Phylogenetic Relationship of Venturia Carpophila, the Causal Agent of Almond Scab from Kashmir Valley As Inferred by ITS Nr DNA

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenetic Relationship of Venturia Carpophila, the Causal Agent of Almond Scab from Kashmir Valley As Inferred by ITS Nr DNA Int.J.Curr.Microbiol.App.Sci (2019) 8(6): 2913-2919 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 8 Number 06 (2019) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2019.806.350 Phylogenetic Relationship of Venturia carpophila, the Causal Agent of Almond Scab from Kashmir Valley as Inferred by ITS nr DNA M.S. Dar1*, Mushtaq Ahmad2, M.D. Shah3, Nazir A. Bhat4, M.Anwar Khan5, and Bilal A. Padder3 1Division of Plant Pathology, Faculty of Agriculture, Wadura Sopore, SKUAST-Kashmir 191121, India 2Directorate of Extension, SKUAST-Kashmir, Shalimar, Srinagar, 190025, India 3Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, SKUAST-Kashmir, Shalimar Srinagar 190025, India 4Mountain Field Crop Research Centre, Khudwani, Anantnag, 192001, India 5Division of Genetics and Plant Breeding, Faculty of Agriculture, Wadura Sopore, SKUAST-Kashmir 191121, India *Corresponding author ABSTRACT K e yw or ds The fungus Venturia carpophila causes scab in almond. In order to gain insight, an in vitro Almond scab, nr culture of the fungus has been established and its identity confirmed by its nr DNA. DNA, Internal Internal transcribed spacer-ribosomal DNA (ITS-rDNA); the fungal molecular marker was transcribed spacer, used for molecular analysis. The target region of rDNA (ITS1-5.8S-ITS2) of this species Phylogenetics, was amplified using universal fungal primers (ITS1 and ITS4). The sequencing of Venturia carpophila amplified products and their subsequent Basic Local Alignment Search Tool analysis Article Info confirmed the identification of species by comparing the sequence of the species with respective species sequences present in Gen Bank. Phylogenetic analysis also confirmed Accepted: 2 4 May 2019 the identification of fungi belongs to Venturiaceae family having 100% similarity to other Available Online: V. carpophila species. 10 June 2019 Introduction Pradesh with commercial cultivation confined to the state of Jammu and Kashmir, Almond scab caused by the fungus Venturia occupying an area of 5710 ha with an annual carpophila (Fisher) (Fisher, 1961) (anamorph, production of 13109 metric tonnes Fusicladium carpophillum) is the most (Anonymous, 2018). Almond scab is posing common fungal disease on almonds in serious problem to the orchardist of Kashmir Kashmir valley. In India almond is mainly valley from last few years, in which the grown in Jammu and Kashmir and Himachal severity of disease on leaves and twigs ranges 2913 Int.J.Curr.Microbiol.App.Sci (2019) 8(6): 2913-2919 from 24.30 and 26.50 percent respectively 2017) from Kashmir valley. However sexual (Kacho et al., 2017). Symptoms of scab state of V. carpophila has been reported in occurs on shoots, leaves and fruits, first on Australia on apricot trees in 1961 (Fisher, twigs in the first week of May and later on 1961), providing clues about pathogen has leaves in the second week of May and in capacity to undergo genetic recombination. severe cases on fruits. Lesions on twigs, are Based on dominant marker system like RAPD circular to oval with brown centres and and UP-PCR markers, genetic diversity and slightly raised purple margins, while leaves divergence within closely related species has have small, indistinct, somewhat circular, clearly show difference between V. effuse and greenish yellow blotches undersurface. The V. carpophila and also indicated difference lesions later enlarge same reaching 10 mm or between isolates of V. carpophila of peach more in diameter. With the production of and almond (Chen et al., 2014). However, the spores, they take an olivaceous appearance result of dominant markers is un reliable and eventually brownish black. On fruit, spots because of poor reproducibility, artefactual were dark grey to black sooty appearance and variation and limitations in understanding of coalesced into large dark blotches (Fig. 1). population genetics (Novelo et al., 2010). The disease affects fruits and also leads to Some molecular analysis has been used to premature leaf fall resulting in low understand the phylogenetic relationships productivity and poor fruit quality. between V. carpophila and other Venturia Management of almond scab is done with species, by (Schnabel et al., 1999), however dormant treatments of liquid lime sulfur or this is less useful for taxonomic interpretation with copper-agricultural oil mixtures to delay because of Cladosporium caryigenum was and reduce sporulation of twig lesions taken as out group, which is true anamorph of (Forster et al., 2009) and within season Venturiaceae. In Kashmir valley no treatments to prevent new infections. Before phylogenetic analysis has been carried out on the introduction of the quinone outside V. carpophila and preset study objective was inhibitor (Qol) fungicides azoxystrobin, to mine and characterize phylogenetic trifloxystrobin, and pyraclostrobin, multi-site relationships of V. carpophila using ITS mode of action fungicides such as captan, nrDNA with other species of Venturiaceae ziram, maneb, or wet table sulfur were family. applied during the petal fall period during leaf emergence and commonly prior to spring Materials and Methods rains to manage the disease. Additionally, the single-site mode-of-action methyl Sample collection and fungal isolation benzimidazole carbamate fungicides (e.g., benomyl and thiophanatemethyl) were also Samples were collected from leaves and fruits used. Resistance against these latter of almond in 2015 from Kashmir valley. They fungicides developed in the pathogen were first dried with absorbent paper in the populations in different regions (Ogawa and laboratory for isolation of the pathogen and English, 1991). A number of pathogens from stored at -4 °C for further processing. The Venturiaceae family has been reported on mono conidial isolations were carried out on prunus species causing scab like symptoms water agar in Petri plates as described by (Xu such as F. pomi, V. carpophila, F. obducens et al., 2008). A small fragment of an infected and F. cerasi (Schubert et al., 2003). In India, leaf disc was added to a little amount of the pathogen was first reported to be causal distilled water and agitated thoroughly to agent of almond scabin 2017 by (Kacho et al., release conidia. The conidial suspensions 2914 Int.J.Curr.Microbiol.App.Sci (2019) 8(6): 2913-2919 were diluted to 8 × 103 ml–1 conidia and 200 selected by Akaike information criterion μl of the suspension pipetted onto the water (AIC) (Posada and Buckley, 2004) in agar plates and spread evenly. These plates MrModel test 2.3. Bootstrap analysis with were incubated at 20±1ºC for 24 h. The 1000 replicates was used to test the statistical individual germinated spores were excised support of the branches. The nucleotide using a cork borer or scalpel blade under a sequences reported in this paper were compound microscope and transferred to Petri deposited in GenBank and accession number dishes containing MEA under aseptic was obtained as MK482360. conditions. The plates were incubated and maintained at20±1oC. At least 40 isolates Results and Discussion from different plant species were collected and maintained for further studies. During the survey of Kashmir valley, scab like disease on almond which was previously DNA extraction, PCR, sequencing reported by (Kacho et al., 2017) as C. carpophillum on the morphological basis was Total genomic DNA of fungal isolates was collected. Since the pathogen is reported as extracted using modified CTAB anamorph on almond. However, its sexual (Cetyltrimethyl ammonium bromide) method stage has been reported on apricot by Fisher (Murray and Thompson, 1980). The ITS in 1961 from Australia. This pathogen is nrDNA internal transcribed spacer (ITS) with difficult to culture because of slow growth primers ITS-1 and ITS-4 was amplified and rate on culture media which can be masked by sequenced with primers (White et al., 1990). other pathogens. The mycelial colony on Comparisons to other nrDNA sequences were MEA was dark green turning black after 30- conducted with BLAST2.2.24 queries 35 days of incubation in pure culture (Fig. 2). (National Center for Biotechnology Number of isolates was cultured and one Information, National Institute of Health, isolate were sequenced to find its Bethesda, Maryland). Representative phylogenetic relationship with other closely sequence was deposited in GenBank. related species. Sequence alignment and phylogenetic Molecular characterization of V. carpophila analysis To elucidate the relationships between our Sequence generated were analysed with other isolates and other related Venturia species, we sequences obtained from GenBank (Table 1). carried out an analysis of ITS sequences in A BLAST query was performed to find which new sequence data of V. carpophila possible sister groups of the sequenced tax on, was used for present analysis together with and closely related sister groups are included other additional sequences obtained from in the phylogenetic analysis (Table 1). A GenBank at NCBI. The accession number of multiple alignment was conducted in MEGA present isolate is MK482360. The GenBank v. 6.02 (Tamura et al., 2013) and analyses sequences with highest identity to ITS1-5.8 were performed. Prior to phylogenetic rDNA-ITS2 from V. carpophila were analysis, ambiguous sequences at the start and identified using BLASTN analysis as shown the end were deleted and gaps manually in (Table 1). The sequence of V. carpophila adjusted to optimize alignment. ITS rDNA shows 91.22-100% identity with other dataset was analysed in this study. Best-fit Venturia species including V. carpophila. The model of nucleotide evolution (T92+G) was phylogenetic tree was generated from the 2915 Int.J.Curr.Microbiol.App.Sci (2019) 8(6): 2913-2919 ITS-5.8 rDNA-ITS2 of V. carpophila isolate in the family of Venturiaceae, provides with other species of Venturiaceae, using supporting data of the taxonomic position of neighbor-joining method of the MEGA v. almond scab fungus (Fig. 3). The observed 6.02 (Tamura et al., 2013). The V. carpophila distances between V. carpophila and other isolate clustered with another V.
Recommended publications
  • Estrategias De Manejo De La Roña Cladosporium Cladosporioides (FRESEN) G.A
    Estrategias de Manejo de la Roña Cladosporium cladosporioides (FRESEN) G.A. de VRIES de la Gulupa Passiflora edulis f. edulis Sims. Carlos Fernando Castillo Londoño Universidad Nacional de Colombia Facultad de Ciencias Agropecuarias Maestría en Ciencias Agrarias Palmira, 2014 Estrategias de Manejo de la Roña Cladosporium cladosporioides (FRESEN) G.A. de VRIES de la Gulupa Passiflora edulis f. edulis Sims. Carlos Fernando Castillo Londoño Trabajo de investigación presentado como requisito parcial para optar al título de: Magister en Ciencias Agrarias con énfasis en Fitopatología Director: Ph.D. Carlos German Muñoz Perea Codirector: Ph.D. Elizabeth Álvarez Codirector: Ph.D. Kriss Wichechkus Universidad Nacional de Colombia Facultad de Ciencias Agropecuarias Maestría en Ciencias Agrarias Palmira. 2014 A Dios por darme la inmensa voluntad y capacidad de entrega para la hacer las cosas con amor y dedicación. A mi madre Carmen y a Geovanny por su gran confianza, apoyo, consejos y su constante exigencia para formar la persona que soy. AGRADECIMIENTOS A la Universidad Nacional de Colombia sede Palmira por las oportunidades y facilidades brindadas en el transcurso de mi carrera profesional. A la Universidad Jorge Tadeo Lozano y al Centro Internacional de Agricultura Tropical (CIAT) por brindarme la oportunidad de trabajar en el proyecto. A mi director Carlos German Muñoz, y codirectores Elizabeth Álvarez y Kriss Wichechkus, por sus valiosos aportes y orientación en esta investigación. A la Dra. Martha Cárdenas directora del Centro de Transformación Genética (Riverside), por su valiosa colaboración en la revisión del documento. A mis profesores, a quienes les debo gran parte de mis conocimientos, gracias por prepararnos para un futuro competitivo no solo como los mejores profesionales sino también como mejores personas.
    [Show full text]
  • Caracterização De Fungos Cercospóroides Associados À Vegetação De Mata Atlântica E Cercanias, No Estado Do Rio De Janeiro
    UFRRJ INSTITUTO DE CIÊNCIAS BIOLÓGICAS E DA SAÚDE PROGRAMA DE PÓS-GRADUAÇÃO EM FITOSSANIDADE E BIOTECNOLOGIA APLICADA DISSERTAÇÃO Caracterização de Fungos Cercospóroides Associados à Vegetação de Mata Atlântica e Cercanias, no Estado do Rio de Janeiro Kerly Martínez Andrade 2016 UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO INSTITUTO DE CIÊNCIAS BIOLÓGICAS E DA SAÚDE PROGRAMA DE PÓS-GRADUAÇÃO EM FITOSSANIDADE E BIOTECNOLOGIA APLICADA CARACTERIZAÇÃO DE FUNGOS CERCOSPORÓIDES ASSOCIADOS À VEGETAÇÃO DE MATA ATLÂNTICA E CERCANIAS NO ESTADO DO RIO DE JANEIRO KERLY MARTÍNEZ ANDRADE Sob a Orientação do Professor Dr. Carlos Antonio Inácio Dissertação submetida como requisito parcial para obtenção do grau de Mestre em Ciências, no Programa de Pós-Graduação em Fitossanidade e Biotecnologia Aplicada, Área de Concentração em Fitossanidade. Seropédica, RJ Agosto, 2016 i UFRRJ / Biblioteca Central / Divisão de Processamentos Técnicos 579.5 A553c Andrade, Kerly Martínez, 1989- T Caracterização de fungos cercosporóides associados à vegetação de Mata Atlântica e cercanias no Estado do Rio de Janeiro / Kerly Martínez Andrade. – 2016. 136 f.ail. Orientador: Carlos Antonio Inácio. Dissertação (mestrado) – Universidade Federal Rural do Rio de Janeiro, Curso de Pós-Graduação em Fitossanidade e Biotecnologia Aplicada, 2016. Bibliografia: f. 114-121. 1. Fungos - Teses. 2. Fungos - Morfologia - Teses. 3. Cercospora - Teses. 4. Fungos fitopatogênicos – Mata Atlântica – Teses. 5. Plantas – Parasito – Mata Atlântica – Teses. I. Inácio, Carlos Antonio, 1966- II. Universidade Federal Rural do Rio de Janeiro. Curso de Pós-Graduação em Fitossanidade e Biotecnologia Aplicada. III. Título. ii UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO INSTITUTO DE CIÊNCIAS BIOLÓGICAS E DA SAÚDE PROGRAMA DE PÓS-GRADUAÇÃO EM FITOSSANIDADE E BIOTECNOLOGIA APLICADA KERLY MARTÍNEZ ANDRADE Dissertação submetida como requisito parcial para obtenção do grau de Mestre em Ciências, no Programa de Pós-Graduação em Fitosanidade e Biotecnologia Aplicada, Área de Concentração em Fitossanidade.
    [Show full text]
  • Research Collection
    Research Collection Doctoral Thesis Studies on Venturiaceae on Rosaceous plants Author(s): Menon, Radha Publication Date: 1956 Permanent Link: https://doi.org/10.3929/ethz-a-000092066 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Diss ETH Prom. Nr. 2585 B Studies on Venturiaceae on Rosaceous Plants THESIS PRESENTED TO THE SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH FOR THE DEGREE OF DOCTOR OF NATURAL SCIENCES BY RADHA MENON at CITIZEN OF Ser\ INDIA Accepted on the recommendation of Prof. Dr. E. Gaumann and Prof. Dr. A. Frey-Wyssling 19 5 6 Druck von A. W. Hayn's Erben, Berlin SO 36 Veroffentlicht in „Phytopathologische Zcitschrift" Band 27, Heft 2, Seite 117 bis 146 (1956) Verlag Paul Parey, Berlin und Hamburg From the Department of special Botany of the Swiss Federal Institute of Technology in Zurich Director: Prof. Dr. E. Gdumann Studies on Venturiaceae on Rosaceous Plants By Radha Menon With 10 Figures Contents: I. General Introduction. A. Venturiaceae. B. Venturiaceae on Rosaceae: 1) Venturia, 2) Coleroa, 3) Gibbera, 4) Xenomeris, 5) Apiosporina. — II. Experimental Part. A. Cultural Studies. B. Inoculation Experiments: 1) Introduction, 2) Inoculation Studies, 3) Results, 4) Conclusions. — III. Morphological and Cultural Studies. A. Genus Venturia: 1) Venturia inaequalis, 2) Venturia tomentosae, 3) Venturia pirina, 4) Venturia pruni-cerasi, 5) Venturia Mullcri, 6) Venturia potentillae, 7) Venturia palustris, 8) Venturia alchemillae. — Appendix: Fusicladium eriobotryae. — B. Genus Coleroa: Coleroa chac- tomium. — C. Genus Gibbera: Gibbera rosae.
    [Show full text]
  • The Genus Fusicladium (Hyphomycetes) in Poland
    ACTA MYCOLOGICA Dedicated to Professor Alina Skirgiełło Vol. 41 (2): 285-298 on the occasion of her ninety-fifth birthday 2006 The genus Fusicladium (Hyphomycetes) in Poland MAŁGORZATA RUSZKIEWICZ-MICHALSKA and EWA POŁEĆ 1 Department of Algology and Mycology, University of Łódź, Banacha 12/16, PL-90-237 Łódź [email protected]; [email protected] Ruszkiewicz-Michalska M., Połeć E.: The genus Fusicladium (Hyphomycetes) in Poland. Acta Mycol. 41 (2): 285-298, 2006. The paper presents new and historical data on the genus Fusicladium verified on the base of the recently published critical monograph. Fifteen species recorded in Poland under the name Fusicladium and synonymous Pollaccia and Spilocaea are reported; 5 are documented by authors’ materials from Central Poland while the other taxa are supported with literature data only, including three species belonging currently to Fusicladiella and Passalora. Three species, reported here for the first time in Poland: Fusicladium convolvularum Ondřej, F. scribnerianum (Cavara) M. B. Ellis and F. virgaureae Ondřej, are known from a few localities in the world. All the species are provided with the distribution maps and the newly reported ones are illustrated with ink drawings. Key words: parasitic fungi, anamorphic fungi, Deuteromycotina, distribution, Poland INTRODUCTION Worldwide 57 fungal taxa belong to the anamorphic genus Fusicladium Bonord. em. Schubert, Ritschel et U. Braun. They are phytopathologically relevant patho- gens, causing leaf spots, necroses, scab diseases as well as leaf and fruit deformations of members of at least 52 angiospermous plant genera (Schubert, Ritschel, Braun 2003). The fungi are host specific, mostly confined to a single host genus or allied host genera in a single family, e.g.
    [Show full text]
  • <I>Tothia Fuscella</I>
    ISSN (print) 0093-4666 © 2011. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON http://dx.doi.org/10.5248/118.203 Volume 118, pp. 203–211 October–December 2011 Epitypification, morphology, and phylogeny of Tothia fuscella Haixia Wu1, Walter M. Jaklitsch2, Hermann Voglmayr2 & Kevin D. Hyde1, 3, 4* 1 International Fungal Research and Development Centre, Key Laboratory of Resource Insect Cultivation & Utilization, State Forestry Administration, The Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, 650224, PR China 2 Department of Systematic and Evolutionary Botany, Faculty Centre of Biodiversity, University of Vienna, Rennweg 14, A-1030 Wien, Austria 3 School of Science, Mae Fah Luang University, Tasud, Muang, Chiang Rai 57100, Thailand 4 Botany and Microbiology Department, College of Science, King Saud University, Riyadh, 11442, Saudi Arabia *Correspondence to: [email protected] Abstract — The holotype of Tothia fuscella has been re-examined and is re-described and illustrated. An identical fresh specimen from Austria is used to designate an epitype with herbarium material and a living culture. Sequence analyses show T. fuscella to be most closely related to Venturiaceae and not Microthyriaceae, to which it was previously referred. Key words — Dothideomycetes, molecular phylogeny, taxonomy Introduction We have been re-describing and illustrating the generic types of Dothideomycetes (Zhang et al. 2008, 2009, Wu et al. 2010, 2011, Li et al. 2011) and have tried where possible to obtain fresh specimens for epitypification and use molecular analyses to provide a natural classification. Our previous studies of genera in the Microthyriaceae, a poorly known family within the Dothideomycetes, have resulted in several advances (Wu et al.
    [Show full text]
  • Fungal Cannons: Explosive Spore Discharge in the Ascomycota Frances Trail
    MINIREVIEW Fungal cannons: explosive spore discharge in the Ascomycota Frances Trail Department of Plant Biology and Department of Plant Pathology, Michigan State University, East Lansing, MI, USA Correspondence: Frances Trail, Department Abstract Downloaded from https://academic.oup.com/femsle/article/276/1/12/593867 by guest on 24 September 2021 of Plant Biology, Michigan State University, East Lansing, MI 48824, USA. Tel.: 11 517 The ascomycetous fungi produce prodigious amounts of spores through both 432 2939; fax: 11 517 353 1926; asexual and sexual reproduction. Their sexual spores (ascospores) develop within e-mail: [email protected] tubular sacs called asci that act as small water cannons and expel the spores into the air. Dispersal of spores by forcible discharge is important for dissemination of Received 15 June 2007; revised 28 July 2007; many fungal plant diseases and for the dispersal of many saprophytic fungi. The accepted 30 July 2007. mechanism has long been thought to be driven by turgor pressure within the First published online 3 September 2007. extending ascus; however, relatively little genetic and physiological work has been carried out on the mechanism. Recent studies have measured the pressures within DOI:10.1111/j.1574-6968.2007.00900.x the ascus and quantified the components of the ascus epiplasmic fluid that contribute to the osmotic potential. Few species have been examined in detail, Editor: Richard Staples but the results indicate diversity in ascus function that reflects ascus size, fruiting Keywords body type, and the niche of the particular species. ascus; ascospore; turgor pressure; perithecium; apothecium. 2 and 3). Each subphylum contains members that forcibly Introduction discharge their spores.
    [Show full text]
  • European Patent Office EP2157183 A1
    (19) & (11) EP 2 157 183 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 24.02.2010 Bulletin 2010/08 C12N 15/82 (2006.01) C12N 15/55 (2006.01) C12N 9/50 (2006.01) C12N 5/04 (2006.01) (2006.01) (2006.01) (21) Application number: 09177897.7 A01H 5/00 A01H 5/10 (22) Date of filing: 27.08.2001 (84) Designated Contracting States: • Sarria-Millan, Rodrigo AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU Cary, NC 27519 (US) MC NL PT SE TR • Chen, Ruoying Apex, NC 27502 (US) (30) Priority: 25.08.2000 US 227794 P • Allen, Damian Champaign, IL 61822 (US) (62) Document number(s) of the earlier application(s) in • Härtel, Heiko A. accordance with Art. 76 EPC: 13088, Berlin (DE) 01968216.0 / 1 349 946 (74) Representative: Krieger, Stephan Gerhard (71) Applicant: BASF Plant Science GmbH BASF SE 67056 Ludwigshafen (DE) GVX/B - C 6 Carl-Bosch-Strasse 38 (72) Inventors: 67056 Ludwigshafen (DE) • Da Costa e Silva, Oswaldo Apex, NC 27502 (US) Remarks: • Henkes, Stefan This application was filed on 03-12-2009 as a 14482, Potsdam (DE) divisional application to the application mentioned • Mittendorf, Volker under INID code 62. Hillsborough, NC 27278 (US) (54) Plant polynucleotides encoding prenyl proteases (57) The present invention provides novel polynucle- novel polynucleotides encoding plant promoters, otides encoding plant prenyl protease polypeptides, frag- polypeptides, fragments and homologs thereof. The in- ments and homologs thereof. Also provided arc vectors, vention further relates to methods of applying these novel host cells, antibodies, and recombinant methods for pro- plant polypeptides to the identification, prevention, ducing said polypeptides.
    [Show full text]
  • EU-Spain Cherry RA.Docx
    Importation of Cherry [Prunus avium United States (L.) L.] from Continental Spain into Department of Agriculture the Continental United States Animal and Plant Health Inspection Service A Qualitative, Pathway-Initiated Pest March 12, 2015 Risk Assessment Version 3 Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology Plant Protection and Quarantine Animal and Plant Health Inspection Service United States Department of Agriculture 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Pest Risk Assessment for Cherries from Continental Spain Executive Summary The Animal and Plant Health Inspection Service (APHIS) of the United States Department of Agriculture (USDA) prepared this risk assessment document to examine plant pest risks associated with importing commercially produced fresh fruit of cherry [Prunus avium (L.) L. (Rosaceae)] for consumption from continental Spain into the continental United States. Based on the scientific literature, port-of-entry pest interception data, and information from the government of Spain, we developed a list of all potential pests with actionable regulatory status for the continental United States that are known to occur in continental Spain and that are known to be associated with the commodity plant species anywhere in the world. From this list, we identified and further analyzed 9 organisms that have a reasonable likelihood of being associated with the commodity following harvesting from the field and prior to any post-harvest processing. Of the pests
    [Show full text]
  • An Annotated Check-List of Ascomycota Reported from Soil and Other Terricolous Substrates in Egypt A
    Journal of Basic & Applied Mycology 2 (2011): 1-27 1 © 2010 by The Society of Basic & Applied Mycology (EGYPT) An annotated check-list of Ascomycota reported from soil and other terricolous substrates in Egypt A. F. Moustafa* & A. M. Abdel – Azeem Department of Botany, Faculty of Science, University of Suez *Corresponding author: e-mail: Canal, Ismailia 41522, Egypt [email protected] Received 26/6/2010, Accepted 6/4 /2011 ____________________________________________________________________________________________________ Abstract: By screening of available sources of information, it was possible to figure out a range of 310 taxa that could be representing Egyptian Ascomycota up to the present time. In this treatment, concern was given to ascomycetous fungi of almost all terricolous substrates while phytopathogenic and aquatic forms are not included. According to the scheme proposed by Kirk et al. (2008), reported taxa in Egypt belonged to 88 genera in 31 families, and 11 orders. In view of this scheme, very few numbers of taxa remained without certain taxonomic position (incertae sedis). It is also worthy to be mentioned that among species included in the list, twenty-eight are introduced to the ascosporic mycobiota as novel taxa based on type materials collected from Egyptian habitats. The list includes also 19 species which are considered new records to the general mycobiota of Egypt. When species richness and substrate preference, as important ecological parameters, are considered, it has been noticed that Egyptian Ascomycota shows some interesting features noteworthy to be mentioned. At the substrate level, clay soils, came first by hosting a range of 108 taxa followed by desert soils (60 taxa).
    [Show full text]
  • Apple Scab (Venturia Inaequalis) and Pests in Organic Orchards
    Apple Scab (Venturia inaequalis) and Pests in Organic Orchards Boel Sandskär Department of Crop Science, Alnarp Doctoral Thesis Swedish University of Agricultural Sciences Alnarp 2003 2 Abstract Sandskär, B. Apple Scab (Venturia inaequalis) and Pests in Organic Orchards Doctoral Dissertation ISSN 1401-6249, ISBN 91-576-6416-1 Domestication of apples goes back several thousand years in time and archaeological findings of dried apples from Östergötland in Sweden have been dated to ca 2 500 B.C. Worldwide, apples are considered an attractive and healthy fruit to eat. Organic production of apples is increasing abroad but is still at very low levels in Sweden. This study deals with major disease and pest problems in organic growing of apples. It concentrates on the most severe disease, the apple scab (Venturia inaequalis). Resistance to apple scab was evaluated during three years in over 450 old and new apple cultivars at Alnarp and Balsgård in southern Sweden. There were significant differences between the cultivars and years. About ten per cent of the cultivars had a high level of resistance against apple scab. The correlation between foliar and fruit scab was stronger when the scab infection pressure was high (1998-1999), compared to when it was low (2000). Polygenic resistance is a desirable trait since such resistance is more difficult to overcome by the pathogen. A common denominator for polygenic resistance among the cultivars assessed was 'Worcester Pearmain'. The leaf infection of apple scab was compared at three locations: Alnarp, Kivik and Rånna (Skövde) in an observation trial for 22 new apple cultivars. The ranking of the cultivars was similar at the three locations.
    [Show full text]
  • 1 Check-List of Cladosporium Names Frank M. DUGAN, Konstanze
    Check-list of Cladosporium names Frank M. DUGAN , Konstanze SCHUBERT & Uwe BRAUN Abstract: DUGAN , F.M., SCHUBERT , K. & BRAUN ; U. (2004): Check-list of Cladosporium names. Schlechtendalia 11 : 1–119. Names of species and subspecific taxa referred to the hyphomycetous genus Cladosporium are listed. Citations for original descriptions, types, synonyms, teleomorphs (if known), references of important redescriptions in literature, illustrations as well as notes are given. This list contains data of 772 taxa, i.e., valid, invalid and illegitime species, varieties and formae as well as herbarium names. Zusammenfassung: DUGAN , F.M., SCHUBERT , K. & BRAUN ; U. (2004): Checkliste der Cladosporium -Namen. Schlechtendalia 11 : 1–119. Namen von Arten und subspezifischen Taxa der Hyphomycetengattung Cladosporium werden aufgelistet. Bibliographische Angaben zur Erstbeschreibung, Typusangaben, Synonyme, die Teleomorphe (falls bekannt), wichtige Literaturhinweise und Abbildungen sowie Anmerkungen werden angegeben. Die vorliegende Liste enthält Namen von 772 Taxa, d. h. gültige, ungültige und illegitime Arten, Varietäten, Formen und auch Herbarnamen. Introduction: Cladosporium Link (LINK 1816) is one of the largest genera of hyphomycetes, comprising more than 772 names, but also one of the most heterogeneous ones, which is not very surprising since all early circumscriptions and delimitations from similar genera were rather vague and imprecise (FRIES 1832, 1849; SACCARDO 1886; LINDAU 1907, etc.). All kinds of superficially similar cladosporioid fungi, i.e., amero- to phragmosporous dematiaceous hyphomycetes with conidia formed in acropetal chains, were assigned to Cladosporium s. lat., ranging from saprobes to plant pathogens as well as human-pathogenic taxa. DE VRIES (1952) and ELLIS (1971, 1976) maintained broad concepts of Cladosporium . ARX (1983), MORGAN - JONES & JACOBSEN (1988), MCKEMY & MORGAN -JONES (1990), MORGAN -JONES & MCKEMY (1990) and DAVID (1997) discussed the heterogeneity of Cladosporium and contributed towards a more natural circumscription of this genus.
    [Show full text]
  • Fungal Planet Description Sheets: 400–468
    Persoonia 36, 2016: 316– 458 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158516X692185 Fungal Planet description sheets: 400–468 P.W. Crous1,2, M.J. Wingfield3, D.M. Richardson4, J.J. Le Roux4, D. Strasberg5, J. Edwards6, F. Roets7, V. Hubka8, P.W.J. Taylor9, M. Heykoop10, M.P. Martín11, G. Moreno10, D.A. Sutton12, N.P. Wiederhold12, C.W. Barnes13, J.R. Carlavilla10, J. Gené14, A. Giraldo1,2, V. Guarnaccia1, J. Guarro14, M. Hernández-Restrepo1,2, M. Kolařík15, J.L. Manjón10, I.G. Pascoe6, E.S. Popov16, M. Sandoval-Denis14, J.H.C. Woudenberg1, K. Acharya17, A.V. Alexandrova18, P. Alvarado19, R.N. Barbosa20, I.G. Baseia21, R.A. Blanchette22, T. Boekhout3, T.I. Burgess23, J.F. Cano-Lira14, A. Čmoková8, R.A. Dimitrov24, M.Yu. Dyakov18, M. Dueñas11, A.K. Dutta17, F. Esteve- Raventós10, A.G. Fedosova16, J. Fournier25, P. Gamboa26, D.E. Gouliamova27, T. Grebenc28, M. Groenewald1, B. Hanse29, G.E.St.J. Hardy23, B.W. Held22, Ž. Jurjević30, T. Kaewgrajang31, K.P.D. Latha32, L. Lombard1, J.J. Luangsa-ard33, P. Lysková34, N. Mallátová35, P. Manimohan32, A.N. Miller36, M. Mirabolfathy37, O.V. Morozova16, M. Obodai38, N.T. Oliveira20, M.E. Ordóñez39, E.C. Otto22, S. Paloi17, S.W. Peterson40, C. Phosri41, J. Roux3, W.A. Salazar 39, A. Sánchez10, G.A. Sarria42, H.-D. Shin43, B.D.B. Silva21, G.A. Silva20, M.Th. Smith1, C.M. Souza-Motta44, A.M. Stchigel14, M.M. Stoilova-Disheva27, M.A. Sulzbacher 45, M.T. Telleria11, C. Toapanta46, J.M. Traba47, N.
    [Show full text]