Lipid Oxidation and Quality

Total Page:16

File Type:pdf, Size:1020Kb

Lipid Oxidation and Quality ABSTRACTS 2019 AOCS ANNUAL MEETING & EXPO May 5–8, 2019 LIPID OXIDATION AND QUALITY LOQ 1a: Antioxidant Mechanism and Activity Chairs: Fereidoon Shahidi, Memorial University of Newfoundland, Canada; and Zhuliang Tan, DSM Nutritional Products, Canada Antioxidant Activity and Mechanism of Action mechanism. Methods used: The distribution of of Natural Extracts: Their Impact on Color and antioxidant in the scallop adductor muscle and Lipid Stability in Meat Products S.P.J. Namal their action in chelating metal ions and Senanayake*, Camlin Fine Sciences, USA quenching of free radicals was examined in situ. Maintaining the appearance and red color Meanwhile, POV, TBARS, AV, and contents of are very important to retail shelf-life of fresh TAG, FFA, PC, PE, protein carbonyl, total meat products. If the meat is dark or discolors phenols, phospholipase, lipases and early, then consumers will not purchase the lipoxygenase (LOX) were determined. meat. Improved color stability results in fewer Furthermore, the effects of the natural pulls, discounts and discards due to phenolics on the shelf life of dried scallop discoloration. One opportunity to improve color adductor muscle were predicted by Arrhenius stability in fresh meats is to supplement meat model. Results Using an in vivo imaging system, products with naturally-derived antioxidants. it was found that AOB could diffuse into the The goal of this study is to investigate the effect adductor muscle upon marinating, efficiently of plant-based extracts such as those derived retarded lipid oxidation during the drying and from acerola cherry, rosemary and green tea on storage process. The in situ antioxidant color and oxidative stability of fresh ground mechanisms of AOB as well as TP included beef products. In addition, the effect of these quenching of free radicals as detected by natural extracts on oxidative stability of cooked electron spin resonance, chelating metal ions meat products during storage will also be determined by confocal laser scanning evaluated. Antioxidant mechanism of action microscopy and inhibiting LOX. Upon marinating that are associated with each natural extract with AOB and TP, the contents of will also be discussed. eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in adductor muscle Antioxidant Mechanism of Natural Phenolics decreased by less than 8% instead of >28% on Scallop Adductor Muscle During Drying and (without antioxidants) during the drying Storage Dayong Zhou*1, Hongkai Xie2, process. The shelf lives of AOB- and TP-treated Fereidoon Shahidi3, and Beiwei Zhu4,1Dalian dried adductor muscle were more than 1.70- Polytechnic University, China; 2National fold than that of dried control adductor muscle. Engineering Research Center of Seafood, China; Conclusions Overall, the antioxidants efficiently 3Memorial University of Newfoundland, Canada; maintained the high nutritive value of adductor 4College of Food Science & Technology, Dalian muscle in terms of its lipid components during Polytechnic University, China drying and storage. Objective The present work investigates the effect of natural antioxidant, tea polyphenols Influence of Antioxidants on Oxidation (TP) and antioxidant of bamboo leaves (AOB), Pathways Zhehan Jiang*, Suzanne M. Budge, against lipid oxidation in scallop’s adductor and Wei Xia, Dalhousie University, Canada muscle during the drying process and storage While lipid oxidation pathways have and demonstrates their in situ antioxidant traditionally focused on hydroperoxides and – 1 – ABSTRACTS 2019 AOCS ANNUAL MEETING & EXPO May 5–8, 2019 their scission products, there is increasing both tocopherol treated samples (0.1% and interest is describing alternative pathways, 2%), while hydroxy fatty acids were present in proceeding through production of alcohols and greater concentrations in the samples having epoxides. However, there has been little the higher α-tocopherol concentration. Coupled attention devoted to the effects of antioxidants with rates of formation, these data will help on these pathways. In this study, we focus on elucidate the importance of alternative the qualitative and quantitative analysis of pathways in triacylglycerol oxidation. epoxy and hydroxy fatty acids produced during oxidation of a single triacylglycerol, trilinolein, Stability and Stabilization of Edible Oils: Role in the presence and absence of α-tocopherol, to of Endogenous Antioxidants and Phenolipid better understand the diversity of products Addition Fereidoon Shahidi*, Memorial produced and the rates of their formation. University of Newfoundland, Canada Previous research suggested that while α- Edible oils are prone to oxidation and this is tocopherol has a well-known antioxidant effect generally dictated by their fatty acid at low concentrations, it may also function as a composition and degree of unsaturation as well prooxidant at high concentrations. To address as their positional distribution in the this, α-tocopherol was added to trilinolein at triacylglycerol molecules, minor components two concentrations (0.1% and 2% by mass) and present, and storage conditions. This study compared to a control sample without added examined the role of minor components on the tocopherol. All the samples were heated at 30 stability of selected oils by stripping them from °C with aliquots removed for analysis every 3 the samples. While stripped oils were generally days in a 15-day experimental cycle. Samples less stable than their unstripped counterparts were transmethylated with sodium methoxide, under Schaal oven conditions, the reverse was separated into epoxy and hydroxy fractions true under fluorescent light. In addition, with solid-phase extraction, and derivatized to selected phenolipids were tested for their trimethylsilyl ethers to mask hydroxide groups. antioxidant efficacy. Both the structural Gas chromatography-mass spectroscopy (GC- characteristics of the phenols as well as the MS) was used to identify the epoxy and hydroxy nature of the acyl group determined their components in each fraction, while GC with efficacy. Finally, the phenol moieties of flame ionization detection was used for phenolipids was released, at least partially, quantitative analysis. Preliminary data clearly upon simulated digestion and hence exerting showed that epoxy fatty acids did not form in their potential health effects. – 2 – ABSTRACTS 2019 AOCS ANNUAL MEETING & EXPO May 5–8, 2019 LOQ 1b / PRO 1b: Effect of Processing on Lipid Oxidation in Oils and Fats and Lipid-containing Foods Chairs: S.P.J. Namal Senanayake, Camlin Fine Sciences, USA; and Sean Liu, USDA, ARS, USA Effects of Modified Phosphatidylcholine on to a decrease in formation of primary and Physical and Oxidative Stability of Omega-3 secondary oxidation products. Modified PCs in Delivery 70% Oil-in-Water Emulsions Betül combination with CAS and soybean PC thus Yesiltas*1, Ann-Dorit Moltke Sørensen2, Pedro J. improved the physical and oxidative stability of Garcia-Moreno2, Sampson Anankanbil3, Zheng 70% fish oil-in-water emulsions compared to Guo4, and Charlotte Jacobsen2,1National Food emulsions produced with only CAS as an Institute, Technical University of Denmark, emulsifier. Denmark; 2Technical University of Denmark, Denmark; 3Dept. of Engineering, Aarhus Effect of Maillard Reaction Conditions on University, Denmark; 4Aarhus University, Physicochemical Properties and Oxidative Denmark Stability of Microencapsulated Chia Oil Vanesa The objective of this study was to Y. Ixtaina1, Bernd W.K Diehl2, Claudia N. investigate the effects of modified Copado1, and Mabel Tomás*1,1CIDCA (CONICET- phosphatidylcholine (PC) with different alkyl UNLP), Argentina; 2Spectral Service AG, chain lengths (C14 and C16) and covalently Germany attached caffeic acid on the oxidative and Chia oil presents a very high content of physical stability of high fat 70% fish oil-in- PUFAs, which are very susceptible to lipid water emulsions. It is hypothesized that 1) oxidation. Some techniques, such as modified PC improves the physical stability of microencapsulation, have been developed to emulsions when used in combination with protect this type of oils. Many studies showed sodium caseinate (CAS) and soybean PC, by its that Maillard reaction products (MRPs) have high surface activity as a surfactant, and that 2) anti-oxidative properties and can be used as modified PC enhances oxidative stability due to wall material for microencapsulation. The the attachment of caffeic acid to the glycerol objective of this study was to characterize the backbone of PC, which brings the antioxidant in physicochemical properties of the vicinity of oil-water interface. Physical microencapsulated chia seed oil MRPs, as wall stability of the emulsions were analyzed using material, obtained by different heat treatments. droplet size, viscosity, zeta potential, interfacial Chia O/W emulsions were composed by NaCas, tension, and protein content in the aqueous lactose, and chia oil (10, 15 % wt/wt). The phase. Peroxide value, changes in tocopherol aqueous phase was heated at different content and secondary volatile oxidation temperatures (60 and 100°C) for 30 min to products were determined to evaluate oxidative promote the MRPs formation. Then, the stability. Results showed that the physical microcapsules were obtained by spray-drying stability of the emulsions was improved with the emulsions. All the systems showed high increasing concentrations of added modified microencapsulation efficiency ( 99%).̴ The PCs. Modified PC C14 showed higher physical
Recommended publications
  • (Yellow Oleander) Seed Oil and Sus Domesticus (Pig) Lard
    PREPARATION AND STUDIES OF BIODIESELS FROM THEVETIA PERUVIANA (YELLOW OLEANDER) SEED OIL AND SUS DOMESTICUS (PIG) LARD BY YAKUBU ALI DALLATU DEPARTMENT OF CHEMISTRY AHMADU BELLO UNIVERSITY, ZARIA, NIGERIA. DECEMBER, 2015 PREPARATION AND STUDIES OF BIODIESELS FROM THEVETIA PERUVIANA (YELLOW OLEANDER) SEED OIL AND SUS DOMESTICUS (PIG) LARD BY Yakubu Ali DALLATU, B.Sc (Hons) CHEMISTRY(BUK) 1984; POSTGRADUATE DIPLOMA IN EDUCATION (ABU) 1988 ; M.Sc ANALYTICAL CHEMISTRY (ABU) 2000 Ph.D/SCIE/05687/2009-2010 A THESIS SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES, AHMADU BELLO UNIVERSITY, ZARIA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF DEGREE OF DOCTOR OF PHILOSOPHY IN ANALYTICAL CHEMISTRY DEPARTMENT OF CHEMISTRY FACULTY OF SCIENCE AHMADU BELLO UNIVERSITY, ZARIA, NIGERIA. DECEMBER, 2015 ii Declaration I declare that the work in this Thesis entitled “Preparation and Studies of Biodiesels from Thevetia peruviana (Yellow Oleander) Seed Oil and Sus domesticus (Pig) Lard”, has been carried out by me in the Department of Chemistry. The information derived from the literature has been duly acknowledged in the text and a list of references provided. No part of this thesis was previously presented for another degree or diploma at this or any other Institution. Yakubu Ali DALLATU _____________________ _______________________ __________________ Name of Student Signature Date iii Dedication This research work is dedicated to my wife, Mrs. Rhoda Y. Dallatu and our children, Unomliyi, Alionom and Apemu for their patience, support and encouragement. iv Certification This thesis, entitled ―PREPARATION AND STUDIES OF BIODIESELS FROM THEVETIA PERUVIANA (YELLOW OLEANDER) SEED OIL AND SUS DOMESTICUS (PIG) LARD‖ by Yakubu Ali DALLATU meets the regulations governing the award of the degree of Doctor of Philosophy (Ph.D.) Analytical Chemistry of the Ahmadu Bello University, and is approved for its contribution to knowledge and literary presentation.
    [Show full text]
  • Nutraceutical Profile of Selected Oils, Distillates and Butters
    Asian J. Exp. Sci., Vol. 28, No. 2, 2014; 37-41 Nutraceutical Profile Of Selected Oils, Distillates And Butters RIPAL R. KHAMAR & Y. T. JASRAI Department of Botany, University School of Sciences, Gujarat University, Ahmedabad - 380009, Gujarat, India E-mail: [email protected] Abstract : The mixed tocopherol , phytosterol and sqalene were estimated in the oils and their deodorized distillate (remove of flavor) available in the India market and to know about the nutraceuticals value in respect with tocopherol (vitamin E), Phytosterol and squalene.The oils taken in the investigation were Amaranth oil, Avocado oil, Cashew nut shell oil, Castor oil, Coconut oil, Corn/Maize oil, Cottonseed oil, Cumin oil, Fish oil, Groundnut oil, Linseed oil, Mustard oil, Neem oil, Olive oil, Palm oil, Pomegranate seed oil, Psyllium seed oil, Rice bran oil, Safflower oil, Sesame oil, Soybean oil, Sunflower oil and Wheat germ oil. Avacado oil contains highest quantity of mixed tocopherol while the lowest % is found in coconut, cumin, flaxed seed , neem and pomegranate oils. Phytosterol was highest in Pumpkin seed oil and lowest in Sesame seed oil. Sqalene (precursor to cholesterol) was highest in Amaranth seed oil and Mango butter oils and lowest in Shea butter. In deodorised distillate, phytosterol was highest in Soya bean oil but lowest in Olive oil. However, Sqalene was highest in distillate of Olive oil and lowest in distillate of Groundnut oil.Punicic acid (polysaturated fatty acid) and sesamin (a lignin) were present in Palm oil, Pomegranate seed oil and Sesame oil raw and in distillates. KEYWORDS: Edible oil, Distillate, Butter, Nutraceutical profile, Tocopherol, Vitamin E INTRODUCTION: The present study has been deodorization (to remove off flavors), often abbreviated as undertaken to know the nutritional value of fatty acids in RBD.
    [Show full text]
  • Influence of Free Fatty Acid Content in Biodiesel Production on Non-Edible Oils
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Universidade do Minho: RepositoriUM WASTES: Solutions, Treatments and Opportunities 1St International Conference September 12th – 14th 2011 INFLUENCE OF FREE FATTY ACID CONTENT IN BIODIESEL PRODUCTION ON NON-EDIBLE OILS A. Ribeiro1, F. Castro2 and J. Carvalho3 1 CVR – Centre for Waste Valorization, [email protected]. 2 University of Minho/CT2M, fcastro@ dem.uminho.pt. 3 CVR – Centre for Waste Valorization/CT2M, [email protected] ABSTRACT The use of alternative feedstock as waste cooking oils (WCO) and bovine tallow for biodiesel production has some advantages. It is cheaper than edible vegetable oils and it is a way to valorize a sub-product. Nevertheless, these oils possess some contaminants, specially free fatty acid (FFA) content, which can reduce the quality and yield of biodiesel production. This problem was solved by testing different operating conditions and different transesterification procedure and equipments for each stage of processing. Technological assessment of process was carried out to evaluate their technical benefits, limitations and quality of final product. In this work biodiesel was produced by an alkali- catalyzed transesterification and by a two step esterification/alkali-catalysed transesterification in cases which FFA content has above 3%. Evaluation of quality from raw materials and final biodiesel was performed according to standard EN 14214. Results show that all parameters analyzed meet the standard and legislation requirements. This evidence proves that in those operational conditions the biodiesel produced from WCO and bovine tallow can substitute petroleum-based diesel. Keywords: Biodiesel; Free Fatty acid (FFA); Waste Cooking Oil (WCO); Bovine tallow INTRODUCTION Energy is the most fundamental requirement for human existence and activities.
    [Show full text]
  • Potential of Chrozophora Tinctoria Seed Oil As a Biodiesel Resource
    applied sciences Article Potential of Chrozophora tinctoria Seed Oil as a Biodiesel Resource Seyed Salar Hoseini 1, Gholamhassan Najafi 1,*, Armin Fattahpour Moazzez 1, Saeid Hazrati 2, Mohammad Taghi Ebadi 3 and Talal Yusaf 4,* 1 Department of Biosystems Engineering, Tarbiat Modares University, Tehran 14115-336, Iran; [email protected] (S.S.H.); [email protected] (A.F.M.) 2 Department of Agronomy and Medicinal Plants, Azarbaijan Shahid Madani University, Tabriz 53714-161, Iran; [email protected] 3 Department of Horticultural Science, Tarbiat Modares University, Tehran 14115-336, Iran; [email protected] 4 Department of Development, Aviation Australia, Brisbane 4007, Australia * Correspondence: g.najafi@modares.ac.ir (G.N.); [email protected] (T.Y.) Received: 30 March 2020; Accepted: 15 May 2020; Published: 18 May 2020 Featured Application: Produced biodiesel through this research work can be used as a suitable fuel source instead of petroleum-derived fuels. Abstract: Biodiesel is a renewable fuel that has been widely used in recent years. There are various resources used as biodiesel feedstocks, including animal fats, waste oils, and vegetable oils. In the present study, Chrozophora tinctoria seed oil is introduced as a new biodiesel feedstock. C. tinctoria is a weed and non-edible plant. So, the primary cost of this resource is very low, and hence it can be considered as a biodiesel source. This plant can also grow in most weather conditions. In the present study, the research team tried to produce biodiesel from C. tinctoria seeds through a transesterification reaction. To intensify the transesterification reaction, an ultrasonic device was used.
    [Show full text]
  • Chemical Composition, Antimicrobial and Antioxidant Properties of Seed Oil Plants of North-East India: a Review
    Review Chemical composition, antimicrobial and antioxidant properties of seed oil plants of North-East India: A review Priyanka Saha1, Anupam Das Talukdar1*, Sanjoy Singh Ningthoujam1,2, Manabendra Dutta Choudhury1, Deepa Nath1,3, Lutfun Nahar4, Satyajit Dey Sarker4, Norazah Basar4,5 1Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India; 2Department of Botany, Ghanapriya Women’s College, Imphal, Manipur, India; 3Department of Botany and Biotechnology, Karimganj College, Karimganj-788710. Assam India; 4Medicinal Chemistry and Natural Products Research Group, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK; 5Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia ABSTRACT Apart from being used as food, seed oils have also been used traditionally as medicinal products by several communities. However, the full medicinal potential of many seed oil plants is yet to be properly reviewed, particularly for their antimicrobial and antioxidant properties. North-East India has rich resources of seed oil plants. The availability of detailed information on these plants is quite limited. This review aims to explore and evaluate these seed oil plants of the North-East India with particular emphasis on their antimicrobial and antioxidant activities as well as chemical compositions. A comprehensive literature search on seed oil plants of this region has been performed. Seed oil yielding plants of this region can be categorized into two categories: plants that are used traditionally as sources of edible or medicinal oils and plants that are used for purposes other than as sources of oils. Many seed oil plants of this region have been reported to possess antimicrobial and antioxidant properties, and to produce various types of compounds.
    [Show full text]
  • Furan Fatty Acid As an Anti-Inflammatory Component From
    Furan fatty acid as an anti-inflammatory component from the green-lipped mussel Perna canaliculus Toshiyuki Wakimotoa,1, Hikaru Kondob, Hirohiko Niia, Kaori Kimurab, Yoko Egamia, Yusuke Okab, Masae Yoshidab, Eri Kidab, Yiping Yeb, Saeko Akahoshib, Tomohiro Asakawab, Koichi Matsumurac, Hitoshi Ishidab, Haruo Nukayab, Kuniro Tsujib, Toshiyuki Kanb, and Ikuro Abea,1 aGraduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan; bSchool of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; and cGraduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan Edited by Jerrold Meinwald, Cornell University, Ithaca, NY, and approved September 13, 2011 (received for review June 30, 2011) A lipid extract of Perna canaliculus (New Zealand green-lipped mus- activity of degrading enzymes. The preparation process was sub- sel) has reportedly displayed anti-inflammatory effects in animal sequently improved, and a lipid-rich fraction (Lyprinol), a super- fl models and in human controlled studies. However, the anti-in am- critical fluid [CO2] extraction of the freeze-dried stabilized green- matory lipid components have not been investigated in detail due lipped mussel powder, was prepared. This extraction method to the instability of the lipid extract, which has made the identifi- avoids warming the biological material, and therefore prevents cation of the distinct active components a formidable task. Consid- activation of enzymes. The lipid-rich extract was found to contain ering the instability of the active component, we carefully fraction- five main lipid classes including sterol esters, triglycerides, free ated a lipid extract of Perna canaliculus (Lyprinol) and detected fatty acids, sterols, and polar lipids.
    [Show full text]
  • Docosahexaenoic Acid Esters of Hydroxy Fatty Acid Is a Novel Activator of NRF2
    International Journal of Molecular Sciences Article Docosahexaenoic Acid Esters of Hydroxy Fatty Acid Is a Novel Activator of NRF2 Siddabasave Gowda B. Gowda 1 , Takayuki Tsukui 2, Hirotoshi Fuda 1, Yusuke Minami 1, Divyavani Gowda 1, Hitoshi Chiba 2 and Shu-Ping Hui 1,* 1 Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Kita-ku, Sapporo 060-0812, Japan; [email protected] (S.G.B.G.); [email protected] (H.F.); [email protected] (Y.M.); [email protected] (D.G.) 2 Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-3-1-15, Higashi-ku, Sapporo 007-0894, Japan; [email protected] (T.T.); [email protected] (H.C.) * Correspondence: [email protected]; Tel.: +8111-706-3693 Abstract: Fatty acid esters of hydroxy fatty acids (FAHFAs) are a new class of endogenous lipids with interesting physiological functions in mammals. Despite their structural diversity and links with nuclear factor erythroid 2-related factor 2 (NRF2) biosynthesis, FAHFAs are less explored as NRF2 activators. Herein, we examined for the first time the synthetic docosahexaenoic acid esters of 12- hydroxy stearic acid (12-DHAHSA) or oleic acid (12-DHAHOA) against NRF2 activation in cultured human hepatoma-derived cells (C3A). The effect of DHA-derived FAHFAs on lipid metabolism was explored by the nontargeted lipidomic analysis using liquid chromatography-mass spectrometry. Furthermore, their action on lipid droplet (LD) oxidation was investigated by the fluorescence imaging technique. The DHA-derived FAHFAs showed less cytotoxicity compared to their native fatty acids and activated the NRF2 in a dose-dependent pattern.
    [Show full text]
  • Esolvent-Free, Enzyme-Catalyzed Biodiesel Production from Mango, Neem, and Shea Oils Via Response Surface Methodology
    Nde et al. AMB Expr (2015) 5:83 DOI 10.1186/s13568-015-0172-x ORIGINAL ARTICLE Open Access ESolvent‑free, enzyme‑catalyzed biodiesel production from mango, neem, and shea oils via response surface methodology Divine Bup Nde1,2*, Carlos Astete1 and Dorin Boldor1 Abstract Mango, neem and shea kernels produce non-conventional oils whose potentials are not fully exploited. To give an added value to these oils, they were transesterified into biodiesel in a solvent-free system using immobilized enzyme lipozyme from Mucor miehei. The Doehlert experimental design was used to evaluate the methyl ester (ME) yields as influenced by enzyme concentration—EC, temperature—T, added water content—AWC, and reaction time—RT. Biodiesel yields were quantified by 1H NMR spectroscopy and subsequently modeled by a second order polynomial equation with interactions. Lipozyme enzymes were more tolerant to high temperatures in neem and shea oils reaction media compared to that of mango oil. The optimum reaction conditions EC, T, AWC, and RT assuring near complete conversion were as follows: mango oil 7.25 %, 36.6 °C, 10.9 %, 36.4 h; neem oil EC 7.19 %, T 45.7 °C, AWC 8.43 %, RT 25.08 h; and shea oil EC 4.43 %, T 45.65 °C, AWC 6.21 % and RT = 25.08 h. Validation= experiments= of these= optimum conditions gave= ME yields= of 98.1 1.0, 98.5= 1.6 and 99.3= 0.4 % for mango, neem and shea oils, respectively, which all met ASTM biodiesel standards.± ± ± Keywords: Biodiesel, Enzyme, Mango, Methyl esters, Neem, Shea Introduction completely exhausted.
    [Show full text]
  • Uncommon Fatty Acids and Cardiometabolic Health
    Review Uncommon Fatty Acids and Cardiometabolic Health Kelei Li 1, Andrew J. Sinclair 2,3, Feng Zhao 1 and Duo Li 1,3,* 1 Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China; [email protected] (K.L.); [email protected] (F.Z.) 2 Faculty of Health, Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia; [email protected] 3 Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, VIC 3168, Australia * Correspondence: [email protected]; Tel.: +86-532-8299-1018 Received: 7 September 2018; Accepted: 18 October 2018; Published: 20 October 2018 Abstract: Cardiovascular disease (CVD) is a major cause of mortality. The effects of several unsaturated fatty acids on cardiometabolic health, such as eicosapentaenoic acid (EPA) docosahexaenoic acid (DHA), α linolenic acid (ALA), linoleic acid (LA), and oleic acid (OA) have received much attention in past years. In addition, results from recent studies revealed that several other uncommon fatty acids (fatty acids present at a low content or else not contained in usual foods), such as furan fatty acids, n-3 docosapentaenoic acid (DPA), and conjugated fatty acids, also have favorable effects on cardiometabolic health. In the present report, we searched the literature in PubMed, Embase, and the Cochrane Library to review the research progress on anti-CVD effect of these uncommon fatty acids. DPA has a favorable effect on cardiometabolic health in a different way to other long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs), such as EPA and DHA. Furan fatty acids and conjugated linolenic acid (CLNA) may be potential bioactive fatty acids beneficial for cardiometabolic health, but evidence from intervention studies in humans is still limited, and well-designed clinical trials are required.
    [Show full text]
  • A Biosynthetically Inspired Synthetic Route to Substituted Furans, and Its Application to the Total Synthesis of the Furan Fatty
    A Biosynthetically Inspired Synthetic Route to Substituted Furans, and its Application to the Total Synthesis of the Furan Fatty Acid F5 A thesis submitted in partial fulfilment of the requirements of the degree Doctor of Philosophy Robert Jack Lee Supervisors: Dr Gareth J. Pritchard and Dr Marc C. Kimber 1 Thesis Abstract Dietary fish oil supplementation has long been shown to have significant health benefits, largely stemming from the anti-inflammatory activity of the ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) present in fish oils. The anti-inflammatory properties of these fatty acids has been linked to beneficial health effects, such as protecting the heart, in individuals consuming diets rich in fish, or supplemented with fish oils.1 These effects are highly notable in the Māori people native to coastal regions of New Zealand; the significantly lower rates of heart problems compared to the inland populous has been attributed to the consumption of the green lipped mussel Perna Canaliculus. Commercially available health supplements based on the New Zealand green lipped mussel include a freeze-dried powder and a lipid extract (Lyprinol®), the latter of which has shown anti- inflammatory properties comparable to classical non-steroidal anti-inflammatory drugs (NSAIDs) such as Naproxen.2 GCMS analysis of Lyprinol by Murphy et al. showed the presence of a class of ω-4 and ω-6 PUFAs bearing a highly electron rich tri- or tetra-alkyl furan ring, which were designated furan fatty acids (F-acids).3 Due to their instability, isolation of F- acids from natural sources cannot be carried out and a general synthetic route toward this class of natural products was required.
    [Show full text]
  • 6Casas-Mango Kernels.Pmd
    SCIENCE DILIMAN (JULY-DECEMBER 2015) 27:2, 41-75 EV Casas et al. Optimizing Microwave-assisted Crude Butter Extraction from Carabao Mango (Mangifera indica) Kernels Edgardo V. Casas* University of the Philippines Los Baños Von Jansen G. Comedia University of the Philippines Los Baños Arni G. Gilbuena University of the Philippines Los Baños Ateneo de Manila University Kevin F. Yaptenco University of the Philippines Los Baños ABSTRACT Carabao mangoes are among the highly produced fruit crops in the Philippines. The processing and consumption of carabao mangoes leave a significant amount of waste seeds. Mango kernel butter extracted from waste seed kernels is a potential additive to cosmetic products or as a cocoa butter substitute. This study determined the pretreatment conditions that produce optimum yield prior to the mechanical extraction of the crude butter. Moreover, this study provided a general sensory evaluation of the finished product. Microwave power (160, 500, and 850 W), microwave exposure time (2.0, 3.5, and 5.0 min), and size levels (1.5, 3.0, and 4.5 mm) were tested for their effects on the yield of the mechanically extracted crude butter in wet basis percentage. The optimization procedures resulted to optimum pretreatment conditions of 160 W, 4.25 min, and 1.5 mm. Size level was the most significant factor in the crude butter yield. Sensory evaluation of the crude butter extracted at optimum pretreatment conditions through acceptance test by a test panel resulted to below neutral scores in visual appearance and odor, _______________ *Corresponding Author ISSN 0115-7809 Print / ISSN 2012-0818 Online 41 Optimizing Microwave-assisted Crude Butter Extraction and above neutral score in texture, indicating the potential of mango butter as a good substitute to cocoa butter in cosmetic products.
    [Show full text]
  • Extraction and Characterization of Oil from Ethiopian Mangifera Indica Seed Kernels
    Journal of Scientific & Industrial Research Vol. 77, February 2018, pp. 131-135 Extraction and Characterization of Oil from Ethiopian Mangifera Indica Seed Kernels M Kemal1, S A Jabasingh1,*, A Yimam1 and J A Kumar2 1Process Engineering Division, School of Chemical and Bio Engineering, Addis Ababa Institute of Technology, Addis Ababa University, Ethiopia 2Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India Received 03 October 2016; revised 17 July 2017; accepted 24 December 2017 High population growth demands alternative sources for producing valuable products from waste materials. One such waste material in Ethiopia is mango seed kernel and the oil extracted from the mango seed kernel, have immense application in the cosmetics industry. The main aim of this research is to determine the optimum operating condition for the extraction of oil from the mango seed kernel. Keywords: Mango Seed Kernel, Oil, Cosmetic Industry, Extraction, Yield Introduction The moisture content of the kernel was determined by Natural oils are excellent emollients derived from a measuring the weight of the sample before drying and variety of plants1,2. Mango seed kernel oil has been after drying in an oven at 105°C respectively. used as a key ingredient in the cosmetics, as it is a good Mango oil extraction 3,4 source of phenolic compounds . In the context of The experimental work was conducted using soxhlet Ethiopia, 126,800 qt of mango are produced in the extractor in triplicate with three different solvents: Arba Minch and Zuria Woreda with a total area hexane, petroleum ether and ethanol1,2.
    [Show full text]