Beaches and Bluffs of Puget Sound and the Northern Straits

Total Page:16

File Type:pdf, Size:1020Kb

Beaches and Bluffs of Puget Sound and the Northern Straits Technical Report 2007-04 Beaches and Bluffs of Puget Sound Prepared in support of the Puget Sound Nearshore Partnership Jim Johannessen and Andrea MacLennan, Coastal Geologic Services, Inc. Valued Ecosystem Components Report Series he Puget Sound Nearshore Partner- Brennan, J.S. 2007. Marine Riparian Vegetation Communi- Tship (PSNP) has developed a list of ties of Puget Sound. Puget Sound Nearshore Partnership valued ecosystem components (VECs). Report No. 2007-02. Published by Seattle District, U.S. The list of VECs is meant to represent a Army Corps of Engineers, Seattle, Washington. cross-section of organisms and physical Buchanan, J.B. 2006. Nearshore Birds in Puget Sound. Puget structures that occupy and interact with Sound Nearshore Partnership Report No. 2006-05. Pub- the physical processes found in the near- lished by Seattle District, U.S. Army Corps of Engineers, shore. The VECs will help PSNP frame Seattle, Washington. the symptoms of declining Puget Sound nearshore ecosystem integrity, explain Dethier, M.N. 2006. Native Shellfish in Nearshore Ecosys- how ecosystem processes are linked to ecosystem outputs, tems of Puget Sound. Puget Sound Nearshore Partnership and describe the potential benefits of proposed actions in Report No. 2006-04. Published by Seattle District, U.S. terms that make sense to the broader community. A series Army Corps of Engineers, Seattle, Washington. of “white papers” was developed that describes each of the Eissinger, A.M. 2007. Great Blue Herons in Puget Sound. VECs. Following is the list of published papers in the series. Puget Sound Nearshore Partnership Report No. 2007-06. All papers are available at www.pugetsoundnearshore.org. Published by Seattle District, U.S. Army Corps of Engineers, Seattle, Washington. Fresh, K.L. 2006. Juvenile Pacific Salmon in Puget Sound. Puget Sound Nearshore Partnership Report No. 2006-06. Published by Seattle District, U.S. Army Corps of Engineers, Seattle, Washington. Johannessen, J. and A. MacLennan. 2007. Beaches and Bluffs of Puget Sound. Puget Sound Nearshore Partner- ship Report No. 2007-04. Published by Seattle District, U.S. Army Corps of Engineers, Seattle, Washington. Kriete, B. 2007. Orcas in Puget Sound. Puget Sound Near- shore Partnership Report No. 2007-01. Published by Seattle District, U.S. Army Corps of Engineers, Seattle, Washington. Leschine, T.M. and A.W. Petersen. 2007. Valuing Puget Sound’s Valued Ecosystem Components. Puget Sound Nearshore Partnership Report No. 2007-07. Published by Seattle District, U.S. Army Corps of Engineers, Seattle, Washington. Mumford, T.F. 2007. Kelp and Eelgrass in Puget Sound. Puget Sound Nearshore Partnership Report No. 2007-05. Published by Seattle District, U.S. Army Corps of Engineers, Seattle, Washington. Penttila, D. 2007. Marine Forage Fishes in Puget Sound. Puget Sound Nearshore Partnership Report No. 2007-03. Published by Seattle District, U.S. Army Corps of Engineers, Seattle, Washington. Front and back covers: Whidbey Island (courtesy of Washington Sea Grant) ii Beaches and Bluffs of Puget Sound Contents Acknowledgments .................................................................................................................................... iv Executive Summary .................................................................................................................................... v Preface ........................................................................................................................................................ 1 Puget Sound Beaches ................................................................................................................................ 2 Puget Sound Bluffs .................................................................................................................................... 8 Shore Modifications ................................................................................................................................13 Sea Level Rise and Global Climate Change ...........................................................................................17 Coastal Restoration .................................................................................................................................19 References ................................................................................................................................................23 ii Beaches and Bluffs of Puget Sound Technical Report 2007-04 Puget Sound Nearshore Partnership iii Acknowledgments rafts of this paper were improved by comments from The Puget Sound Nearshore Partnership Steering Commit- DMaurice Schwartz, Western Washington University; tee initiated the concept of this paper and the others in this Hugh Shipman, Washington Department of Ecology; Guy series. The Nearshore Partnership Project Management Gelfenbaum, U.S. Geological Service; Jan Newton, Univer- Team (PMT) – Tim Smith, Bernie Hargrave, Curtis Tanner sity of Washington (UW); and Megan Dethier, UW-Friday and Fred Goetz – oversaw production of the papers. The Harbor Laboratory. Some data summaries were prepared by Nearshore Science Team (NST) played a number of roles: Bill Schenken. Thanks to Megan Dethier for coordination. they helped develop conceptual models for each valued In memory of Matt Chase of Coastal Geologic Services Inc. ecosystem component (VEC), in collaboration with the au- thors; individual members were reviewers for selected pa- pers; and members were also authors, including Megan De- Recommended bibliographical citation: thier, Tom Mumford, Tom Leschine and Kurt Fresh. Other Johannessen, J. and A. MacLennan. 2007. Beaches and NST members involved were Si Simenstad, Hugh Shipman, Bluffs of Puget Sound. Puget Sound Nearshore Partner- Doug Myers, Miles Logsdon, Randy Shuman, Curtis Tanner ship Report No. 2007-04. Published by Seattle District, U.S. and Fred Goetz. Army Corps of Engineers, Seattle, Washington. The Nearshore Partnership organization is especially Available at www.pugetsoundnearshore.org. grateful for the work done by series science editor Megan Dethier, who acted as facilitator and coach for the authors and liaison with the NST and PMT. We also thank the U.S. Army Corps of Engineers Public Affairs Staff — Patricia Grasser, Dick Devlin, Nola Leyde, Casondra Brewster and Kayla Overton — who, with Kendra Nettleton, assisted with publication of all the papers in the series. Finally, the Nearshore Partnership would like to thank the Washington Sea Grant Communications Office — Marcus Duke, David Gordon, Robyn Ricks and Dan Williams — for providing the crucial editing, design and production ser- vices that made final publication of these papers possible. This report was supported by the Puget Sound Nearshore Ecosystem Restoration Project through the U.S. Army Corps of Engineers and Washington Department of Fish and Wildlife. For further information or printed copies of this report, contact Curtis Tanner, Local Project Manager, Puget Sound Nearshore Ecosystem Restoration Project, Washington Department of Fish and Wildlife, 600 Capital Way North, Olympia, Washington 98501-1091. [email protected]. To download PDF files of this and other reports in the series, visit our Web site at www.pugetsoundnearshore.org. iv Beaches and Bluffs of Puget Sound Executive Summary he shores of the Puget Sound region provide valuable associated changes in beach and habitat stability. recreational and economic benefits for the burgeoning T Cumulatively, more than 805 miles, or 34 percent, of the population. Beaches and bluffs of the Puget Sound region Puget Sound and Northern Straits shore has been modified provide critical nearshore habitat functions and values for (WDNR 2001). Bulkheads and other shore-parallel struc- the region’s fish and wildlife. Coastal bluffs are the primary tures along coastal bluffs impound potential beach sedi- source of beach sediment along the Puget Sound shore, and ment, commonly bury upper beach spawning habitat and their natural erosion is essential for maintaining beaches fundamentally alter the beach and backshore, resulting in a and associated nearshore habitats. Critical habitats depen- decrease in the amount of drift sediment available for main- dent on functioning coastal systems include coastal forests, tenance of down-drift beaches. Burial of the backshore re- spawning beaches for forage fish (such as surf smelt), eel- sults in reduced beach width (Griggs 2005) and loss of habi- grass beds, and salt marshes, all of which shape the health of tat area. The remaining upper beach typically suffers from salmon populations. changed hydraulic conditions. Although research has been Puget Sound and the Northern Straits encompass the cen- very limited locally, bulkheads are thought to cause some tral feature in the Puget Lowland, consisting of a complex degree of localized beach erosion (MacDonald et al. 1994). series of deep, generally north-south-trending basins. Puget As a result of these changes, beaches become more coarse- Sound was created by the repeated advance and retreat of grained and gravel-dominant, which does not provide the glacial ice sheets, the most recent of which advanced be- same quality of habitat as a finer grained beach (Thom et al. tween 15,000 and 13,000 years ago (Booth 1994). The area’s 1994, MacDonald et al. 1994). Cross-shore structures, such glacial legacy has resulted in abundant steep bluffs (some- as groins and jetties, also impact coastal processes by im- times referred to as sea cliffs,
Recommended publications
  • South Puget Sound Community College Year Three Mid-Cycle Evaluation
    South Puget Sound Community College Year Three Mid-Cycle Evaluation Dr. Timothy Stokes President September, 2014 Table of Contents Report on Year One Recommendation ......................................................................................................... 1 Mission .......................................................................................................................................................... 1 Part I .............................................................................................................................................................. 1 Mission Fulfillment .................................................................................................................................... 1 Operational Planning ................................................................................................................................ 2 Core Themes, Objectives and Indicators .................................................................................................. 3 Part II ............................................................................................................................................................. 4 Rationale for Indicators of Achievement .................................................................................................. 5 Increase Student Retention (Objective 1.A) ......................................................................................... 5 Support Student Completion (Objective 1.B) ......................................................................................
    [Show full text]
  • Coastal and Marine Ecological Classification Standard (2012)
    FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard Marine and Coastal Spatial Data Subcommittee Federal Geographic Data Committee June, 2012 Federal Geographic Data Committee FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard, June 2012 ______________________________________________________________________________________ CONTENTS PAGE 1. Introduction ..................................................................................................................... 1 1.1 Objectives ................................................................................................................ 1 1.2 Need ......................................................................................................................... 2 1.3 Scope ........................................................................................................................ 2 1.4 Application ............................................................................................................... 3 1.5 Relationship to Previous FGDC Standards .............................................................. 4 1.6 Development Procedures ......................................................................................... 5 1.7 Guiding Principles ................................................................................................... 7 1.7.1 Build a Scientifically Sound Ecological Classification .................................... 7 1.7.2 Meet the Needs of a Wide Range of Users ......................................................
    [Show full text]
  • Island County Whatcom County Skagit County Snohomish County
    F ir C re ek Lake Samish k Governors Point e re C k es e n e Lawrence Point O r Ba r y Reed Lake C s t e n Fragrance Lake r a i C n Whiskey Rock r n e F a m e r W h a t c o m r W k i Eliza Island d B a y Cain Lake C r e B e Squires Lake t y k k n e North Pea u y pod o n t C u e Doe Bay C o Carter Poin a t r e Doe Bay C r r e C e k r e v South Peapod l Doe Island i S Sinclair Island Urban Towhead Island Vendovi Island Rosario Strait ek Cre Deer Point ll ha Eagle Cliff ite Pelican Beach h W k e Colony Creek e Samish Bay r Obstruction Pass ler C But D Blanchard r y P C a r H r e Clark Point a k s r e r e o William Point i k s k e n Tide Point o e r n e r C C C s r e e Cyp Jack Island d e ress Island l Cypress Lake i k Colony W C ree k Fish Point Blakely Island Samish Island Indian Village Cypress Head Scotts Point Strawberry Island Deepwater Bay n Slough Strawberry Island Guemes Island Padilla Bay Edison SloEudgihso Edison Swede C r Cypress Island e ek Blakely Island Guemes Island Black Rock Cypress Island Reef Point Guemes Island Armitage Island Huckleber ry SIsaladnddlebag Island Dot Island Southeast Point reek Guemes s C a Kellys Point m o h T Fauntleroy Point Hat Island W ish Ri i ll Sam ver ard Creek Cap Sante Decatur Hea Jamdes Island k Shannon Point Anacortes Cree Cannery Lake rd ya ck ri Sunset Beach B Green P oint Jo White Cliff e Le ar y Belle Rock Slo Fidalgo Head Crandall Spit ugh Anaco Beach Weaverling Spit Bay View March Point Burrows Island Fidalgo Young Island Alexander Beach Heart Lake Allan Island Whitmarsh Junction Rosario
    [Show full text]
  • Anacortes Museum Research Files
    Last Revision: 10/02/2019 1 Anacortes Museum Research Files Key to Research Categories Category . Codes* Agriculture Ag Animals (See Fn Fauna) Arts, Crafts, Music (Monuments, Murals, Paintings, ACM Needlework, etc.) Artifacts/Archeology (Historic Things) Ar Boats (See Transportation - Boats TB) Boat Building (See Business/Industry-Boat Building BIB) Buildings: Historic (Businesses, Institutions, Properties, etc.) BH Buildings: Historic Homes BHH Buildings: Post 1950 (Recommend adding to BHH) BPH Buildings: 1950-Present BP Buildings: Structures (Bridges, Highways, etc.) BS Buildings, Structures: Skagit Valley BSV Businesses Industry (Fidalgo and Guemes Island Area) Anacortes area, general BI Boat building/repair BIB Canneries/codfish curing, seafood processors BIC Fishing industry, fishing BIF Logging industry BIL Mills BIM Businesses Industry (Skagit Valley) BIS Calendars Cl Census/Population/Demographics Cn Communication Cm Documents (Records, notes, files, forms, papers, lists) Dc Education Ed Engines En Entertainment (See: Ev Events, SR Sports, Recreation) Environment Env Events Ev Exhibits (Events, Displays: Anacortes Museum) Ex Fauna Fn Amphibians FnA Birds FnB Crustaceans FnC Echinoderms FnE Fish (Scaled) FnF Insects, Arachnids, Worms FnI Mammals FnM Mollusks FnMlk Various FnV Flora Fl INTERIM VERSION - PENDING COMPLETION OF PN, PS, AND PFG SUBJECT FILE REVIEW Last Revision: 10/02/2019 2 Category . Codes* Genealogy Gn Geology/Paleontology Glg Government/Public services Gv Health Hl Home Making Hm Legal (Decisions/Laws/Lawsuits) Lgl
    [Show full text]
  • Tacoma‐Pierce County Board of Health
    Tacoma‐Pierce County Board of Health Regular Meeting Agenda 3629 South D Street, Tacoma, WA 98418 January 20, 2021 Board of Health Clerk, (253) 798‐2899 3 ‐ 5 p.m. Board Members Remote Attendance Only Keith Blocker Dial in: 253 215 8782 Marty Campbell Meeting ID: 992 6138 9468 Bruce Dammeier William Hirota, MD Passcode: 575390 Patricia Johnson Dave Morell Catherine Ushka I. CALL TO ORDER Derek Young II. ROLL CALL III. ELECTION OF BOARD OF HEALTH (BOH) OFFICERS Motion for 2021 BOH Chair Motion for 2021 BOH Vice Chair IV. COMMENTS BY THE PUBLIC The Board will consider written and oral public comments. Submit written comments any time prior to when a Board of Health meeting adjourns at [email protected]. Written comments we receive prior to noon on the date of a Board of Health meeting will go to Board members before the meeting. For the duration of the declared public health emergency, make oral comments when you join the meeting by phone with the number, meeting ID, and passcode at the top of the agenda. Press *9 to raise your hand and signal you wish to make a comment. You will be announced by your name or the last four digits of your phone number. Comments unrelated to specific agenda items have a two‐minute limit per person. The Chair has the authority to change the time limits as deemed necessary. All written and oral comments will become part of the meeting record. V. COVID‐19: Update [Anthony L‐T Chen, Director of Health] [Nigel Turner, Incident Commander] [Kayla Scrivner, Public Health Nurse] VI.
    [Show full text]
  • Aerial Rapid Assessment of Hurricane Damages to Northern Gulf Coastal Habitats
    8786 ReportScience Title and the Storms: the USGS Response to the Hurricanes of 2005 Chapter Five: Landscape5 Changes The hurricanes of 2005 greatly changed the landscape of the Gulf Coast. The following articles document the initial damage assessment from coastal Alabama to Texas; the change of 217 mi2 of coastal Louisiana to water after Katrina and Rita; estuarine damage to barrier islands of the central Gulf Coast, especially Dauphin Island, Ala., and the Chandeleur Islands, La.; erosion of beaches of western Louisiana after Rita; and the damages and loss of floodplain forest of the Pearl River Basin. Aerial Rapid Assessment of Hurricane Damages to Northern Gulf Coastal Habitats By Thomas C. Michot, Christopher J. Wells, and Paul C. Chadwick Hurricane Katrina made landfall in southeast Louisiana on August 29, 2005, and Hurricane Rita made landfall in southwest Louisiana on September 24, 2005. Scientists from the U.S. Geological Survey (USGS) flew aerial surveys to assess damages to natural resources and to lands owned and managed by the U.S. Department of the Interior and other agencies. Flights were made on eight dates from August Introduction 27 through October 4, including one pre-Katrina, three post-Katrina, The USGS National Wetlands and four post-Rita surveys. The Research Center (NWRC) has a geographic area surveyed history of conducting aerial rapid- extended from Galveston, response surveys to assess Tex., to Gulf Shores, hurricane damages along the Ala., and from the Gulf coastal areas of the Gulf of of Mexico shoreline Mexico and Caribbean inland 5–75 mi Sea. Posthurricane (8–121 km).
    [Show full text]
  • Marine Shoreline Protection Assessment for Skagit County
    Marine Shoreline Protection Assessment for Skagit County Shoreline property on Samish Island with Skagit Land Trust Conservation Easement. SLT files. Prepared for and with funding from: Skagit County Marine Resources Committee Prepared by: Kari Odden, Skagit Land Trust This project has been funded wholly or in part by the United States Environmental Protection Agency. The contents of this document do not necessarily reflect the views and policies of the Environmental Protection Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. Table of Contents Tables, Figures and Maps…………………………………………………………………………………..3 Introduction and Background…………………………………………………………………………….4 Methods…………………………………………………………………………………………………………….5 Results……………………………………………………………………………………………………………….8 Discussion…………………………………………………………………………………………………………24 Tidelands Analysis…………………………………………………………………………………………….25 Data limitations………………………………………………………………………………………………..31 References…………………………………………………………………………………………………….…32 Appendix A: Protection Assessment Data Index……………………………………………..………..33 Appendix B: Priority Reach Metrics…………………………………………………………..……………..38 Marine Shoreline Protection Assessment for Skagit Co Page 2 Tables Table 1: Samish Bay Management Unit Priority Reaches………………………………………..……...13 Table 2: Padilla Bay Management Unit Priority Reaches……………………………………………..….15 Table 3: Swinomish Management Unit Priority Reaches……………………………………………..….17 Table 4: Islands Management Unit Priority Reaches…………………………………………………….…19
    [Show full text]
  • Geology of Blaine-Birch Bay Area Whatcom County, WA Wings Over
    Geology of Blaine-Birch Bay Area Blaine Middle Whatcom County, WA School / PAC l, ul G ant, G rmor Wings Over Water 2020 C o n Nest s ero Birch Bay Field Trip Eagles! H March 21, 2020 Eagle "Trees" Beach Erosion Dakota Creek Eagle Nest , ics l at w G rr rfo la cial E te Ab a u ant W Eagle Nest n d California Heron Rookery Creek Wave Cut Terraces Kingfisher G Nests Roger's Slough, Log Jam Birch Bay Eagle Nest G Beach Erosion Sea Links Ponds Periglacial G Field Trip Stops G Features Birch Bay Route Birch Bay Berm Ice Thickness, 2,200 M G Surficial Geology Alluvium Beach deposits Owl Nest Glacial outwash, Fraser-age in Barn k Glaciomarine drift, Fraser-age e e Marine glacial outwash, Fraser-age r Heron Center ll C re Peat deposits G Ter Artificial fill Terrell Marsh Water T G err Trailhead ell M a r k sh Terrell Cr ee 0 0.25 0.5 1 1.5 2 ± Miles 2200 M Blaine Middle Glacial outwash, School / PAC Geology of Blaine-Birch Bay Area marine, Everson ll, G Gu Glaciomarine Interstade Whatcom County, WA morant, C or t s drift, Everson ron Nes Wings Over Water 2020 Semiahmoo He Interstade Resort G Blaine Semiahmoo Field Trip March 21, 2020 Eagle "Trees" Semiahmoo Park G Glaciomarine drift, Everson Beach Erosion Interstade Dakota Creek Eagle Nest Glac ial Abun E da rra s, Blaine nt ti c l W ow Eagle Nest a terf California Creek Heron Glacial outwash, Rookery Glaciomarine drift, G Field Trip Stops marine, Everson Everson Interstade Semiahmoo Route Interstade Ice Thickness, 2,200 M Kingfisher Surficial GNeeoslotsgy Wave Cut Alluvium Glacial Terraces Beach deposits outwash, Roger's Glacial outwash, Fraser-age Slough, SuGmlaacsio mSataridnee drift, Fraser-age Log Jam Marine glacial outwash, Fraser-age Peat deposits Beach Eagle Nest Artificial fill deposits Water Beach Erosion 0 0.25 0.5 1 1.5 2 Miles ± Chronology of Puget Sound Glacial Events Sources: Vashon Glaciation Animation; Ralph Haugerud; Milepost Thirty-One, Washington State Dept.
    [Show full text]
  • Development of a Hydrodynamic Model of Puget Sound and Northwest Straits
    PNNL-17161 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Development of a Hydrodynamic Model of Puget Sound and Northwest Straits Z Yang TP Khangaonkar December 2007 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830 Printed in the United States of America Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: [email protected] Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161 ph: (800) 553-6847 fax: (703) 605-6900 email: [email protected] online ordering: http://www.ntis.gov/ordering.htm This document was printed on recycled paper.
    [Show full text]
  • Ground-Water Flooding in Glacial Terrain of Southern Puget Sound
    science fora changing world Ground-Water Flooding in Glacial Terrain of Southern Puget Sound, Washington glacial lakes, and diverting drainage landforms and, in some places, eroded southward to the Chehalis River and then away sediments deposited during the west to the Pacific Ocean to create exten­ glacial advance. Coarse sediment, known sive outwash plains6' 7' 10. At its maximum as the Steiiacoom Gravel, was also extent, the glacier stretched from the deposited on the upland by water flowing Cascade Range to the Olympic Mountains through the intersecting channels and and extended south as far as Tenino, braided streams that further conveyed the Wash., in Thurston County, occupying all water away from the proglacial lake.2- 13 of the lowland area and lower mountain This gravel deposit is consistently coarse valleys. The glacier reached altitudes up over the central Pierce County upland to 4,000 feet along the mountain front10; area. Stones in the Steiiacoom Gravel are 6,000 feet near the present day United predominantly 1 inch in size and most do States-Canada border; 3,000 feet near not exceed 3 inches. 13 The thickness of Seattle; 2,200 feet near Tacoma; and less the gravel is generally 20 feet or less with than 1.000 feet near Olympia. 1' 4- 10 a maximum that rarely exceeds 60 feet. The resulting landscape is characterized T^\ ue to a global warming trend, the by many shallow, elongated depressions Figure 1. Proglacial Lake Puyattup and J ^Vashon Glacier began retreating and ice-contact depressions (kettles). The successive Lake Spillways (modified from its terminus about 17.000 years ago.7 larger and deeper depressions are occu­ from Thorson, 1979).
    [Show full text]
  • Skagit SMP Public Comments Includes All Comments from Public Comment Period (April 22 – June 22, 2021) Including the May 11, 2021 Public Hearing
    Skagit SMP Public Comments Includes all comments from Public Comment Period (April 22 – June 22, 2021) including the May 11, 2021 Public Hearing Index of All Textual Comments (#1-87) Comment Submitted Name Organization 21 05/14/2021 Rick Anderson Number On 22 5/19/2021 Dale Malmberg 1 04/22/2021 Julia Gates 23 05/22/2021 GARY HAGLAND Citizens Alliance for Property 2 04/25/2021 Albert Lindstrom Rights, Skagit Chapter 3 04/25/2021 Ronald Haworth 24 05/31/2021 Donna Mason 4 04/25/2021 Lisa Lewis 25 05/31/2021 Joe Geivett Emerald Bay Equity 5 04/26/2021 John Stewart 26 6/11/2021 DENNIS KATTE Lake Cavanaugh Improvement 6 04/27/2021 Glen Johnson Association 27 6/13/2021 Larita Humble Lake Cavanaugh Improvement 7 04/28/21 Peter H. Grimlund Association 8 04/28/2021 David Lynch 28 6/16/2021 Kyle Loring Evergreen Islands, Washington 9 04/29/2021 Tammy Force 29 6/16/2021 Kyle Loring Environmental Council, RE Sources, and Guemes Island 05/02/2021 William Daniel 10 30 6/16/2021 Kyle Loring Planning Advisory Committee 11 05/04/2021 Mark Johnson 31 6/16/2021 Kyle Loring 12 05/04/2021 George Sidhu 32 6/16/2021 Kyle Loring 13 05/06/2021 john martin 33 6/16/2021 Kyle Loring 14 05/07/2021 DENNIS KATTE Lake Cavanaugh Improvement 34 6/16/2021 Kyle Loring Association 35 6/16/2021 Kyle Loring 15 05/08/2021 Rich Wagner 36 6/16/2021 Kyle Loring 16 05/10/2021 DENNIS KATTE Lake Cavanaugh Improvement Association 37 6/16/2021 Kyle Loring 17 05/10/2021 Sandy Wolff 38 6/16/2021 Kyle Loring 18 05/13/2021 Rein Attemann Washington Environmental 39 6/16/2021 Kyle Loring
    [Show full text]
  • Bookletchart™ Anacortes to Skagit Bay NOAA Chart 18427
    BookletChart™ Anacortes to Skagit Bay NOAA Chart 18427 A reduced-scale NOAA nautical chart for small boaters When possible, use the full-size NOAA chart for navigation. Included Area Published by the it at all stages of the tide. The pass is also used by log tows from the N bound to Everett or Seattle, which prefer this route to avoid the rough National Oceanic and Atmospheric Administration weather W of Whidbey Island. National Ocean Service Currents in the narrows of Deception Pass attain velocities in excess of Office of Coast Survey 8 knots at times and cause strong eddies along the shores. With W weather, heavy swells and tide rips form and make passage dangerous www.NauticalCharts.NOAA.gov to all small craft. (See the Tidal Current Tables for daily predictions.) 888-990-NOAA Canoe Pass, N of Pass Island, is not recommended except for small craft with local knowledge. What are Nautical Charts? Deception Island, 1 mile W of Pass Island, is 0.4 mile NW of West Point, the NW end of Whidbey Island. A shoal which bares at low water Nautical charts are a fundamental tool of marine navigation. They show extends 175 yards (160 meters) S of Deception Island. Foul ground water depths, obstructions, buoys, other aids to navigation, and much extends 262 yards (240 meters) NW of West Point. The passage more. The information is shown in a way that promotes safe and between these two hazards is 200 yards (183 meters) wide with a least efficient navigation. Chart carriage is mandatory on the commercial depth of 2.5 fathoms and great care should be taken when navigating in ships that carry America’s commerce.
    [Show full text]