting plus membership Hollywood Behind-the-Scenes Tour by Red Los Angeles Zoo Line Tours (R) California Science Center IMAX Movie Harbor Cruise in Long Beach iFly Hollywood (1 Flight Package) (R) TCL Chinese Theatre Tour or Movie and a Shanti Hot Yoga drink Big Bus Celebrity Lifestyle & Homes Tour The Hollywood Movie Experience by Red Line Bucca di Beppo – Farmer’s Market $15 dining Tours (R) credit Harbor Cruise in San Pedro Seaside – Santa Monica Pier $15 dining credit Hollywood Hills Hike by Bikes & Hikes LA Dave & Busters Play & Dine Package Natural History Museum of LA LA Galaxy Game Ticket La Brea Tar Pits and Museum Celebrity Bike Tour (Self-Guided) by Bikes & Whale Watch in Long Beach Hikes LA Whale Watch in San Pedro Food, Arts, Culture DTLA Walking Tour GRAMMY Museum (R) – Reservations required Battleship IOWA Museum – Express Entry *These attractions are AFCTP partners and may be a better value independent of the Smart Destination website.
    [Show full text]
  • Desind Finding
    NATIONAL AIR AND SPACE ARCHIVES Herbert Stephen Desind Collection Accession No. 1997-0014 NASM 9A00657 National Air and Space Museum Smithsonian Institution Washington, DC Brian D. Nicklas © Smithsonian Institution, 2003 NASM Archives Desind Collection 1997-0014 Herbert Stephen Desind Collection 109 Cubic Feet, 305 Boxes Biographical Note Herbert Stephen Desind was a Washington, DC area native born on January 15, 1945, raised in Silver Spring, Maryland and educated at the University of Maryland. He obtained his BA degree in Communications at Maryland in 1967, and began working in the local public schools as a science teacher. At the time of his death, in October 1992, he was a high school teacher and a freelance writer/lecturer on spaceflight. Desind also was an avid model rocketeer, specializing in using the Estes Cineroc, a model rocket with an 8mm movie camera mounted in the nose. To many members of the National Association of Rocketry (NAR), he was known as “Mr. Cineroc.” His extensive requests worldwide for information and photographs of rocketry programs even led to a visit from FBI agents who asked him about the nature of his activities. Mr. Desind used the collection to support his writings in NAR publications, and his building scale model rockets for NAR competitions. Desind also used the material in the classroom, and in promoting model rocket clubs to foster an interest in spaceflight among his students. Desind entered the NASA Teacher in Space program in 1985, but it is not clear how far along his submission rose in the selection process. He was not a semi-finalist, although he had a strong application.
    [Show full text]
  • An Analysis of Solar Energetic Particle Spectra Throughout the Inner Heliosphere
    An Analysis of Solar Energetic Particle Spectra Throughout the Inner Heliosphere J. Douglas Patterson 19th December 2002 Contents 1 Previous Studies and Results 1 1.1 Solar Structure and the Heliosphere . 1 1.2 Source of the Solar Wind and the Interplanetary Magnetic Field . 6 1.2.1 Solar Wind Outflow . 6 1.2.2 Interplanetary Magnetic Field (IMF) . 9 1.3 Global Chracteristics of the Inner Heliosphere . 10 1.3.1 The Solar Wind and Solar Magnetic Field . 10 1.3.2 Solar Energetic Particles . 10 1.3.3 Co-Rotating Interaction Regions . 12 1.3.4 Anomalous and Galactic Cosmic Rays . 12 1.4 Acceleration Processes . 13 1.4.1 DC Electric Field Acceleration . 13 1.4.2 Wave-Particle Interactions . 13 1.4.3 Shock Drift and Diffusive Acceleration . 17 2 Spacecraft Mission Descriptions 25 2.1 The Ulysses Mission . 25 2.1.1 Mission Goals and Objectives . 26 2.1.2 The Spacecraft . 26 2.1.3 Trajectory . 28 2.2 The Advanced Composition Explorer (ACE) Mission . 29 2.2.1 Mission Goals and Objectives . 29 2.2.2 The Spacecraft . 29 2.2.3 Trajectory . 31 2.3 The EPAM and the HISCALE Instruments . 31 2.3.1 The Hardware and Detector Types . 31 2.3.2 On-Board Data Processing and Data Format . 36 ii 2.3.3 Instrument-Specific Problems . 38 2.4 The IMP-8 Spacecraft and CPME Instrument . 40 2.4.1 Spacecraft and Trajectory . 42 2.4.2 Charged Particle Measurement Experiment . 42 3 Data Reduction and Analysis Procedures 46 3.1 Determination of the Background Rates for EPAM and HISCALE .
    [Show full text]
  • <> CRONOLOGIA DE LOS SATÉLITES ARTIFICIALES DE LA
    1 SATELITES ARTIFICIALES. Capítulo 5º Subcap. 10 <> CRONOLOGIA DE LOS SATÉLITES ARTIFICIALES DE LA TIERRA. Esta es una relación cronológica de todos los lanzamientos de satélites artificiales de nuestro planeta, con independencia de su éxito o fracaso, tanto en el disparo como en órbita. Significa pues que muchos de ellos no han alcanzado el espacio y fueron destruidos. Se señala en primer lugar (a la izquierda) su nombre, seguido de la fecha del lanzamiento, el país al que pertenece el satélite (que puede ser otro distinto al que lo lanza) y el tipo de satélite; este último aspecto podría no corresponderse en exactitud dado que algunos son de finalidad múltiple. En los lanzamientos múltiples, cada satélite figura separado (salvo en los casos de fracaso, en que no llegan a separarse) pero naturalmente en la misma fecha y juntos. NO ESTÁN incluidos los llevados en vuelos tripulados, si bien se citan en el programa de satélites correspondiente y en el capítulo de “Cronología general de lanzamientos”. .SATÉLITE Fecha País Tipo SPUTNIK F1 15.05.1957 URSS Experimental o tecnológico SPUTNIK F2 21.08.1957 URSS Experimental o tecnológico SPUTNIK 01 04.10.1957 URSS Experimental o tecnológico SPUTNIK 02 03.11.1957 URSS Científico VANGUARD-1A 06.12.1957 USA Experimental o tecnológico EXPLORER 01 31.01.1958 USA Científico VANGUARD-1B 05.02.1958 USA Experimental o tecnológico EXPLORER 02 05.03.1958 USA Científico VANGUARD-1 17.03.1958 USA Experimental o tecnológico EXPLORER 03 26.03.1958 USA Científico SPUTNIK D1 27.04.1958 URSS Geodésico VANGUARD-2A
    [Show full text]
  • Space Warfare and Defense by Chapman
    SPACE WARFARE AND DEFENSE www.abc-clio.com ABC-CLIO 1-800-368-6868 www.abc-clio.com ABC-CLIO 1-800-368-6868 SPACE WARFARE AND DEFENSE A Historical Encyclopedia and Research Guide BERT CHAPMAN Santa Barbara, California Denver, Colorado Oxford, England www.abc-clio.com ABC-CLIO 1-800-368-6868 Copyright 2008 by ABC-CLIO All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except for the inclusion of brief quotations in a review, without prior permission in writing from the publishers. Cataloging-in-Publication Data is on file with the Library of Congress 12 11 10 09 08 1 2 3 4 5 6 7 8 9 10 This book is also available on the World Wide Web as an ebook. Visit www.abc-clio.com for details. ABC-CLIO, Inc. 130 Cremona Drive, P.O. Box 1911 Santa Barbara, California 93116–1911 Production Editor: Alisha Martinez Production Manager: Don Schmidt Media Manager: Caroline Price Media Editor: Julie Dunbar File Management Coordinator: Paula Gerard This book is printed on acid-free paper. Manufactured in the United States of America www.abc-clio.com ABC-CLIO 1-800-368-6868 To Becky, who personifies Proverbs 31:10. www.abc-clio.com ABC-CLIO 1-800-368-6868 www.abc-clio.com ABC-CLIO 1-800-368-6868 C ONTENTS Acknowledgements ix Introduction xi Chronology xv PART 1 1 Development of U.S. Military Space Policy 3 2 U.S.
    [Show full text]