Water and Electricity

Total Page:16

File Type:pdf, Size:1020Kb

Water and Electricity IRAN STATISTICAL YEARBOOK 1393 9. WATER AND ELECTRICITY Introduction Aquatic year: see Chapter 1, Definitions and he statistics appeared in this chapter have concepts. been provided as register records by the Water produced: the amount of water gained from Ministry of Energy on two topics of water" various (surface and underground) water resources T and "electricity". such as wells, springs, subterranean canals, dams and river basins. Water Dam: a structure built against the flow of water to This section includes information on reserve water or change the direction of flow or "underground waters", "reservoir dams", and manage it for satisfying different needs such as "length of networks and number of water and drinking, industry, irrigation (agriculture), sewage extensions". The related statistics have electricity generation and control of flood. been added to the Statistical Yearbook of Iran Reservoir dam: a dam made for reserving, since the year 1346. managing or controlling the flow of water to Statistics on underground waters and reservoir reserve it for procuring water for irrigation, dams have been provided by Water Resources drinking, industry, electricity generation and Management Company and statistics on the length control of flood of networks and number of water and sewage Large reservoir dam: refers to all dams with a extensions has been obtained from the Water and height of 15 metres or more as well as 10 to 15 Sewage Engineering Company. metres high dams having a reservoir with a It is notworthy that Central and Internal basin, volume of 1 million cubic metres or more and/or a Hamun basin, and Sarakhs basin were renamed by capacity of flood discharge of 2000 or more cubic Water Resources Management Organization as metres per second. Central Plateau, Eastern Border and Qareh Qum, Inflow: annual volume of water entered the respectively, in the year 1383. reservoir of a dam through the river. Electricity Outflow: total annual volume of water discharged Data related to electric power industry was first from different outlets of a dam (weir, silt ejector collected in the year 1343 by the then Ministry of channels, take-out gates, drainage channels) and Water and Power (renamed the Ministry of evaporation. Energy in 1353). Since the year 1346, the Water extension: refers to the part of branched- Ministry has regularly provided the annual off water pipes, containing pipe, related statistics on the power industrycomprising power accessories, with a profile appropriate to the water generation, transmission, distribution, and metre and the extension capacity of public water, consumption. The statistics, a part of which which connects a private water distribution line or appears in some tables of this yearbook, are public water distribution network from installation presented in various annual publications released place of the extension valve to the delivery point by the Ministry. (valve following the watermetre). Moreover, through two successive censuses of Public water distribution network: a collection of population and housing in the years 1365 and interconnected pipe lines with needed pressure for 1375, the SCI collected data on residential units distributing water for household, office and and households benefiting from piped water and industrial consumption in a region or inside the electricity which are reflected in Chapter 10, city , all of which belong to the Water and Sewage “Construction and Housing,” of the yearbook. Company. Sewage extension: refers to the part of minor Definitions and concepts sewage pipelines, including pipes and related Water basin: see Chapter 1, Definitions and accessories, with a profile appropriate to siphon or concepts. contractual capacity, which carries joint sewages 359 9. WATER AND ELECTRICITY IRAN STATISTICAL YEARBOOK 1393 away from the siphon to the private line or to the Tractor Industries, and Sarcheshmeh Copper public network for collecting sewages. Industries. Public network for collection and transmission Interconnected network: the collection of of sewage: refers to all installations and equipment, production sites and regions of energy such as main collectors, used for collection and consumption around the country connected transmission of sewage to water treatment house together with a network of transmission lines and and pump houses of urban sewage and public side high voltage stations. The network lets electricity networks, all belonging to the Water and Sewage exchange between the regions covered, and makes Company. The network is not responsible for the export of electric energy possible. collection, transmission and disposal of rainfall Isolated network (generation and power water flowing on passages, flood channels and consumption): refers to regional, provincial and channels inside and outside cities located in the island networks not connected with adjacent customers’ estates. networks or interconnected network. Nominal capacity (registered nominal power): Load-demand: the power consumed during a refers to the maximumexpected output of an certain period in a certain part of the network. electricity generator in designing condition Maximum coincidental load: in a full defined by the manufacturer. Nominal power is interconnected electricity system, maximum usually installed in KVA or KW for smaller coincidental load for a day, a week, a month, or a generators on the generator. year refers to the sum of load at the peak of Actual capacity or actual power (registered consumption in regions in megawatt. Where the power): refers to the maximum amount of interconnected system does not cover the total electricity that could be generated by a generator country, the maximum coincidental load may be while regarding the environmental conditions calculated by adding up maximum load of (altitude, temperature, and relative moisture). interconnected network and load of separate Maximum coincidental power generated: refers regions in megawatt simultaneously. With regard to the sum of electric power generated at the peak to the difference between peak hours of of network load during a certain period. The sum consumption in different regions connected to the of maximum coincidental power generated might interconnected network, maximum coincidental be equal or less than the total capacity of the load is less than the sum of the maximum loads of the plants. regions. Gross generation: refers to the amount of Maximum non-coincidental load: the sum of the electricity generated by a generator or a plant peak of consumption in different regions of the during a certain period which is measured on country during a certain period, which are not output series of the main or supplementary necessarily simultaneous. generators and stated in kilowatt hour (kWh) or Power Company: the companies (Ltd.) which are megawatt hour (MWh). by law engaged in generation, transmission and Net generation: refers to the electricity measured distribution of electricity or in a part of such at the point of transmission to the power grid. activities and provide the customers with During a certain period, the net generation may be electricity. The definition covers the water and calculated by subtracting the gross internal power organizations as well. consumption form the gross generation in the Power plant: refers to the installation place of same period. generators and related equipment. Other institutions: the institutions which generate Hydroelectric power plant: a power plant in electricity for their own consumption and also sell which the potential energy of water accumulated a part of their production to other institutions but at dams or flowing energy of rivers water is used are independent from the Ministry of Energy; to drive the hydroelectric turbine for electricity some examples are, Esfahan teelworks,Mobarakeh generation. Steel Industries, Petrochemical Industries, Tabriz Thermal power plant: a power plant in which chemical energy inherent in solid, liquid, gaseous 360 IRAN STATISTICAL YEARBOOK 1393 9. WATER AND ELECTRICITY fuels is transformed into electricity. This Power transmission line: a line composed of definition covers nuclear, steam, gas, combined- conductors, insulators and other subsidiary cycle and diesel power plants. equipment used for transmission of high amount Steam power plant: a kind of power plant in of electricity, with high voltages in long distances which thermal energy produced from liquid, solid between source points (power plants and receiving and gas fuels is used for steam production and points. then driving the steam turbine to generate Sub-transmission line: a collection electricity. oftransmissionlines with voltages from 63 to 132 Gas power plant: a type of power plant in which kV. hot gas produced from the thermal energy in gas Electricity customers: natural or legal persons and liquid fuels drives gas turbine to generate whose specifications are registered by customers electricity. division according to the regulation of the power Combined-cycle power plant: a kind of power company after submitting the required documents plant in which, in addition to electric energy in and payment of the related costs, and are offered a gas turbine, the heat in gases off the gas turbine is customer number. used for production of steam using a recycling Household uses: electricity used by households to steam kettle. The steam produced is transformed operate common electric appliances and for lights into electric energy in a steam turbo generator set. in residential units. Diesel
Recommended publications
  • Artificial Neural Network Approaches to the Prediction of Eutrophication and Algal Blooms in Aras Dam, Iran
    Iranian Journal of Health Sciences 2015; 3(1): 25-32 http://jhs.mazums.ac.ir Original Article Artificial Neural Network Approaches to the Prediction of Eutrophication and Algal Blooms in Aras Dam, Iran Mohammad Rafiee 1 *Mahsa Jahangiri-Rad 2 1- Department of Environmental Health Engineering, School of Public Health, Shahid Beheshti Universityof Medical Sciences, Tehran, Iran 2- Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran *[email protected] (Received: 6 Aug 2014; Revised: 1 Oct 2014; Accepted: 9 Feb 2015) Abstract Background and purpose: Eutrophication is one of the major environmental problems in waterways causing substantial adverse impact on domestic, livestock and recreational use of water resources. Aras Dam, Iran which provides Arasful city with drinking water, has chronic algal blooms since 1990. Levels of up to 900,000 cells/mL of toxic cyanobacteria (mainly Anabaena and Microcystis) have been recorded in the dam. Materials and Methods: In this study, artificial neural network (ANN) model was investigated to predict the chlorophyll-a (Chl-a) concentration in water of dam reservoir. Water samples were collected from 5 stations and analyzed for physical quality parameters including; water temperature, total suspended solids, biochemical oxygen demands, orthophosphate, total phosphorous and nitrate concentrations using standard methods. Chl-a was also measured separately in order to investigate the accuracy of the predicted results by ANN . Results: The results showed that a network was highly accurate in predicting the Chl-a concentration. The mean squared error and coefficient of correlation (R 2) between experimental data and model outputs were calculated.
    [Show full text]
  • Iran's Regional Policy in the South Caucasus: Case Studies of Relations with the Republics of Azerbaijan & Armenia
    Durham E-Theses IRAN'S REGIONAL POLICY IN THE SOUTH CAUCASUS: CASE STUDIES OF RELATIONS WITH THE REPUBLICS OF AZERBAIJAN & ARMENIA KOUHI-ESFAHANI, MARZIEH How to cite: KOUHI-ESFAHANI, MARZIEH (2016) IRAN'S REGIONAL POLICY IN THE SOUTH CAUCASUS: CASE STUDIES OF RELATIONS WITH THE REPUBLICS OF AZERBAIJAN & ARMENIA, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/11870/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk 2 IRAN’S REGIONAL POLICY IN THE SOUTH CAUCASUS: CASE STUDIES OF RELATIONS WITH THE REPUBLICS OF AZERBAIJAN & ARMENIA A Thesis Submitted for the Degree of Doctor of Philosophy by: Marzieh Kouhi-Esfahani Durham University School of Government and International Affairs 2015 In the Name of God The Compassionate the Merciful This manuscript is dedicated to: My Husband Dr. H. Riahi whose love and unwavering support made this possible for me, and my daughters Yasaman and Nastaran, Who encouraged me and patiently walked along this path with me.
    [Show full text]
  • 2006 Isbn 99940-58-55-X
    AN ECOREGIONAL CONSERVATION PLAN FOR THE CAUCASUSAN ECOREGIONAL CONSERVATION PLAN FOR THE CAUCASUS Second Edition May 2006 ISBN 99940-58-55-X Design and printing Contour Ltd 8, Kargareteli street, Tbilisi 0164, Georgia May, 2006 Coordinated by: In collaboration with: With the technical support of: Assisted by experts and contributors: ARMENIA MAMMEDOVA, S. NAKHUTSRISHVILI, G. POPOVICHEV, V. AGAMYAN, L. MUKHTAROV, I. NINUA, N. PTICHNIKOV, A. AGASYAN, A. NAJAFOV, A. SERGEEVA, J. BELANOVSKAYA, E. AKOPYAN, S. ORUJEV, Ad. SIKHARULIDZE, Z. SALPAGAROV, A. AMBARTSUMYAN, A. ORUJEV, Al. SOPADZE, G. SHESTAKOV, A ARZUMANYAN, G. RAKHMATULINA, I. TARKHNISHVILI, D. SKOROBOGACH, J. BALYAN, L. RZAEV, R. TOLORDAVA, K. SPIRIDONOV, V. DANYELYAN, T. SATTARZADE, R. TAMOV, M. DAVTYAN, R. SAFAROV, S. IRAN TUNIEV, B. GABRIELYAN, E. SHAMCHIYEV, T. AGHILI, A. VAISMAN, A. GLYCHIAN, D. SULEIMANOV, M. EVERETT, J. (Coordinator) BELIK, V. GRIGORYAN, E. SULTANOV, E. FARVAR, M.T. JENDEREDJIAN, K. TAGIEVA, E. JAZEBIZADEH, K. KAZARYAN, H. KAVOUSI, K. TURKEY KAZARYAN, M. GEORGIA MAHFOUZI, M. ALTINTAS, M. KHASABYAN, M. ARABULI, A. MANSURI, J. ATAY, S KHOROZYAN, I. ARABULI, G. NAGHIZADEH, N BIRSEL, A. MANVELYAN, K. (Coordinator) BERUCHASHVILI, G. NAJAFI, A. CAN, E. MARKARYAN, N. BERUCHASHVILI, N. ZIYAEE, H. CIFTCI, N. MURADYAN, S. BUKHNIKASHVILI, A. RAHMANIYAN, M. DOMAC, A. RUKHKYAN, L. BUTKHUZI, L. GURKAN, B. SHASHIKYAN, S. CHEKURISHVILI, Z. IPEK, A. TOVMASYAN, S. DIDEBULIDZE, A. RUSSIA KALEM, S. VANYAN, A. DZNELADZE, M. BIRYUKOV, N. KUCUK, M. VARDANYAN, J. EGIASHVILI, D. BLAGOVIDOV, A. KURDOGLU, O. VOSKANOV, M. GELASHVILI, A. BRATKOV, V. KURT, B. ZIROYAN, A. GOGICHAISHVILI, L. BUKREEV, S. LISE, Y. (Coordinator) ZORANYAN, V. GOKHELASHVILI, R. CHILIKIN, V. URAS, A.
    [Show full text]
  • An Applied SWOT Model for Analyzing Role-Taking of Converted Villages to Towns in Urban Network Behzad ENTEZARI1, Mostafa TALESHI2, Mahdi MUSAKAZEMI3 1 Ph.D
    Special Issue INTERNATIONAL JOURNAL OF HUMANITIES AND February 2016 CULTURAL STUDIES ISSN 2356-5926 An Applied SWOT Model for Analyzing Role-Taking of Converted Villages to Towns in Urban Network Behzad ENTEZARI1, Mostafa TALESHI2, Mahdi MUSAKAZEMI3 1 Ph.D. Student in Geography and Rural Planning, PNU. Tehran (Responsible Author) 1 Associated Prof. of Geography, PNU, Tehran 1 Associated Prof. of Geography, PNU, Tehran (The case of 12 villages in East Azerbaijan/Iran – 2001-2011) Abstract One of the most important features of urbanization in IRAN, like other third world countries, has been converting rural points to new city centers. These effects impact on the number of cities and urban networks of the different regions. So it is necessary to provide new development plans for these new rurban settlements. However, as the usual, after converting them to cities, especially in macro regional plans, they are placed in the same group as service points for their rural jurisdictions. As a result, there is a need to introduce some methods and models for separating these small settlements to be able to offer different strategies for their development and role- taking in the region’s urban network. For this purpose, using SWOT analysis, a research has been done in 12 converted former villages to city centers during 2001-2011 in East Azerbaijan, Iran. The results show that with regard to structural-functional features of each settlement, it would be possible to place them in different groups and offer different strategies for each group. The model can be easily applied to small towns and rural centers almost in all and especially in the third world countries.
    [Show full text]
  • Iran and Turkmenistan
    Iran and Turkmenistan: Lessons Learned from Transboundary Water Cooperation Mohammad Reza Attarzadeh Deputy Minister of Water & Waste Water Affairs Jabbar Vatanfada General Director of Transboundary Rivers Bureau I.R.Iran Ministry of Energy INTERNATIONAL CONFERENCE “EUROPE-ASIA TRANSBOUNDARY WATER COOPERATION” 15 - 16 DECEMBER 2011, PALAIS DES NATIONS, GENEVA contentscontents 11-- AA briefbrief reviewreview ofof IranIran TransboundaryTransboundary waterwater resources;resources; 22-- IranIran andand TurkmenistanTurkmenistan TransboundaryTransboundary WatersWaters andand Cooperations;Cooperations; 33-- Challenges;Challenges; 44-- Conclusions;Conclusions; 1 A brief review of Iran Transboundary water resources TransboundaryTransboundary WatersWaters betweenbetween IranIran andand otherother NeighborsNeighbors Armenia Azerbaijan Turkmenistan Turkey Caspian Sea Atrak Harirud Afghanistan Syria Iraq Hirmand IRANIRAN (Helmand) Pers Pakistan ian Gu ulf Iran approaches for developing transboundary water cooperation Improvement of water usages efficiency upstream and downstream of transboundary basins Capacity building, information exchange between neighboring countries in transboundary basins Transboundary water management, lessons learned for prevention of waste waters Transboundary water disputes settlement with participation in common bi or multi lateral related commissions Water transfer between neighboring countries for decreasing effects of droughts or climate change in region Developing transboundary water cooperation between I.R.Iran
    [Show full text]
  • Article Raphignathoid Mite Fauna of Fields and Orchards of Marand
    Persian Journal of Acarology, Vol. 1, No. 2, pp. 57−76 Article Raphignathoid mite fauna of fields and orchards of Marand (Northwestern Iran) with two new records from Iran and six new records for East Azerbaijan province Reza Navaei-Bonab1, Mohammad Bagheri2 & Elham Zarei2 1 Young Researchers Club, Marand Branch, Islamic Azad University, East Azerbaijan province, Iran; E-mail: [email protected] 2 Department of Plant Protection, Faculty of Agriculture, University of Maragheh, Maragheh, Iran; [email protected] Key Words: Acari, new records, Iran, Raphignathoidea, Marand, fields and orchards Abstract A study of the raphignathoid mite fauna of fields and orchards in Marand, Northwestern Iran, revealed two new species for the mite fauna of Iran, namely: Eustigmaeus ioaniensis Kapaxidi & Papadoulis, 1999 and Agistemus industani Gonzalez-Roodrigez, 1965 and six species for mites new for the fauna of East Azerbaijan province and eight species new for the mite fauna of Marand. Stigmaeidae with 13 species and Barbutiidae and Camerobiidae with one species each had the highest and the lowest number of identified species, respectively. A key to the Iranian families and genera of Raphignathoidea are included. Introduction The Raphignathoidea Kramer, 1877 comprises a large cosmopolitan group of families, which are found in various ecosystems: foliage, branches, trunks, moss and lichen, litter, soil, animal nests, stored products, and even in house dust. The majority of the raphignathoid mites are free-living predators but a few are phytophagous, feeding on moss, and some species are parasites or symbionts of insects (Doğan, 2006). Amongst the predators, some are important biological control agents of spider mites, eriophyid mites, and scale insects in agriculture and forestry (Gerson & Smiley, 1990; Walter & Gerson, 1998; Fan & Zhang, 2005).
    [Show full text]
  • The Rate of Bank Erosion of Meandering Rivers
    THE RATE OF BANK EROSION OF MEANDERING RIVERS HAMID KHORSANDI Lar consulting engineering, Tehran, Iran GH. ALI FAGHIRI Lar consulting engineering, Tehran, Iran ABDOLLAH ASADZADEH Lar consulting engineering, Tehran, Iran The river bank erosion process, due to the importance of its negative impact on river environment and floodplain, was studied along the 82 km. meandering reach of Aras River. The study indicated that, during 45 years, 57 segments of the River bank with a total length of over 39.5 km. have been exposed to erosion. The results indicated that the maximum of areal average erosion rate was 9.3 meter per year, while the areal average of maximum point erosion was 5.5 m/y and the overall mean was 0.9 m/y. The study concluded that, among the erosion factors, the near bank stress was the most pronounced one and its magnitude varied between 8 to 25 pascal. 1. Introduction The river bank erosion is one of the fluvial-geomorphologic processes with profound and continuous negative impact on river environment and its floodplain. The magnitude and extent of the impact depends on the erosion rates and its location with respect to human activities, capital investment and environmental condition. The destruction of riparian lands and its consequential damage to capital outlays plus sediment production and deposition at downstream reaches are some of the most pronounced impacts. Although the factors causing bank erosion are limited in numbers however amongst them 2 or 3 factors play the most effective roles. Hydraulic forces which result from current velocity and wave action are the most basic factors in river bank erosion.
    [Show full text]
  • The Effects of Water Table Decline on the Groundwater Quality in Marand Plain, Northwest Iran
    Iranian Int. J. Sci. 6(1), 2005, p.47-60 The Effects of Water Table Decline on the Groundwater Quality in Marand Plain, Northwest Iran G.R. Lashkaripour1, A. Asghari-Moghaddam2, M. Allaf-Najib2 1 Department of Geology, University of Sistan and Baluchestan, Zahedan, Iran. 2 Department of Geology, University of Tabriz, Tabriz, Iran. (received: 12/1/2005 ; accepted:11/3/2005) Abstract Marand plain, a part of the Caspian Sea catchment, stretching over an area of about 820 km2, in northwestern part of Iran is considered as a semi-arid zone. It has gained substantial importance because of agricultural prosperity and population density. Almost all water consumption needs are met from groundwater resources. In the last decades, rapid population growth coupled with agricultural expansion has significantly increased demand on groundwater resources. Large increases in water demand with little recharge have strained Marand groundwater resources resulting in declines in water levels and deterioration of groundwater quality in the major parts of the plain. It's worth mentioning that the paramount cause of sharp drop in the groundwater table in the recent years is conclusively attributed to pumping out of well water which confirmedly exceeds the level of the natural recharge. As a result, the average water level, for instance, has dropped from 1179.9 m to 1168.2 m during the years from 1982 to 2000. The prime objective of this research is to study and examine the groundwater decline and its effect on the quality of groundwater in the Marand aquifer for the said period. Keywords: aquifer, decline, groundwater, Iran, quality.
    [Show full text]
  • 361 Introduction He Statistics Appeared in This Chapter Have Been
    IRAN STATISTICAL YEARBOOK 1396 9. WATER AND ELECTRICITY Introduction he statistics appeared in this chapter have been electricity which are reflected in Chapter 10, Tprovided as register records by the Ministry of “Construction and Housing,” of the yearbook. Energy on two topics of "water" and "electricity". Definitions and concepts Water Water basin: see Chapter 1, Land and climate, This section includes information on "underground Definitions and concepts. waters", "reservoir dams", and "length of networks Aquatic year: see Chapter 1, Land and climate, and number of water and sewage extensions". The Definitions and concepts. related statistics have been added to the Statistical Water produced: the amount of water gained from Yearbook of Iran since the year 1346. various (surface and underground) water resources Statistics on underground waters and reservoir such as wells, springs, subterranean canals, dams dams have been provided by Water Resources and river basins. Management Company and statistics on the length Dam: a structure built against the flow of water to of networks and number of water and sewage reserve water or change the direction of flow or extensions has been obtained from the Water and manage it for satisfying different needs such as Sewage Engineering Company. drinking, industry, irrigation (agriculture), It is notworthy that Central and Internal basin, electricity generation and control of flood. Hamun basin, and Sarakhs basin were renamed by Reservoir dam: a dam made for reserving, Water Resources Management Organization as managing or controlling the flow of water to Central Plateau, Eastern Border and Qareh Qum, reserve it for procuring water for irrigation, respectively, in the year 1383.
    [Show full text]
  • Heteroptera) Fauna of Azerbaijan Province, Iran
    Turk J Zool 33 (2009) 421-431 © TÜBİTAK Research Article doi:10.3906/zoo-0804-3 Notes on the true bug (Heteroptera) fauna of Azerbaijan province, Iran Mohammad Ali GHARAAT1,*, Mohammad HASSANZADEH1, Mohammad Hasan SAFARALIZADEH1, Majid FALLAHZADEH2 1Department of Entomology, Agricultural Faculty, Urmia University, Urmia - IRAN 2Department of Entomology, Islamic Azad University, Jahrom Branch, Jahrom - IRAN Received: 07.04.2008 Abstract: The Heteroptera fauna in east Azerbaijan and west Azerbaijan provinces in northwestern Iran was surveyed during 2005-2006. In all, 73 species from 18 families were collected and identified, of which 1 species, Mozena lunata (Burmeister, 1835) (Coreidae), is a new record for the Palearctic ecozone and 6 species are newly recorded from Iran. Key words: Fauna, Heteroptera, Iran, Palearctic ecozone Introduction present study were to provide detailed information on The Heteroptera are very important in agriculture the distribution of Heteroptera in east Azerbaijan and (Linnavuori and Hosseini, 2000). In this suborder west Azerbaijan provinces, and to contribute to the there are aquatic, semi-aquatic, and terrestrial species, knowledge of the Iranian Heteroptera fauna. some of which are important agricultural and silvicultural pests (Kerzhner and Yachevski, 1964). On Materials and methods the other hand, predacious bugs reduce the number The study was conducted during 2005-2006, and of agricultural pests and may be used for biological nymph and adult specimens in the regions were control (Linnavuori and Hosseini, 2000); therefore, collected from different locations using different identification of Heteroptera is important (Linnavuori methods (Figure, and Tables 1 and 2). Most of the and Hosseini, 2000). specimens were collected by sweep net, light trap, or The Iranian Heteroptera fauna is rather well rectangular frame tray net.
    [Show full text]
  • Water and Electricity
    IRAN STATISTICAL YEARBOOK 1391 8. WATER AND ELECTRICITY Introduction Aquatic year: see Chapter 1, Definitions and he statistics appeared in this chapter have concepts. been provided as register records by Water produced: the amount of water gained from the Ministry of Energy on two topics of various (surface and underground) water resources "water" and "electricity". such as wells, springs, subterranean canals, dams T and river basins. 1. Water Dam: a structure built against the flow of water to This section includes information on reserve water or change the direction of flow or "underground waters", "reservoir dams", and manage it for satisfying different needs such as "length of networks and number of water and drinking, industry, irrigation (agriculture), sewage extensions". The related statistics have electricity generation and control of flood. been added to the Statistical Yearbook of Iran Reservoir dam: a dam made for reserving, since the year 1346. managing or controlling the flow of water to Statistics on underground waters and reservoir reserve it for procuring water for irrigation, dams have been provided by Water Resources drinking, industry, electricity generation and Management Company and statistics on the length control of flood of networks and number of water and sewage Large reservoir dam: refers to all dams with a extensions has been obtained from the Water and height of 15 metres or more as well as 10 to 15 Sewage Engineering Company. metres high dams having a reservoir with a Central and Internal basin, Hamun basin, and volume of 1 million cubic metres or more and/or Sarakhs basin were renamed by Water Resources a capacity of flood discharge of 2000 or more Management Organization as Central Plateau, cubic metres per second.
    [Show full text]
  • Received by NSD/FARA Registration Unit 07/22/2013 3:14:07 PM OMB NO
    Received by NSD/FARA Registration Unit 07/22/2013 3:14:07 PM OMB NO. 1124-0002; Expires February 28,2014 U.S. Department of Justice Supplemental Statement Washington, DC 20530 Pursuant to the Foreign Agents Registration Act of 1938, as amended For Six Month Period Ending 05/31/2013 (Insert date) I - REGISTRANT 1. (a) Name of Registrant (b) Registration No. Fabiani & Company 6045 (c) Business Address(es) of Registrant 1101 Pennsylvania Avenue, NW Suite 700 Washington, DC 20004 2. Has there been a change in the information previously furnished in connection with the following? (a) If an individual: (1) Residence address(es) YesD NoD (2) Citizenship . YesD NoD (3) Occupation YesD NoD (b) If an organization: (1) Name YesD No0 (2) Ownership or control YesD No0 (3) Branch offices YesD No 0 (c) Explain fully all changes, if any, indicated in Items (a) and (b) above. IF THE REGISTRANT IS AN INDIVIDUAL, OMIT RESPONSE TO ITEMS 3, 4, AND 5(a). 3. If you have previously filed Exhibit C1, state whether any changes therein have occurred during this 6 month reporting period. Yes • No El If yes, have you filed an amendment to the Exhibit C? Yes • No • If no, please attach the required amendment. 1 The Exhibit C, for which no printed form is provided, consists of a true copy ofthe charter, articles of incorporation, association, and by laws of a registrant that is an organization. (A waiver ofthe requirement to file an Exhibit C may be obtained for good cause upon written application to the Assistant Attorney General, National Security Division, U.S.
    [Show full text]