Geology of Blaine-Birch Bay Area Whatcom County, WA Wings Over

Total Page:16

File Type:pdf, Size:1020Kb

Geology of Blaine-Birch Bay Area Whatcom County, WA Wings Over Geology of Blaine-Birch Bay Area Blaine Middle Whatcom County, WA School / PAC l, ul G ant, G rmor Wings Over Water 2020 C o n Nest s ero Birch Bay Field Trip Eagles! H March 21, 2020 Eagle "Trees" Beach Erosion Dakota Creek Eagle Nest , ics l at w G rr rfo la cial E te Ab a u ant W Eagle Nest n d California Heron Rookery Creek Wave Cut Terraces Kingfisher G Nests Roger's Slough, Log Jam Birch Bay Eagle Nest G Beach Erosion Sea Links Ponds Periglacial G Field Trip Stops G Features Birch Bay Route Birch Bay Berm Ice Thickness, 2,200 M G Surficial Geology Alluvium Beach deposits Owl Nest Glacial outwash, Fraser-age in Barn k Glaciomarine drift, Fraser-age e e Marine glacial outwash, Fraser-age r Heron Center ll C re Peat deposits G Ter Artificial fill Terrell Marsh Water T G err Trailhead ell M a r k sh Terrell Cr ee 0 0.25 0.5 1 1.5 2 ± Miles 2200 M Blaine Middle Glacial outwash, School / PAC Geology of Blaine-Birch Bay Area marine, Everson ll, G Gu Glaciomarine Interstade Whatcom County, WA morant, C or t s drift, Everson ron Nes Wings Over Water 2020 Semiahmoo He Interstade Resort G Blaine Semiahmoo Field Trip March 21, 2020 Eagle "Trees" Semiahmoo Park G Glaciomarine drift, Everson Beach Erosion Interstade Dakota Creek Eagle Nest Glac ial Abun E da rra s, Blaine nt ti c l W ow Eagle Nest a terf California Creek Heron Glacial outwash, Rookery Glaciomarine drift, G Field Trip Stops marine, Everson Everson Interstade Semiahmoo Route Interstade Ice Thickness, 2,200 M Kingfisher Surficial GNeeoslotsgy Wave Cut Alluvium Glacial Terraces Beach deposits outwash, Roger's Glacial outwash, Fraser-age Slough, SuGmlaacsio mSataridnee drift, Fraser-age Log Jam Marine glacial outwash, Fraser-age Peat deposits Beach Eagle Nest Artificial fill deposits Water Beach Erosion 0 0.25 0.5 1 1.5 2 Miles ± Chronology of Puget Sound Glacial Events Sources: Vashon Glaciation Animation; Ralph Haugerud; Milepost Thirty-One, Washington State Dept. of Transportation, Quaternary Research Center, Waterlines; Brian Atwater, Britta Johnson, & Amir Sheikh; 2017, Retrieved June 15, 2017 Years Before Present Event 18,800 The weight of the ice begins to depress the earth crust. The Puget Sound troughs and basin had been created previously. Corderillian Ice Sheet has filled the Strait of Georgia southward out into the Strait of Juan de Fuca , where it floats on the ocean. The glacial front is north of the junction of the Hood Canal to Admiralty Inlet and fills the Whidbey Basin. The outwash plains fill the entrance of the Hood Canal, Admiralty Inlet and Possession Sound from north of Everett to the southern end of Whidbey Island . The ice continued to move southward at an average rate of 450 feet (140 m) per year. 18,300 Three freshwater lakes filled the basin. Nearly the entire length of the Hood Canal was open water. To the east the largest body of water filled the East Passage, the Dalco Passage (Tacoma) with a river like basin along the west of Vashon Island. A separate lake flowed from the Case Inlet and Nisqually Reach west of Tacoma through the narrows into the river running north through the Colvos Passage. The ice sheet continues it’s southward progression, separating the Hood Canal from the other basins in Puget Sound. The ice front is just north of Seattle and the outwash plain covers all of Elliott Bay , from just north of West Point south to Blake Island. 18,100 Three freshwater lakes that had been created early continued to exist, growing small as the ice front moved south. The ice sheet has created a uniform arched front running from Dosewallips River mouth, southeast across the Kitsap Peninsula, through Bremerton , arcing across the southern tip of Vashon Island , ending in the Green River valley in the area of Kent . Outwash plains fill the mid reaches of the Hood Canal, the Clifton Channel and 3 to 5 miles (4.8 to 8.0 km) in the Carr Inlet, Colvos Channel, Quartermaster Harbor, and the East Passage of Puget Sound and a similar plain in the valley 17,800 of the Green River from Kent to Auburn . A single freshwater lake extends across the glacial front cover the lower Hood Canal and the lower hills north of the Black Hills north of Olympia . A smaller body of water filled the valleys of the Puyallup and White Rivers . The ice front reached to just north of Olympia. The entire basin of the Puget Sound was filled with ice. A small outwash plain covered 2 to 3 miles (3.2 to 4.8 km) in an arch from the heights south of the Hood Canal south and eastward to the 17,500 Eastern bluffs of the Nisqually River mouth. A narrow band of water lay to the south of this plain and covered the area where Olympia now stands. The ice front reached its southernmost most point. It road along the east face of the Olympic Mountains , south to the plains north of the Black Hills, skirting their northern hills, reaching southward into the Black River Valley to its junction with 16,900 the Chehalis River . The front rested on the flanks of Mount Rainier, turning northward, joined by numerous small glaciers in the valleys of the eastern front of the Cascade Mountains . There was 3,000 feet (910 m) of ice over Seattle and the land was depressed 275 feet (84 m) near Pioneer Square. The ice began to retreat after 16,900 ya. By 16,600, it had returned to north of Olympia, as it was 1000 years earlier. 16,600 The ice continued to retreat. Still standing south of Tacoma, substantial freshwater bodies had formed. Lake Skokomish stood in the southern bend of the Hood Canal and the lower reaches of the Skokomish River . Early Lake Russell or a late version of Lake Nisqually . 16,400 Continuing to recede to the north, the ice front reaches from the south side of Tacoma in a northwest arc across the Kitsap Peninsula, exposing the southern hook of Hood Canal, reaching the Olympic Mountains near Quilcene Bay. 16,400 A large freshwater body formed. The ice front became anchored on the west among the Olympic Mountains near Quilcene Bay. Lake Russell spread across the southern basins of Puget Sound. Lake Hood drained across its southern outlets into Lake Russell. From Tacoma, the ice lay ice front lay 7 to 10 miles (11 to 16 km) to the north and lay across the Green River at Kent. 16,300 Within a very short period, the glacier retreated up to 15 miles (24 km) in a few decades. Bremerton and Renton are now ice free. 16,200 Continuing the advanced rate of retreat, Seattle becomes the southern tip of the ice sheet. The Hood Canal has fully joined with Lake Russell, leaving only the highest points the Kitsap Peninsula standing above the shore. The retreat appears to have slowed or halted with evidence that the ice sheet was thinning, rather than receding. The water levels of Lake Russell have dropped correspondingly. 16,100 The upper end of the Stillaguamish River has formed a freshwater lake. Lake Washington and Lake Sammamish appear as water bodies along the southern margin of the lake. The ice front has receded north opening the mouth of Hood Canal and lies just south of the southern end of Whidbey Island . 16,000 The length of the Stillaguamish River is a freshwater lake. Lake Sammamish has linked to Lake Washington along its present watercourse with Lake Washington draining across Lake Union and then only through the Duwamish River at its south end. 15,900 The ice front has receded north into the Strait of Juan de Fuca, linking the Puget Sound Basin to the ocean. The Duwamish-Green River Valley was salt-water reach of the sound. The Stillaguamish River is also a salt-water branch of the sound. Except for the Duwamish-Green River saltwater embayment, the modern waterways have formed into the waterways known today. The Whidbey basin has taken a rudimentary form, with the Stillaguamish River flowing into Port Susan Passage 7,500 and Skagit Bay has appeared. 5,500 Mt. Rainier's northern crest collapsed sending a lahar down the White River . This creates the Auburn delta in the Duwamish Embayment, separating the Puyallup River valley from the Green River valley. 2,100 An eruption of Mt Rainier send sand lahars down White River to its junction with he Duwamish at Tukwila. 1,100 Duwamish valley earthquake lifts the Duwamish valley by 20 feet (6.1 m) draining what was left of the salt-water embayment, creating the Duwamish delta and what has become the Port of Seattle. Chronology of the Fraser Glaciation in the Northern Puget Lowland/Southern Fraser Lowlands From Booth, D. B, et. al. The cordilleran ice sheet, 2003 The Cordilleran ice sheet most recently advanced out of the mountains of British Columbia about 25,000 years ago. It flowed west onto the continental shelf, east into the intermontaine valleys of British Columbia where it probably merged with the western edge of the Laurentide ice sheet, and south into the lowlands of Washington State. In southern British Columbia and western Washington, the Puget lobe filled the Fraser Lowland and the Puget Lowland between the Olympic Mountains and Cascade Range. The Juan de Fuca lobe extended east along the Strait of Juan de Fuca ending some 100 km west of Washington’s present coast.
Recommended publications
  • Isotopes, Inc. Radiocarbon Measurements V Milton A
    [RADIOCARBON, VOL. 8, 1966, P. 161-203] ISOTOPES, INC. RADIOCARBON MEASUREMENTS V MILTON A. TRAUTMAN and ERIC H. WILLIS Isotopes, Inc., Westwood, New Jersey INTRODUCTION This list presents dates on samples measured at Isotopes, Inc., dur- ing the years 1963 to 1965 and measurements made previously for which sample data has been recently received. The many results which do not appear are withheld pending additional information or at the request of our clients. Procedures employed in sample pretreatment, preparation of CO2, and method of counting are generally unchanged, as are our methods of age calculation. Suitable bone samples are now pretreated by the method of Berger, Harney and Libby (1964). In May, 1965, the three counters and associated electronics previ- ously described (Isotopes I, II, III) were retired after producing well over 2000 radiocarbon dates, geophysical measurements, and ultralow- level C14 measurements. A completely new laboratory was activated em- ploying four new counters. Shielding consists of 31 cm of selected low- background steel, 10 cm paraffin and 2.5 cm "aged" lead. Each counter has its own multianode annular anticoincidence geiger counter. Elec- tronics were designed and fabricated at Isotopes, Inc. The counters have an active volume of 1 L and when operated at a normal pressure of 3 atm, yield background counts of slightly over 2 counts j min, Aox x 0.95 is ca. 18.7 at 24° C. C13/C12 ratios are measured periodically by our mass spectrometry section, but not routinely on samples unless requested by clients. ACKNOWLEDGMENTS It is recognized that data obtained at Isotopes, Inc.
    [Show full text]
  • Identifying Potential Juvenile Steelhead Predators in the Marine Waters of the Salish Sea
    Early Marine Survival Project Washington Department of Fish & Wildlife Identifying Potential Juvenile Steelhead Predators In the Marine Waters of the Salish Sea Scott F. Pearson, Steven J. Jeffries, and Monique M. Lance Wildlife Science Division Washington Department of Fish and Wildlife, Olympia Austen Thomas Zoology Department University of British Columbia Robin Brown Early Marine Survival Project Washington Department of Fish & Wildlife Cover photo: Robin Brown, Oregon Department of Fish and Wildlife. Seals, sea lions, gulls and cormorants on the tip of the South Jetty at the mouth of the Columbia River. We selected this photograph to emphasize that bird and mammal fish predators can be found together in space and time and often forage on the same resources. Suggested citation: Pearson, S.F., S.J. Jeffries, M.M. Lance and A.C. Thomas. 2015. Identifying potential juvenile steelhead predators in the marine waters of the Salish Sea. Washington Department of Fish and Wildlife, Wildlife Science Division, Olympia. Identifying potential steelhead predators 1 INTRODUCTION Puget Sound wild steelhead were listed as threatened under the Endangered Species Act in 2007 and their populations are now less than 10% of their historic size (Federal Register Notice: 72 FR 26722). A significant decline in abundance has occurred since the mid-1980s (Federal Register Notice: 72 FR 26722), and data suggest that juvenile steelhead mortality occurring in the Salish Sea (waters of Puget Sound, the Strait of Juan de Fuca and the San Juan Islands as well as the water surrounding British Columbia’s Gulf Islands and the Strait of Georgia) marine environment constitutes a major, if not the predominant, factor in that decline (Melnychuk et al.
    [Show full text]
  • Island County Whatcom County Skagit County Snohomish County
    F ir C re ek Lake Samish k Governors Point e re C k es e n e Lawrence Point O r Ba r y Reed Lake C s t e n Fragrance Lake r a i C n Whiskey Rock r n e F a m e r W h a t c o m r W k i Eliza Island d B a y Cain Lake C r e B e Squires Lake t y k k n e North Pea u y pod o n t C u e Doe Bay C o Carter Poin a t r e Doe Bay C r r e C e k r e v South Peapod l Doe Island i S Sinclair Island Urban Towhead Island Vendovi Island Rosario Strait ek Cre Deer Point ll ha Eagle Cliff ite Pelican Beach h W k e Colony Creek e Samish Bay r Obstruction Pass ler C But D Blanchard r y P C a r H r e Clark Point a k s r e r e o William Point i k s k e n Tide Point o e r n e r C C C s r e e Cyp Jack Island d e ress Island l Cypress Lake i k Colony W C ree k Fish Point Blakely Island Samish Island Indian Village Cypress Head Scotts Point Strawberry Island Deepwater Bay n Slough Strawberry Island Guemes Island Padilla Bay Edison SloEudgihso Edison Swede C r Cypress Island e ek Blakely Island Guemes Island Black Rock Cypress Island Reef Point Guemes Island Armitage Island Huckleber ry SIsaladnddlebag Island Dot Island Southeast Point reek Guemes s C a Kellys Point m o h T Fauntleroy Point Hat Island W ish Ri i ll Sam ver ard Creek Cap Sante Decatur Hea Jamdes Island k Shannon Point Anacortes Cree Cannery Lake rd ya ck ri Sunset Beach B Green P oint Jo White Cliff e Le ar y Belle Rock Slo Fidalgo Head Crandall Spit ugh Anaco Beach Weaverling Spit Bay View March Point Burrows Island Fidalgo Young Island Alexander Beach Heart Lake Allan Island Whitmarsh Junction Rosario
    [Show full text]
  • Pre-Vashon Interglacial Deposit Investigation
    Investigation of a Pre-Vashon Interglacial Fine-Grained Organic-Rich Sedimentary Deposit, South Lake Union, Seattle, Washington Cody Gibson A report prepared in partial fulfillment of the requirements for the degree of Master of Science Earth and Space Sciences: Applied Geosciences University of Washington March 2017 Project Mentors: Kathy Troost, University of Washington Matt Smith, GeoEngineers Inc. Internship Coordinator: Kathy Troost Reading Committee: Kathy Troost Juliet Crider MESSAGe Technical Report Number: 56 ©Copyright Cody Gibson i Executive Summary This study evaluates a fine-grained interglacial deposit found in the subsurface of the South Lake Union (SLU) area, Seattle, Washington. The nearly one-square-km SLU study area is defined as north of Denny Way, south of Aloha Street, east of Aurora Avenue, and west of Interstate 5. The evaluation required an in-depth study of over 600 existing geotechnical and environmental boring logs found for the study area. My evaluation consisted of mapping the distribution, determining the depositional environment, and characterizing the organic-rich pre-Vashon deposits. The fine-grained organic-rich deposits correlate to the Olympia formation, which occurred prior to the last glaciation of the Puget Sound Lowland known as the Vashon. To characterize the subsurface conditions in SLU, I assigned the materials described on the boring logs to one of 3 basic layers: pre-Vashon, Olympia Formation (Qob), and Vashon. In the SLU, the Qob consists of grey silt with interbeds of sand and gravel, and has an abundance of organic debris including woody debris such as well-preserved logs and branches, fresh-water diatoms, and fresh-water aquatic deposits such as peat.
    [Show full text]
  • Anacortes Museum Research Files
    Last Revision: 10/02/2019 1 Anacortes Museum Research Files Key to Research Categories Category . Codes* Agriculture Ag Animals (See Fn Fauna) Arts, Crafts, Music (Monuments, Murals, Paintings, ACM Needlework, etc.) Artifacts/Archeology (Historic Things) Ar Boats (See Transportation - Boats TB) Boat Building (See Business/Industry-Boat Building BIB) Buildings: Historic (Businesses, Institutions, Properties, etc.) BH Buildings: Historic Homes BHH Buildings: Post 1950 (Recommend adding to BHH) BPH Buildings: 1950-Present BP Buildings: Structures (Bridges, Highways, etc.) BS Buildings, Structures: Skagit Valley BSV Businesses Industry (Fidalgo and Guemes Island Area) Anacortes area, general BI Boat building/repair BIB Canneries/codfish curing, seafood processors BIC Fishing industry, fishing BIF Logging industry BIL Mills BIM Businesses Industry (Skagit Valley) BIS Calendars Cl Census/Population/Demographics Cn Communication Cm Documents (Records, notes, files, forms, papers, lists) Dc Education Ed Engines En Entertainment (See: Ev Events, SR Sports, Recreation) Environment Env Events Ev Exhibits (Events, Displays: Anacortes Museum) Ex Fauna Fn Amphibians FnA Birds FnB Crustaceans FnC Echinoderms FnE Fish (Scaled) FnF Insects, Arachnids, Worms FnI Mammals FnM Mollusks FnMlk Various FnV Flora Fl INTERIM VERSION - PENDING COMPLETION OF PN, PS, AND PFG SUBJECT FILE REVIEW Last Revision: 10/02/2019 2 Category . Codes* Genealogy Gn Geology/Paleontology Glg Government/Public services Gv Health Hl Home Making Hm Legal (Decisions/Laws/Lawsuits) Lgl
    [Show full text]
  • The Cordilleran Ice Sheet 3 4 Derek B
    1 2 The cordilleran ice sheet 3 4 Derek B. Booth1, Kathy Goetz Troost1, John J. Clague2 and Richard B. Waitt3 5 6 1 Departments of Civil & Environmental Engineering and Earth & Space Sciences, University of Washington, 7 Box 352700, Seattle, WA 98195, USA (206)543-7923 Fax (206)685-3836. 8 2 Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia, Canada 9 3 U.S. Geological Survey, Cascade Volcano Observatory, Vancouver, WA, USA 10 11 12 Introduction techniques yield crude but consistent chronologies of local 13 and regional sequences of alternating glacial and nonglacial 14 The Cordilleran ice sheet, the smaller of two great continental deposits. These dates secure correlations of many widely 15 ice sheets that covered North America during Quaternary scattered exposures of lithologically similar deposits and 16 glacial periods, extended from the mountains of coastal south show clear differences among others. 17 and southeast Alaska, along the Coast Mountains of British Besides improvements in geochronology and paleoenvi- 18 Columbia, and into northern Washington and northwestern ronmental reconstruction (i.e. glacial geology), glaciology 19 Montana (Fig. 1). To the west its extent would have been provides quantitative tools for reconstructing and analyzing 20 limited by declining topography and the Pacific Ocean; to the any ice sheet with geologic data to constrain its physical form 21 east, it likely coalesced at times with the western margin of and history. Parts of the Cordilleran ice sheet, especially 22 the Laurentide ice sheet to form a continuous ice sheet over its southwestern margin during the last glaciation, are well 23 4,000 km wide.
    [Show full text]
  • Marine Shoreline Protection Assessment for Skagit County
    Marine Shoreline Protection Assessment for Skagit County Shoreline property on Samish Island with Skagit Land Trust Conservation Easement. SLT files. Prepared for and with funding from: Skagit County Marine Resources Committee Prepared by: Kari Odden, Skagit Land Trust This project has been funded wholly or in part by the United States Environmental Protection Agency. The contents of this document do not necessarily reflect the views and policies of the Environmental Protection Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. Table of Contents Tables, Figures and Maps…………………………………………………………………………………..3 Introduction and Background…………………………………………………………………………….4 Methods…………………………………………………………………………………………………………….5 Results……………………………………………………………………………………………………………….8 Discussion…………………………………………………………………………………………………………24 Tidelands Analysis…………………………………………………………………………………………….25 Data limitations………………………………………………………………………………………………..31 References…………………………………………………………………………………………………….…32 Appendix A: Protection Assessment Data Index……………………………………………..………..33 Appendix B: Priority Reach Metrics…………………………………………………………..……………..38 Marine Shoreline Protection Assessment for Skagit Co Page 2 Tables Table 1: Samish Bay Management Unit Priority Reaches………………………………………..……...13 Table 2: Padilla Bay Management Unit Priority Reaches……………………………………………..….15 Table 3: Swinomish Management Unit Priority Reaches……………………………………………..….17 Table 4: Islands Management Unit Priority Reaches…………………………………………………….…19
    [Show full text]
  • Development of a Hydrodynamic Model of Puget Sound and Northwest Straits
    PNNL-17161 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Development of a Hydrodynamic Model of Puget Sound and Northwest Straits Z Yang TP Khangaonkar December 2007 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830 Printed in the United States of America Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: [email protected] Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161 ph: (800) 553-6847 fax: (703) 605-6900 email: [email protected] online ordering: http://www.ntis.gov/ordering.htm This document was printed on recycled paper.
    [Show full text]
  • Water Quality
    Section 7: Water Quality SECTION 7 How is Puget Sound’s Water Quality Changing? Puget Sound is projected to experience a continued increase in sea surface temperatures, and continued declines in pH and dissolved oxygen concentrations. These changes, which could affect marine ecosystems and the shellfish industry, will be affected by variations in coastal upwelling and circulation within Puget Sound. While it is currently not known how climate change will affect circulation and upwelling in the region, these processes will continue to fluctuate in response to natural climate variability. Impacts on marine ecosystems and shellfish farming generally point to increasing stress for fish and shellfish populations. Efforts to address Puget Sound’s water quality are increasing, particularly in the areas of ocean acidification monitoring and implementation of risk reduction practices in the shellfish industry. Climate Drivers of Change DRIVERS Wind patterns, natural climate variability, and projected changes in temperature and precipitation can all affect water quality in Puget Sound.A Observations show a clear warming trend, and all scenarios project continued warming during this century. Most scenarios project that this warming will be outside of the range of historical variations by mid-century (see Section 2).1,2 Warming. The salinity of Puget Sound’s waters is tightly linked to freshwater inflows from streams. Increasing air temperatures will result in more precipitation falling as rain instead of snow, leading to more freshwater inflows into Puget Sound during winter months, and decreased freshwater inflows during summer. In addition, increasing air temperatures are expected to drive a continued increase in water temperatures, increasing the likelihood of harmful algal blooms (see Section 3).
    [Show full text]
  • The Fate of Onsite Septic System Nitrogen Discharges in Groundwater of the Hood Canal Basin
    The Fate of Onsite Septic System Nitrogen Discharges in Groundwater of the Hood Canal Basin Julie Horowitz, Bryan Atieh, Garrett Leque, Mark Benjamin, Michael Brett Department of Civil and Environmental Engineering, University of Washington The Story… ¾Eutrophication and low dissolved oxygen ¾Hood Canal ¾Onsite Septic Systems (OSS) as a potential source of nitrogen loading ¾Denitrification – the key variable in determining the nitrogen load ¾Measuring denitrification in the Hood Canal basin ¾Substantial spatial and temporal variability in denitrification U.S. Coastal ‘Dead Zones’ Associated with Human Activity Date of Hypoxic event 1970s 1980s 1990s 2000 Source: America’s Oceans: Charting a Course for the Sea Change. Pew Ocean Commission report June, 2003 Hood Canal, Washington Eutrophication in Hood Canal Hood Canal is an estuary where OSS N loading may exacerbate eutrophication. HCDOP HCDOP HCDOP , pet waste, lawns Newton, UW-APL Loading from OSS to Hood Canal Denitrification rates X Census data Travel Distance Household Groundwater Trash output Traffic studies Septic inputs nitrogen velocity Seasonal Per capita Septic Nitrogen X X Population water use nitrogen - removal effluent Nitrogen load to Hood Canal Nitrogen Fate and Transport Drainfield Septic Tank + Organic N Æ NH4 2 N Drainfield and Vadose Zone + - NH4 Æ NO3 N Denitrification O - NO3 Æ N2 3 Groundwater Flow Denitrification ¾Denitrification is the primary N removal process. + - - ¾Organic N NH4 NO2 /NO3 N2 ¾Requirements: 1) Denitrifying microbial population 2) Anoxic conditions
    [Show full text]
  • Chapter 13 -- Puget Sound, Washington
    514 Puget Sound, Washington Volume 7 WK50/2011 123° 122°30' 18428 SKAGIT BAY STRAIT OF JUAN DE FUCA S A R A T O 18423 G A D A M DUNGENESS BAY I P 18464 R A A L S T S Y A G Port Townsend I E N L E T 18443 SEQUIM BAY 18473 DISCOVERY BAY 48° 48° 18471 D Everett N U O S 18444 N O I S S E S S O P 18458 18446 Y 18477 A 18447 B B L O A B K A Seattle W E D W A S H I N ELLIOTT BAY G 18445 T O L Bremerton Port Orchard N A N 18450 A 18452 C 47° 47° 30' 18449 30' D O O E A H S 18476 T P 18474 A S S A G E T E L N 18453 I E S C COMMENCEMENT BAY A A C R R I N L E Shelton T Tacoma 18457 Puyallup BUDD INLET Olympia 47° 18456 47° General Index of Chart Coverage in Chapter 13 (see catalog for complete coverage) 123° 122°30' WK50/2011 Chapter 13 Puget Sound, Washington 515 Puget Sound, Washington (1) This chapter describes Puget Sound and its nu- (6) Other services offered by the Marine Exchange in- merous inlets, bays, and passages, and the waters of clude a daily newsletter about future marine traffic in Hood Canal, Lake Union, and Lake Washington. Also the Puget Sound area, communication services, and a discussed are the ports of Seattle, Tacoma, Everett, and variety of coordinative and statistical information.
    [Show full text]
  • Utilization of Floodplains by Salmon
    C S A S S C C S Canadian Science Advisory Secretariat Secrétariat canadien de consultation scientifique Research Document 2002/007 Document de recherche 2002/007 Not to be cited without Ne pas citer sans permission of the authors * autorisation des auteurs * Floodplains, flooding, and salmon Examen des plaines d’inondation, des rearing habitats in British Columbia: A inondations et des habitats d’alevinage review du saumon en Colombie-Britannique Tom G. Brown Pacific Biological Station Fisheries and Oceans Canada 3190 Hammond Bay Road Nanaimo, B.C. V9T 6N7 * This series documents the scientific basis for the * La présente série documente les bases scientifiques evaluation of fisheries resources in Canada. As des évaluations des ressources halieutiques du Canada. such, it addresses the issues of the day in the time Elle traite des problèmes courants selon les échéanciers frames required and the documents it contains are dictés. Les documents qu’elle contient ne doivent pas not intended as definitive statements on the subjects être considérés comme des énoncés définitifs sur les addressed but rather as progress reports on ongoing sujets traités, mais plutôt comme des rapports d’étape investigations. sur les études en cours. Research documents are produced in the official Les documents de recherche sont publiés dans la language in which they are provided to the langue officielle utilisée dans le manuscrit envoyé au Secretariat. Secrétariat. This document is available on the Internet at: Ce document est disponible sur l’Internet à: http://www.dfo-mpo.gc.ca/csas/ ISSN 1499-3848 (Printed) © Her Majesty the Queen in Right of Canada, 2002 © Sa majesté la Reine, Chef du Canada, 2002 2 Abstract The purpose of this review paper was to examine the relationships between floodplains, flooding, and juvenile salmon habitats.
    [Show full text]