Anthelmintic Drugs and Coccidiostats: Anti-Parasitic Drug Residues in Meat Mariclarw Mcgarrity Randox Food Diagnostics Meat

Total Page:16

File Type:pdf, Size:1020Kb

Anthelmintic Drugs and Coccidiostats: Anti-Parasitic Drug Residues in Meat Mariclarw Mcgarrity Randox Food Diagnostics Meat Anthelmintic drugs and coccidiostats: anti-parasitic drug residues in meat by Mariclare McGarrity, helminth infection include diarrhoea, weight major metabolite is 5-hydroxythiabenda - senior customer support scientist, loss, anorexia and insufficient weight gain. zole. The sum of unaltered thiabendazole Randox Food Diagnostics. Anthelmintic drugs are used to treat and 5-hydroxythiabendazole is estimated to helminth infection in cattle. Despite the represent 50-90% of total residues and are lobally, livestock play a vital role in prevalence and economic impact of the most persistent residues detected in the economy, which includes meat, helminth infection in the global livestock liver. Gmilk, eggs and fibre. Cattle and poul - industry, little attention is given to the devel - l Triclabendazole: try production are two of the most impor - opment of new anthelmintics. Triclabendazole is a benzimidazole tant agricultural industries worldwide. As The most widely successful drug over the anthelmintic used in food animals, where it incomes rise, people in both developed and last 20 years has been Ivermectin (an is mainly employed in the control of liver developing nations have an increased Avermectin) which has decreased research fluke in sheep and cattle. appetite for animal protein, and therefore into new drugs. Triclabendazole has a narrow spectrum of the demand on the industries to increase Below are some of the most commonly activity concentrated against a limited num - productivity is also intensifying. used veterinary anthelmintic drugs: ber of fasciolides. Triclabendazole is not This article will provide a brief overview of l Avermectins: active against nematodes some common infections being battled The avermectins are a group of chemically l Levamisole: throughout our worldwide cattle and poul - related compounds originally isolated from Levamisole is a synthetic imidazothiazole try industries and also the drive to keep our the actinomycete Streptomyces avermitilis. derivative that has been used extensively as meat and eggs drug-residue free. They are macrocyclic lactone derivatives an anthelmintic agent. The racemic mixture with potent anthelmintic activity, but lack tetramisole is also used as an anthelmintic, antibacterial or antifungal activity. although the anthelmintic activity is due to Helminth infection The avermectins also have insecticide levamisole. Levamisole is commonly used in activity and include the compounds iver - cattle, sheep, pigs, goats, and poultry to There has been a noted success in the last mectin, abamectin, doramectin, emamectin, treat nematode infections, but has no activ - 60 years in controlling helminth parasites in and eprinomectin. ity against flukes and tapeworms. It is cattle using anthelmintics. However, l Benzimidazoles: thought that its anthelmintic activity is helminth infection continues to be a looming Albendazole is a benzimidazole carbamate, achieved through interaction with the threat to our global livestock production which is used as an anthelmintic in veteri - nicotinergic acetylcholine receptor, prevent - with increased anthelmintic resistance. nary and human medicine. Albendazole is ing males from successfully copulating as Parasitic helminth infection affects food metabolised to albendazole sulphoxide and they lose their ability to control their repro - producing animals worldwide. The word albendazole sulphone; the carbamate moi - ductive muscles. ‘helminth’ is a general term meaning ‘worm’, ety is then cleaved to produce albendazole l Moxidectin: but there are many different types of 2-aminosulphone. Moxidectin is a semi-synthetic, macrocyclic worms. The most widely prevalent Albendazole binds strongly to tubulin in lactone, structurally similar to abamectin, helminths are the nematodes (round the cells of nematodes, especially intestinal ivermectin and milbemycin. Moxidectin is worms), which inhabit the gastro-intestinal cells, resulting in a loss of absorptive func - intended for the treatment of endo- and tract. Larvae for these parasites are most tion which causes starvation of the nema - ecto-parasites in cattle and sheep by oral or commonly ingested during grazing. todes. Albendazole-containing products are sub-cutaneous route and in horses by oral Usually the development time of these lar - available in liquid form or as pellets, both of administration. vae then depends on the specific type of which are administered orally. nematode and the conditions they inhabit. l Thiabendazole: Under optimal conditions the developmen - Thiabendazole is an anthelmintic, which is Residues and resistance tal phase takes up to 10 days. used in the treatment and control of gas - Most trichstrongyles (type of nematode) trointestinal roundworms in horses, cattle, In 2011 46 border rejections were raised in moult into adults three weeks after infec - goats and sheep, and for the control of lung - the EU for residues of veterinary medical tion. Eggs produced by female adults are worms in sheep. It is also used for the con - products, 25 of which were for the present in the faeces of infected animals. trol of fungal diseases affecting plants, anthelmintic drug Ivermectin. These rejec - In Brazilian Beef herds, Cooperia infection animals and man. tions have highlighted the need for a rapid has been found to be one of the most Thiabendazole binds strongly to tubulin in and reliable screening method for many bor - prevalent. The Cooperia species live in the the cells of parasitic worms, especially der inspection points and import authorities small intestine and can penetrate the intestinal cells, resulting in interference with as vigilance must be increased to ensure that mucosa during larval development causing absorptive function and starvation. foods containing these drugs are not changes similar to those of the intestinal Thiabendazole is rapidly metabolized and allowed to enter the food chain. species trichostrongylus. Symptoms of this excreted in cattle, pigs, sheep, goats; its Continued on page 8 International Meat Topics — Volume 4 Number 3 7 Continued from page 7 Poultry are generally raised in cramped, static in action and is most effective against Treatment of the infected animal with the overcrowded conditions which make coc - the sporozoite stage of Eimeria. It is the only wrong drugs, incorrect dosage or insufficient cidiosis infection easily spreadable. member of the pyridinol group to be com - withdrawal period of the drugs are con - Coccidiosis is usually characterised by mercially successful and is one of the few tributing to anthelmintic resistance as well as bloody droppings, weight loss and mortality drugs used to control coccidiosis in rabbits. residues of these compounds remaining in in young chickens. Unsanitary conditions It is administered in feed at a dose of the milk or tissue of treated animals. usually increase the prevalence of this infec - 200ppm for rabbits and 125ppm for chick - Maximum Residue Levels (MRLs) have tion in the poultry industry. ens, with a withdrawal period of five days. been established for the majority of these Clopidol is generally used in combination compounds. with nequinate and is also used with methyl - Anticoccidial drugs benzoquate in chickens and turkeys. The United States-Food and Drug Coccidiosis in poultry Coccidiostats are antiprotozoal agents that Administration (US-FDA) has also approved act upon coccidia parasites in livestock. The the use of clopidol in medicated feed in Just like helminth infection in the cattle EU has implemented testing guidelines (out - combination with bacitracin zinc and roxar - industries, coccidiosis is causing economic lined in group B2b of Annex 1 to Council sone. losses in the poultry industry. The most Regulation 2377/90) to test for veterinary l Decoquinate: common species of coccidia that are preva - medicines in food. This would encompass Decoquinate is a quinolone derivative, lent in chickens are Eimeria tenella and the treatment of coccidiosis – a protozoal active against eimeria and toxoplasma Eimeria necatrix which both cause bloody disease that can cause diarrhoea and dysen - species. The quinolones are a family of syn - intestinal coccidiosis. tery in the affected animal. thetic antibiotics structurally related to In chickens, a coccidia oocyst is excreted Control of coccidiosis is particularly nalidixic acid that inhibit the action of bacte - in the droppings and then develops into important in the poultry industry, where the rial DNA gyrase enzymes, although the what is called a sporulated oocyst, infecting prophylactic use of coccidiostats prevents exact mode of action is not understood. other chickens. This sporulated oocyst facili - the disease from developing, thus increasing Decoquinate inhibits the development of tates many offspring inside the cells of the the risk of drug residue carry over into meat coccidia in the small intestine in the early infected chicken and large amounts of and eggs. Maximum Residue Limits have part of the infective cycle, resulting in lower intestinal cells may be destroyed or dam - been set in place for a number of coccidio - morbidity and mortality. Decoquinate is aged. stat residues. administered in feed at 20-40ppm for the After the developmental phase, male and Below are some commonly employed coc - prevention of coccidiosis. Decoquinate is female cells are produced which enables cidiostats: also administered in combination with other production of an oocyst. This oocyst rup - l Clopidol: antimicrobials such as chlortetracycline or tures
Recommended publications
  • The Bhagirathi Cooperative Milk Producers' Union Limited
    The Bhagirathi Cooperative Milk Producers’ Union Limited TESTING PARAMETERS OF MILK & MILK PRODUCTS THAT SHOULD BE TESTED MICROBIOLOGICAL PARAMETER FOR PANEER 1] SPC(cfu/ ml) 2] Coliform (cfu/ ml) 3] E.Coli (cfu/ ml) 4] Salmonella (cfu/ 25gm) 5] Listeria monocytogenes (cfu/ gm) 6] Staphylococcus aureus (cfu/ gm) 7] Yeast & mould count (cfu/ gm) MICROBIOLOGICAL PARAMETER FOR DAHI 1] Coliform (cfu/ ml) 2] E.Coli (cfu/ ml) 3] Salmonella (cfu/ 25gm) 4] Listeria monocytogenes (cfu/ gm) 5] Staphylococcus aureus (cfu/ gm) 6] Yeast & mould count (cfu/ gm) 7] Anaerobic Spore count (cfu/ gm) MICROBIOLOGICAL PARAMETER IN FINISHED MILK THAT SHOULD BE TESTED 1] SPC(cfu/ ml) 2] Coliform (cfu/ ml) 3] Salmonella (cfu/ 25gm) 4] Listeria monocytogenes (cfu/ gm) The Bhagirathi Cooperative Milk Producers’ Union Limited LIST OF ANTIBIOTICS IN FINISHED MILK THAT SHOULD BE TESTED 1. Ampicillin 2. Cloxacillin 3. Colistin 4. Dihydrostreptomycin Streptomycin 5. Chlortetracycline/Oxytetracycline/Tetracycline 6. Lincomycin 7. Neomycin 8. Salinomycin 9. Spectinomycin 10. Sulphadiazine 11. Sulphathiazole Sodium 12. Trimethoprim 13. Sulfadiazine 14. Sulfanilamide 15. Sulfaguanidine 16. Zine Bacitracin (minimum 60lU/mg dried substance) 17. Amprolium 18. Apramycin 19. Ceftiofur 20. Cephapirine 21. Clopidol 22. Enrofloxacin 23. Ethopabate 24. Flavophospholipol (Flavomycin) 25. Monensin 26. Sulphaquinoxaline 27. Sulfadimidine 28. Tyvalosin Tartrate 29. Virginiamycin 30. Acepromazine 31. Albendazole 32. Amitraz 33. Aspirin 34. Buserelin 35. Butafosfane 36. Butaphosphan 37. Calcium Borogluconate 38. Calcium Magnesium Borogluconate 39. Carboprost tromethamine 40. Cefquinone Sulphate 41. Chloral hydrate 42. Closprostenol Sodium 43. Clenbutrol (Broncopulmin powder) 44. Diethylcarbarnazine 45. Dinitolmide 46. Doramectin The Bhagirathi Cooperative Milk Producers’ Union Limited LIST OF ANTIBIOTICS IN FINISHED MILK THAT SHOULD BE TESTED 47.
    [Show full text]
  • Poster Munoz Et Al Avm 4 Nt
    ANTHELMINTIC AVERMECTINS FOR THE TREATMENT OF NON- TUBERCULOSIS MYCOBACTERIA INFECTIONS IN CYSTIC FIBROSIS Lara Muñoz Muñoz1,2,*, Charles J. Thompson3, and Santiago Ramón-García2,3,4,* 1 Clinical University Hospital Lozano Blesa, Zaragoza, Spain 2 Department of Microbiology, Preventive Medicine and Public Health, Faculty of Medicine, University of Zaragoza, Spain; 3 Department of Microbiology and Immunology, Centre for Tuberculosis Research, University of British Columbia, Canada; 4 Research & Development Agency of Aragon (ARAID) Foundation, Spain. *Email: [email protected] and [email protected] INTRODUCTION Pulmonary disease caused by non-tuberculosis mycobacteria (NTM) has emerged as a major threat to the health of individuals with cystic fibrosis (CF). The NTM most commonly identified are Mycobacterium abscessus (MABSC) and Mycobacterium avium (MAC) complexes. MABSC includes 3 species M. abscessus sb. abscessus, M. abscessus sb. bolletii and M. abscessus sb. masiliense. Ivermectin Selamectin Avermectins are a family of macrocyclic lactone compounds used as anthelmintics. Although inactive against Gram-positive and Gram-negative bacteria, they have demonstrated in vitro activity against mycobacterial species, including Mycobacterium tuberculosis, Mycobacterium ulcerans and Mycobacteriym marinum (PMID: 26270480 & 23165468). Milbemycin Doramectin OBJECTIVE oxime To evaluate the in vitro activity of the avermectins against MABSC and MAC. CONCLUSIONS The avermectins comprise clinically approved drugs (i.e. ivermectin) and are extensively
    [Show full text]
  • Sheet1 Page 1 a Abamectin Acetazolamide Sodium Adenosine-5-Monophosphate Aklomide Albendazole Alfaxalone Aloe Vera Alphadolone A
    Sheet1 A Abamectin Acetazolamide sodium Adenosine-5-monophosphate Aklomide Albendazole Alfaxalone Aloe vera Alphadolone Acetate Alpha-galactosidase Altrenogest Amikacin and its salts Aminopentamide Aminopyridine Amitraz Amoxicillin Amphomycin Amphotericin B Ampicillin Amprolium Anethole Apramycin Asiaticoside Atipamezole Avoparcin Azaperone B Bambermycin Bemegride Benazepril Benzathine cloxacillin Benzoyl Peroxide Benzydamine Bephenium Bephenium Hydroxynaphthoate Betamethasone Boldenone undecylenate Boswellin Bromelain Bromhexine 2-Bromo-2-nitropan-1, 3 diol Bunamidine Buquinolate Butamisole Butonate Butorphanol Page 1 Sheet1 C Calcium glucoheptonate (calcium glucoheptogluconate) Calcium levulinate Cambendazole Caprylic/Capric Acid Monoesters Carbadox Carbomycin Carfentanil Carnidazole Carnitine Carprofen Cefadroxil Ceftiofur sodium Centella asiatica Cephaloridine Cephapirin Chlorine dioxide Chlormadinone acetate Chlorophene Chlorothiazide Chlorpromazine HCl Choline Salicylate Chondroitin sulfate Clazuril Clenbuterol Clindamycin Clomipramine Clopidol Cloprostenol Clotrimazole Cloxacillin Colistin sulfate Copper calcium edetate Copper glycinate Coumaphos Cromolyn sodium Crystalline Hydroxycobalamin Cyclizine Cyclosporin A Cyprenorphine HCl Cythioate D Decoquinate Demeclocycline (Demethylchlortetracycline) Page 2 Sheet1 Deslorelin Desoxycorticosterone Pivalate Detomidine Diaveridine Dichlorvos Diclazuril Dicloxacillin Didecyl dimethyl ammonium chloride Diethanolamine Diethylcarbamazine Dihydrochlorothiazide Diidohydroxyquin Dimethylglycine
    [Show full text]
  • Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019 Theinternational Programme on Chemical Safety (IPCS) Was Established in 1980
    The WHO Recommended Classi cation of Pesticides by Hazard and Guidelines to Classi cation 2019 cation Hazard of Pesticides by and Guidelines to Classi The WHO Recommended Classi The WHO Recommended Classi cation of Pesticides by Hazard and Guidelines to Classi cation 2019 The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019 TheInternational Programme on Chemical Safety (IPCS) was established in 1980. The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management of chemicals. This publication was developed in the IOMC context. The contents do not necessarily reflect the views or stated policies of individual IOMC Participating Organizations. The Inter-Organization Programme for the Sound Management of Chemicals (IOMC) was established in 1995 following recommendations made by the 1992 UN Conference on Environment and Development to strengthen cooperation and increase international coordination in the field of chemical safety. The Participating Organizations are: FAO, ILO, UNDP, UNEP, UNIDO, UNITAR, WHO, World Bank and OECD. The purpose of the IOMC is to promote coordination of the policies and activities pursued by the Participating Organizations, jointly or separately, to achieve the sound management of chemicals in relation to human health and the environment. WHO recommended classification of pesticides by hazard and guidelines to classification, 2019 edition ISBN 978-92-4-000566-2 (electronic version) ISBN 978-92-4-000567-9 (print version) ISSN 1684-1042 © World Health Organization 2020 Some rights reserved.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,173.403 B2 Rosentel, Jr
    USOO9173403B2 (12) United States Patent (10) Patent No.: US 9,173.403 B2 Rosentel, Jr. et al. (45) Date of Patent: Nov. 3, 2015 (54) PARASITICIDAL COMPOSITIONS FOREIGN PATENT DOCUMENTS COMPRISING MULTIPLE ACTIVE AGENTS, BR PIO403620 A 3, 2006 METHODS AND USES THEREOF EP 83.6851 A 4f1998 GB 2457734 8, 2009 (75) Inventors: Joseph K. Rosentel, Jr., Johns Creek, WO WO 98,17277 4f1998 GA (US); Monica Tejwani, Monmouth WO WO O2/O94233 11, 2002 WO WO2004/O16252 2, 2004 Junction, NJ (US); Arima Das-Nandy, WO WO 2007/O18659 2, 2007 Titusville, NJ (US) WO WO 2008/O3O385 3, 2008 WO 2008/136791 11, 2008 (73) Assignee: MERLAL, INC., Duluth, GA (US) WO WO 2009/O18198 2, 2009 WO WO 2009/027506 3, 2009 WO 2009/112837 9, 2009 (*) Notice: Subject to any disclaimer, the term of this WO WO 2010/026370 3, 2010 patent is extended or adjusted under 35 WO WO2010.109214 9, 2010 U.S.C. 154(b) by 100 days. OTHER PUBLICATIONS (21) Appl. No.: 13/078,496 Notice of Opposition in the matter of New Zealand Patent Applica (22) Filed: Apr. 1, 2011 tion 595934 in the name of Norbrook Laboratories Limited and Opposition thereto by Merial Limited dated Jun. 28, 2014. (65) Prior Publication Data First Supplementary Notice of Opposition in the matter of New Zealand Patent Application 595934 in the name of Norbrook Labo US 2011 FO245191 A1 Oct. 6, 2011 ratories Limited and Opposition thereto by Merial Limited dated Aug. 28, 2014. Second Supplementary Notice of Opposition in the matter of New Related U.S.
    [Show full text]
  • Recognition and Management of Pesticide Poisonings
    HIGHLIGHTS CHAPTER 8 Derived from living systems Bacillus thuringiensis is the most important live agent Biologicals and Insecticides Generally of low-order of Biological Origin toxicity Poison control center advice can help avoid potentially harmful treatment This chapter concerns several widely used insecticidal products of natural origin, and also certain agents usually identified as biological control agents. This latter group includes many living control agents, though only the bacterial agent Bacillus thuringi- SIGNS & SYMPTOMS ensis will be discussed in detail, as it is one of the most widely used. Other agents, such as parasitic wasps and insects, are so host specific they pose little or no risk to man. Highly variable based on Many of the pesticides in this chapter, with the notable exception of nicotine, are specific agents relatively less toxic to mammals than to insects. Consequently, there may be no findings Several cause GI irritation of toxicity following ingestion of these compounds. While clinicians should always consider calling their regional poison control center (1-800-222-1222) for advice on Nicotine may have serious any poisoning, it may be of particular value in the case of some of these biological CNS effects pesticides, where no treatment is warranted and poison control center advice can help Nicotine and sabadilla may avoid potentially harmful treatments. have cardiovascular effects Agents are presented in alphabetical order. TREATMENT AVERMECTIN Specific to the agent Source and Products Skin, eye, GI Avermectin and related products are synthetically derived from the toxin of the soil decontamination may be bacterium Streptomyces avermitilis. They are used for control of mites, fire ants (ant indicated bait stations) and other insects.
    [Show full text]
  • China Releases New Maximum Residue Limits for Pesticides In
    GB 2763-2016 THIS REPORT CONTAINS ASSESSMENTS OF COMMODITY AND TRADE ISSUES MADE BY USDA STAFF AND NOT NECESSARILY STATEMENTS OF OFFICIAL U.S. GOVERNMENT POLICY Voluntary - Public Date: 3/31/2017 GAIN Report Number: CH17016 China - Peoples Republic of Post: Beijing China Releases New Maximum Residue Limits for Pesticides in Food Report Categories: FAIRS Subject Report Approved By: Lisa Anderson Prepared By: FAS Staff Report Highlights: On December 18, 2016, the Chinese National Health and Family Planning Commission, Ministry of Agriculture, China Food and Drug Administration released the National Food Safety Standard - Maximum Residue Limits for Pesticides in Foods (GB 2763-2016). The standard will replace the current MRL Standard (GB 2763-2014) and will be implemented on June 18, 2017. This report provides an unofficial translation of the standard. Editors’ Note: The asterisk appearing in the MRL column means that the limit is a temporary MRL. A temporary MRL is usually set under the following four conditions: 1. The dietary risk assessment data is incomplete; 2. The Acceptable Daily Intake (ADI) is temporary (ADI is used as the basis for MRL setting); 3. There is no surveillance or analysis method for the MRL that complies with the standard requirements; 4. In emergency situations, the pesticide is approved to be used on un-registered crops. I GB 2763-2016 General Information: BEGIN TRANSLATION ICS 65.100 G 25 GB National Standard of the People’s Republic of China GB 2763—2016 Replacing GB 2763 - 2014 National food safety standard Maximum Residue Limits for Pesticides in Food General Information: National Health and Family Planning Commission Issued by: Ministry of Agriculture China Food and Drug Administration Issued on: 2016-12-18 Implementation:2017-06-18 II GB 2763-2016 Table of Content Preface ...............................................................................................................................................................
    [Show full text]
  • Tolerance and Efficacy of Emamectin Benzoate and Ivermectin for the Treatment of Pseudocapillaria Tomentosa in Laboratory Zebrafish (Danio Rerio)
    Tolerance and Efficacy of Emamectin Benzoate and Ivermectin for the Treatment of Pseudocapillaria tomentosa in Laboratory Zebrafish (Danio rerio) Collymore, C., Watral, V., White, J. R., Colvin, M. E., Rasmussen, S., Tolwani, R. J., & Kent, M. L. (2014). Tolerance and Efficacy of Emamectin Benzoate and Ivermectin for the Treatment of Pseudocapillaria tomentosa in Laboratory Zebrafish (Danio rerio). Zebrafish, 11(5), 490-497. doi:10.1089/zeb.2014.1021 10.1089/zeb.2014.1021 Mary Ann Liebert, Inc. Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse ZEBRAFISH Volume 11, Number 5, 2014 Fish Haus ª Mary Ann Liebert, Inc. DOI: 10.1089/zeb.2014.1021 Tolerance and Efficacy of Emamectin Benzoate and Ivermectin for the Treatment of Pseudocapillaria tomentosa in Laboratory Zebrafish (Danio rerio) Chereen Collymore,1,* Virginia Watral,2 Julie R. White,1,3 Michael E. Colvin,2 Skye Rasmussen,1,3 Ravi J. Tolwani,1,3 and Michael L. Kent2 Abstract Tolerance of adult zebrafish and efficacy of emamectin benzoate and ivermectin in eliminating Pseudoca- pillaria tomentosa infection were evaluated. In the tolerance study, behavioral changes, fecundity, histopa- thology, and mortality were evaluated for in-feed administration of emamectin (0.05, 0.10, and 0.25 mg/kg) and ivermectin (0.05 and 0.10 mg/kg). All doses of emamectin were well tolerated. Ivermectin 0.05 mg/kg ad- ministration resulted in mild behavioral changes and a transient decrease in fecundity. Ivermectin 0.10 mg/kg administration resulted in severe behavioral changes and some mortality. In the efficacy study, emamectin (0.05 and 0.25 mg/kg) and ivermectin (0.05 mg/kg) were evaluated for their efficacy in eliminating P.
    [Show full text]
  • DETERMINATION of BENZIMIDAZOLE and AVERMECTIN RESIDUES in BOVINE MILK by LIQUID CHROMATOGRAPHY -TANDEM MASS SPECTROMETRY Date
    DETERMINATION OF BENZIMIDAZOLE AND AVERMECTIN RESIDUES IN BOVINE MILK BY LIQUID CHROMATOGRAPHY -TANDEM MASS SPECTROMETRY Date: 2014-april-18 PRINCIPLE This method is based on the principle of the quick, easy, cheap, effective, rugged and safe (QuEChERS) method [1]. It includes extraction of a representative portion of the sample with acetonitrile (MeCN) followed by salting out and dispersive solid-phase extraction with a mixture of magnesium sulphate and C18 material. After clean-up, an aliquot of the supernatant is analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS). SCOPE This analytical method includes determination of residues of seven benzimidazoles (albendazole, thiabendazole, albendazole-sulphoxide, albendazole-sulphone, triclabendazole, triclabendazole-sulphoxide and triclabendazole-sulphone) and three avermectins (abamectin, emamectin and ivermectin) in bovine milk at concentration levels of 5 ngg−1 to 500 ngg−1. MATERIALS The following reagents and chemical are applicable: MeCN; High performance liquid chromatography (HPLC) grade Methanol (MeOH); Octadecylsilane sorbent C18; Sodium Chloride (NaCl), analytical grade; Ammonium acetate, analytical grade; Formic acid, analytical grade; Primary secondary amine (PSA) sorbent; Magnesium sulphate anhydrous. Standards and stock solutions The analytical standards include: Albendazole 99.6% and Ivermectin 91.0% from United States Pharmacopoeia (USP); Thiabendazole 98.3%, Abamectin 94.4%, Emamectin, 96.5%; Cyprodinil, 99.5% all from Chem service; Albendazole-sulphoxide,
    [Show full text]
  • NRDC Comments August 2015
    EPA-HQ-OPP-2015-0422 NRDC comments August 2015 September 28, 2015 Comments from the Natural Resources Defense Council (NRDC) on the Draft Pesticide Cumulative Risk Assessment: Framework for Screening Analysis EPA-HQ-OPP-2015-0422 These comments are supported by: Alaska Community Action on Toxics Pam Miller, Executive Director As You Sow Austin Wilson, Environmental Health Program Manager Beyond Pesticides Nichelle Harriott, Science and Regulatory Director Beyond Toxics Lisa Arkin, Executive Director Californians for Pesticide Reform Sarah Aird, Acting Executive Director California Rural Legal Assistance Foundation Anne Katten, Pesticide and Work Safety Project Director Center for Biological Diversity Lori Ann Burd, Environmental Health Director and Staff Attorney Center for Effective Government Ronald White, Director of Regulatory Policy 1 EPA-HQ-OPP-2015-0422 NRDC comments August 2015 Center for Environmental Health Caroline Cox, Research Director Community Science Institute Denny Larson, Executive Director Environmental Working Group Sonya Lunder, Senior Analyst Farmworker Association of Florida Jeannie Economos, Pesticide Safety and Environmental Health Project Coordinator Farmworker Justice Virginia Ruiz, Director of Occupational and Environmental Health Friends of the Earth US Tiffany Finck-Haynes, Food futures campaigner Glynn Environmental Coalition Daniel Parshley, Project manager Brunswick, Georgia Greenpeace USA Rick Hind, Legislative Director Green Science Policy Institute Arlene Blum, Executive Director Informed Green Solutions
    [Show full text]
  • Potential Chemical Contaminants in the Marine Environment
    Potential chemical contaminants in the marine environment An overview of main contaminant lists Victoria Tornero, Georg Hanke 2017 EUR 28925 EN This publication is a Technical report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. Contact information Name: Victoria Tornero Address: European Commission Joint Research Centre, Directorate D Sustainable Resources, Water and Marine Resources Unit, Via Enrico Fermi 2749, I-21027 Ispra (VA) Email: [email protected] Tel.: +39-0332-785984 JRC Science Hub https://ec.europa.eu/jrc JRC 108964 EUR 28925 EN PDF ISBN 978-92-79-77045-6 ISSN 1831-9424 doi:10.2760/337288 Luxembourg: Publications Office of the European Union, 2017 © European Union, 2017 The reuse of the document is authorised, provided the source is acknowledged and the original meaning or message of the texts are not distorted. The European Commission shall not be held liable for any consequences stemming from the reuse. How to cite this report: Tornero V, Hanke G. Potential chemical contaminants in the marine environment: An overview of main contaminant lists. ISBN 978-92-79-77045-6, EUR 28925, doi:10.2760/337288 All images © European Union 2017 Contents Acknowledgements ................................................................................................ 1 Abstract ............................................................................................................... 2 1 Introduction ...................................................................................................... 3 2 Compilation of substances of environmental concern .............................................
    [Show full text]
  • Repurposing Avermectins and Milbemycins Against Mycobacteroides Abscessus and Other Nontuberculous Mycobacteria
    antibiotics Article Repurposing Avermectins and Milbemycins against Mycobacteroides abscessus and Other Nontuberculous Mycobacteria Lara Muñoz-Muñoz 1,2,*, Carolyn Shoen 3, Gaye Sweet 4, Asunción Vitoria 1,2, Tim J. Bull 5 , Michael Cynamon 3, Charles J. Thompson 4 and Santiago Ramón-García 1,6,7,* 1 Department of Microbiology, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain; [email protected] 2 Microbiology Unit, Clinical University Hospital Lozano Blesa, 50009 Zaragoza, Spain 3 State University of New York Upstate Medical Center, Syracuse, NY 13210, USA; [email protected] (C.S.); [email protected] (M.C.) 4 Department of Microbiology and Immunology, Centre for Tuberculosis Research, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; [email protected] (G.S.); [email protected] (C.J.T.) 5 Institute for Infection & Immunity, St. George’s University of London, London SW17 0RE, UK; [email protected] 6 Research & Development Agency of Aragón (ARAID) Foundation, 50018 Zaragoza, Spain 7 CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain * Correspondence: [email protected] (L.M.-M.); [email protected] (S.R.-G.) Citation: Muñoz-Muñoz, L.; Shoen, Abstract: Infections caused by nontuberculous mycobacteria (NTM) are increasing worldwide, C.; Sweet, G.; Vitoria, A.; Bull, T.J.; resulting in a new global health concern. NTM treatment is complex and requires combinations of Cynamon, M.; Thompson, C.J.; several drugs for lengthy periods. In spite of this, NTM disease is often associated with poor treatment Ramón-García, S. Repurposing outcomes. The anti-parasitic family of macrocyclic lactones (ML) (divided in two subfamilies: Avermectins and Milbemycins avermectins and milbemycins) was previously described as having activity against mycobacteria, against Mycobacteroides abscessus and including Mycobacterium tuberculosis, Mycobacterium ulcerans, and Mycobacterium marinum, among Other Nontuberculous Mycobacteria.
    [Show full text]