I RESISTANCE to EMAMECTIN BENZOATE in SEA LICE a Thesis Submitted to the Graduate Faculty in Partial Fulfillment of the Requirem
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Specifications of Approved Drug Compound Library
Annexure-I : Specifications of Approved drug compound library The compounds should be structurally diverse, medicinally active, and cell permeable Compounds should have rich documentation with structure, Target, Activity and IC50 should be known Compounds which are supplied should have been validated by NMR and HPLC to ensure high purity Each compound should be supplied as 10mM solution in DMSO and at least 100µl of each compound should be supplied. Compounds should be supplied in screw capped vial arranged as 96 well plate format. -
Table of Contents Introduction
TABLE OF CONTENTS INTRODUCTION............................................................................................................. 2 DEFINITIONS .................................................................................................................. 2 ADVERSE EVENT REPORTING FOR ANIM AL DRUGS ....................................... 4 CANINE HEARTW ORM DISEASE.............................................................................. 7 M ACROCYCLIC LACTONES ...................................................................................... 8 PROHEART 6 PRODUCT INFORM ATION ............................................................... 8 REGULATORY HISTORY OF PROHEART 6 ......................................................... 10 ADE REPORTS FOR PROHEART 6 AND OTHER HEARTW ORM PREVENTIVES .............................................................................................................. 11 PROHEART 6 ADES ..................................................................................................... 16 TRENDS IN PROHEART 6 ADE REPORTING ....................................................... 19 CLINICAL M ANIFESTATIONS ................................................................................. 22 ANAPHYLAXIS/ANAPHYLACTOID REACTIONS ................................................................ 22 CONVULSIONS ................................................................................................................ 24 LIVER SIGNS.................................................................................................................. -
The Bhagirathi Cooperative Milk Producers' Union Limited
The Bhagirathi Cooperative Milk Producers’ Union Limited TESTING PARAMETERS OF MILK & MILK PRODUCTS THAT SHOULD BE TESTED MICROBIOLOGICAL PARAMETER FOR PANEER 1] SPC(cfu/ ml) 2] Coliform (cfu/ ml) 3] E.Coli (cfu/ ml) 4] Salmonella (cfu/ 25gm) 5] Listeria monocytogenes (cfu/ gm) 6] Staphylococcus aureus (cfu/ gm) 7] Yeast & mould count (cfu/ gm) MICROBIOLOGICAL PARAMETER FOR DAHI 1] Coliform (cfu/ ml) 2] E.Coli (cfu/ ml) 3] Salmonella (cfu/ 25gm) 4] Listeria monocytogenes (cfu/ gm) 5] Staphylococcus aureus (cfu/ gm) 6] Yeast & mould count (cfu/ gm) 7] Anaerobic Spore count (cfu/ gm) MICROBIOLOGICAL PARAMETER IN FINISHED MILK THAT SHOULD BE TESTED 1] SPC(cfu/ ml) 2] Coliform (cfu/ ml) 3] Salmonella (cfu/ 25gm) 4] Listeria monocytogenes (cfu/ gm) The Bhagirathi Cooperative Milk Producers’ Union Limited LIST OF ANTIBIOTICS IN FINISHED MILK THAT SHOULD BE TESTED 1. Ampicillin 2. Cloxacillin 3. Colistin 4. Dihydrostreptomycin Streptomycin 5. Chlortetracycline/Oxytetracycline/Tetracycline 6. Lincomycin 7. Neomycin 8. Salinomycin 9. Spectinomycin 10. Sulphadiazine 11. Sulphathiazole Sodium 12. Trimethoprim 13. Sulfadiazine 14. Sulfanilamide 15. Sulfaguanidine 16. Zine Bacitracin (minimum 60lU/mg dried substance) 17. Amprolium 18. Apramycin 19. Ceftiofur 20. Cephapirine 21. Clopidol 22. Enrofloxacin 23. Ethopabate 24. Flavophospholipol (Flavomycin) 25. Monensin 26. Sulphaquinoxaline 27. Sulfadimidine 28. Tyvalosin Tartrate 29. Virginiamycin 30. Acepromazine 31. Albendazole 32. Amitraz 33. Aspirin 34. Buserelin 35. Butafosfane 36. Butaphosphan 37. Calcium Borogluconate 38. Calcium Magnesium Borogluconate 39. Carboprost tromethamine 40. Cefquinone Sulphate 41. Chloral hydrate 42. Closprostenol Sodium 43. Clenbutrol (Broncopulmin powder) 44. Diethylcarbarnazine 45. Dinitolmide 46. Doramectin The Bhagirathi Cooperative Milk Producers’ Union Limited LIST OF ANTIBIOTICS IN FINISHED MILK THAT SHOULD BE TESTED 47. -
Etude Rétrospective Des Déclarations D'effets Indésirables Graves Lors D
Etude rétrospective des déclarations d’effets indésirables graves lors d’utilisation d’antiparasitaires externes chez le chat et le chien Kim Schumacher To cite this version: Kim Schumacher. Etude rétrospective des déclarations d’effets indésirables graves lors d’utilisation d’antiparasitaires externes chez le chat et le chien. Médecine vétérinaire et santé animale. Université Paris-Est Créteil Val de Marne (UPEC); École nationale vétérinaire d’Alfort, 2016. Français. tel- 01874183 HAL Id: tel-01874183 https://tel.archives-ouvertes.fr/tel-01874183 Submitted on 14 Sep 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ÉCOLE NATIONALE VÉTÉRINAIRE D’ALFORT Année 2016 ÉTUDE RÉTROSPECTIVE DES DÉCLARATIONS D’EFFETS INDÉSIRABLES GRAVES LORS D’UTILISATION D’ANTIPARASITAIRES EXTERNES CHEZ LE CHAT ET LE CHIEN THÈSE Pour le DOCTORAT VÉTÉRINAIRE Présentée et soutenue publiquement devant LA FACULTÉ DE MÉDECINE DE CRÉTEIL le…………… par Kim Charlotte Amédée SCHUHMACHER Née le 4 décembre 1991 à Vélizy-Villacoublay (Yvelines) JURY Président : Pr. Professeur à la Faculté de Médecine de CRÉTEIL Membres Directeur : M. PERROT Sébastien Maître de conférences en Pharmacologie à l’ENVA Assesseur : Mme DARMON Céline Maître de conférences en Parasitologie à l’ENVA REMERCIEMENTS Au Professeur de la Faculté de médecine de Créteil, Qui nous a fait l’honneur d’accepter la présidence de notre jury de thèse, Hommage respectueux. -
Poster Munoz Et Al Avm 4 Nt
ANTHELMINTIC AVERMECTINS FOR THE TREATMENT OF NON- TUBERCULOSIS MYCOBACTERIA INFECTIONS IN CYSTIC FIBROSIS Lara Muñoz Muñoz1,2,*, Charles J. Thompson3, and Santiago Ramón-García2,3,4,* 1 Clinical University Hospital Lozano Blesa, Zaragoza, Spain 2 Department of Microbiology, Preventive Medicine and Public Health, Faculty of Medicine, University of Zaragoza, Spain; 3 Department of Microbiology and Immunology, Centre for Tuberculosis Research, University of British Columbia, Canada; 4 Research & Development Agency of Aragon (ARAID) Foundation, Spain. *Email: [email protected] and [email protected] INTRODUCTION Pulmonary disease caused by non-tuberculosis mycobacteria (NTM) has emerged as a major threat to the health of individuals with cystic fibrosis (CF). The NTM most commonly identified are Mycobacterium abscessus (MABSC) and Mycobacterium avium (MAC) complexes. MABSC includes 3 species M. abscessus sb. abscessus, M. abscessus sb. bolletii and M. abscessus sb. masiliense. Ivermectin Selamectin Avermectins are a family of macrocyclic lactone compounds used as anthelmintics. Although inactive against Gram-positive and Gram-negative bacteria, they have demonstrated in vitro activity against mycobacterial species, including Mycobacterium tuberculosis, Mycobacterium ulcerans and Mycobacteriym marinum (PMID: 26270480 & 23165468). Milbemycin Doramectin OBJECTIVE oxime To evaluate the in vitro activity of the avermectins against MABSC and MAC. CONCLUSIONS The avermectins comprise clinically approved drugs (i.e. ivermectin) and are extensively -
Tutorial Article a Review of the Use of Moxidectin in Horses J
EVE 08-054 Schumacher 17/9/08 09:34 Page 2 546 EQUINE VETERINARY EDUCATION / AE / october 2008 Tutorial Article A review of the use of moxidectin in horses J. SCHUMACHER* AND J. TAINTOR Department of Clinical Sciences, J.T. Vaughan Teaching Hospital, College of Veterinary Medicine, Auburn University, Alabama, 36849-5522, USA. Keywords: horse; moxidectin; ivermectin; cyathostomins; ascarids; ectoparasites; resistance Summary which are produced naturally from soil-dwelling Streptomyces microorganisms, are divided into 2 classes of anti-parasitic Moxidectin has broad-spectrum anti-nematodal and drugs, the avermectins and the milbemycins. The first anti-arthropodal activities in the horse but is not macrocyclic lactone introduced to the equine market was the effective against tapeworms or flukes. Moxidectin and avermectin, ivermectin, which was introduced in 1981. That ivermectin have the same efficacy against internal, adult drug revolutionised control of endoparasites and ectoparasites parasites of horses. Moxidectin, however, is highly in many different species because of its relative safety and effective in eliminating encysted and hypobiotic larval efficacy against most economically important parasitic stages of cyathostomins, whereas ivermectin is not. diseases. Since the introduction of ivermectin, other Treatment of horses with moxidectin results in an egg- macrocyclic lactones have been introduced, including reappearance period (ERP) of 15–24 weeks. Because of albamectin, eprinomectin, doramectin, selamectin, moxidectin its long ERP, moxidectin is labelled to be used at and milbemycin A3/A4. Ivermectin, albamectin and 12 week intervals. Moxidectin may provide protection moxidectin are marketed for use in horses. against infection by ingested cyathostomin larvae for 2–3 weeks after it is administered. -
(12) Patent Application Publication (10) Pub. No.: US 2010/0304998 A1 Sem (43) Pub
US 20100304998A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0304998 A1 Sem (43) Pub. Date: Dec. 2, 2010 (54) CHEMICAL PROTEOMIC ASSAY FOR Related U.S. Application Data OPTIMIZING DRUG BINDING TO TARGET (60) Provisional application No. 61/217,585, filed on Jun. PROTEINS 2, 2009. (75) Inventor: Daniel S. Sem, New Berlin, WI Publication Classification (US) (51) Int. C. GOIN 33/545 (2006.01) Correspondence Address: GOIN 27/26 (2006.01) ANDRUS, SCEALES, STARKE & SAWALL, LLP C40B 30/04 (2006.01) 100 EAST WISCONSINAVENUE, SUITE 1100 (52) U.S. Cl. ............... 506/9: 436/531; 204/456; 435/7.1 MILWAUKEE, WI 53202 (US) (57) ABSTRACT (73) Assignee: MARQUETTE UNIVERSITY, Disclosed herein are methods related to drug development. Milwaukee, WI (US) The methods typically include steps whereby an existing drug is modified to obtain a derivative form or whereby an analog (21) Appl. No.: 12/792,398 of an existing drug is identified in order to obtain a new therapeutic agent that preferably has a higher efficacy and (22) Filed: Jun. 2, 2010 fewer side effects than the existing drug. Patent Application Publication Dec. 2, 2010 Sheet 1 of 22 US 2010/0304998 A1 augavpop, Patent Application Publication Dec. 2, 2010 Sheet 2 of 22 US 2010/0304998 A1 g Patent Application Publication Dec. 2, 2010 Sheet 3 of 22 US 2010/0304998 A1 Patent Application Publication Dec. 2, 2010 Sheet 4 of 22 US 2010/0304998 A1 tg & Patent Application Publication Dec. 2, 2010 Sheet 5 of 22 US 2010/0304998 A1 Patent Application Publication Dec. -
Sheet1 Page 1 a Abamectin Acetazolamide Sodium Adenosine-5-Monophosphate Aklomide Albendazole Alfaxalone Aloe Vera Alphadolone A
Sheet1 A Abamectin Acetazolamide sodium Adenosine-5-monophosphate Aklomide Albendazole Alfaxalone Aloe vera Alphadolone Acetate Alpha-galactosidase Altrenogest Amikacin and its salts Aminopentamide Aminopyridine Amitraz Amoxicillin Amphomycin Amphotericin B Ampicillin Amprolium Anethole Apramycin Asiaticoside Atipamezole Avoparcin Azaperone B Bambermycin Bemegride Benazepril Benzathine cloxacillin Benzoyl Peroxide Benzydamine Bephenium Bephenium Hydroxynaphthoate Betamethasone Boldenone undecylenate Boswellin Bromelain Bromhexine 2-Bromo-2-nitropan-1, 3 diol Bunamidine Buquinolate Butamisole Butonate Butorphanol Page 1 Sheet1 C Calcium glucoheptonate (calcium glucoheptogluconate) Calcium levulinate Cambendazole Caprylic/Capric Acid Monoesters Carbadox Carbomycin Carfentanil Carnidazole Carnitine Carprofen Cefadroxil Ceftiofur sodium Centella asiatica Cephaloridine Cephapirin Chlorine dioxide Chlormadinone acetate Chlorophene Chlorothiazide Chlorpromazine HCl Choline Salicylate Chondroitin sulfate Clazuril Clenbuterol Clindamycin Clomipramine Clopidol Cloprostenol Clotrimazole Cloxacillin Colistin sulfate Copper calcium edetate Copper glycinate Coumaphos Cromolyn sodium Crystalline Hydroxycobalamin Cyclizine Cyclosporin A Cyprenorphine HCl Cythioate D Decoquinate Demeclocycline (Demethylchlortetracycline) Page 2 Sheet1 Deslorelin Desoxycorticosterone Pivalate Detomidine Diaveridine Dichlorvos Diclazuril Dicloxacillin Didecyl dimethyl ammonium chloride Diethanolamine Diethylcarbamazine Dihydrochlorothiazide Diidohydroxyquin Dimethylglycine -
Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019 Theinternational Programme on Chemical Safety (IPCS) Was Established in 1980
The WHO Recommended Classi cation of Pesticides by Hazard and Guidelines to Classi cation 2019 cation Hazard of Pesticides by and Guidelines to Classi The WHO Recommended Classi The WHO Recommended Classi cation of Pesticides by Hazard and Guidelines to Classi cation 2019 The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019 TheInternational Programme on Chemical Safety (IPCS) was established in 1980. The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management of chemicals. This publication was developed in the IOMC context. The contents do not necessarily reflect the views or stated policies of individual IOMC Participating Organizations. The Inter-Organization Programme for the Sound Management of Chemicals (IOMC) was established in 1995 following recommendations made by the 1992 UN Conference on Environment and Development to strengthen cooperation and increase international coordination in the field of chemical safety. The Participating Organizations are: FAO, ILO, UNDP, UNEP, UNIDO, UNITAR, WHO, World Bank and OECD. The purpose of the IOMC is to promote coordination of the policies and activities pursued by the Participating Organizations, jointly or separately, to achieve the sound management of chemicals in relation to human health and the environment. WHO recommended classification of pesticides by hazard and guidelines to classification, 2019 edition ISBN 978-92-4-000566-2 (electronic version) ISBN 978-92-4-000567-9 (print version) ISSN 1684-1042 © World Health Organization 2020 Some rights reserved. -
(12) United States Patent (10) Patent No.: US 9,173.403 B2 Rosentel, Jr
USOO9173403B2 (12) United States Patent (10) Patent No.: US 9,173.403 B2 Rosentel, Jr. et al. (45) Date of Patent: Nov. 3, 2015 (54) PARASITICIDAL COMPOSITIONS FOREIGN PATENT DOCUMENTS COMPRISING MULTIPLE ACTIVE AGENTS, BR PIO403620 A 3, 2006 METHODS AND USES THEREOF EP 83.6851 A 4f1998 GB 2457734 8, 2009 (75) Inventors: Joseph K. Rosentel, Jr., Johns Creek, WO WO 98,17277 4f1998 GA (US); Monica Tejwani, Monmouth WO WO O2/O94233 11, 2002 WO WO2004/O16252 2, 2004 Junction, NJ (US); Arima Das-Nandy, WO WO 2007/O18659 2, 2007 Titusville, NJ (US) WO WO 2008/O3O385 3, 2008 WO 2008/136791 11, 2008 (73) Assignee: MERLAL, INC., Duluth, GA (US) WO WO 2009/O18198 2, 2009 WO WO 2009/027506 3, 2009 WO 2009/112837 9, 2009 (*) Notice: Subject to any disclaimer, the term of this WO WO 2010/026370 3, 2010 patent is extended or adjusted under 35 WO WO2010.109214 9, 2010 U.S.C. 154(b) by 100 days. OTHER PUBLICATIONS (21) Appl. No.: 13/078,496 Notice of Opposition in the matter of New Zealand Patent Applica (22) Filed: Apr. 1, 2011 tion 595934 in the name of Norbrook Laboratories Limited and Opposition thereto by Merial Limited dated Jun. 28, 2014. (65) Prior Publication Data First Supplementary Notice of Opposition in the matter of New Zealand Patent Application 595934 in the name of Norbrook Labo US 2011 FO245191 A1 Oct. 6, 2011 ratories Limited and Opposition thereto by Merial Limited dated Aug. 28, 2014. Second Supplementary Notice of Opposition in the matter of New Related U.S. -
Efficacy of Selamectin, Spinosad, and Spinosad/Milbemycin Oxime Against
Dryden et al. Parasites & Vectors 2013, 6:80 http://www.parasitesandvectors.com/content/6/1/80 RESEARCH Open Access Efficacy of selamectin, spinosad, and spinosad/milbemycin oxime against the KS1 Ctenocephalides felis flea strain infesting dogs Michael W Dryden1*, Patricia A Payne1, Vicki Smith1, Thomas C Berg2 and Melanie Lane2 Abstract Background: A study was conducted to evaluate and compare the efficacy of selamectin, spinosad, and spinosad/milbemycin oxime against the KS1 strain of Ctenocephalides felis on dogs. Methods: Forty-eight dogs were selected for the study and two batches of 24 were blocked and allocated randomly to treatment groups and flea count times. There were four treatment groups of 12 dogs each: negative control, topical selamectin, oral spinosad/milbemycin oxime, and oral spinosad. Each dog was infested with 100 fleas on Days −2, 7, 14, 21 and 28. Within each treatment group, six dogs were flea counted at 24 hours and six at 48 hours after treatment or post-infestation. On Day 0, dogs received a single treatment of the appropriate drug according to the approved commercial label. Results: Efficacy of selamectin against an existing flea infestation was 60.4% and 91.4% at 24 and 48 hours, respectively, whereas spinosad/milbemycin oxime and spinosad were 100% at both time points. All products were >90% effective within 24 hours after subsequent infestations on Days 7, 14 and 21. Following the Day 28 flea infestation, selamectin was 93% and 95.7% effective at 24 and 48 hours, respectively. Whereas the efficacy of spinosad/milbemycin oxime following the day 28 infestation was 84.7% and 87.5% at 24 and 48 hours, respectively and spinosad alone was 72.9% and 76.3% effective at 24 and 48 hours, respectively. -
Addendum A: Antiparasitic Drugs Used for Animals
Addendum A: Antiparasitic Drugs Used for Animals Each product can only be used according to dosages and descriptions given on the leaflet within each package. Table A.1 Selection of drugs against protozoan diseases of dogs and cats (these compounds are not approved in all countries but are often available by import) Dosage (mg/kg Parasites Active compound body weight) Application Isospora species Toltrazuril D: 10.00 1Â per day for 4–5 d; p.o. Toxoplasma gondii Clindamycin D: 12.5 Every 12 h for 2–4 (acute infection) C: 12.5–25 weeks; o. Every 12 h for 2–4 weeks; o. Neospora Clindamycin D: 12.5 2Â per d for 4–8 sp. (systemic + Sulfadiazine/ weeks; o. infection) Trimethoprim Giardia species Fenbendazol D/C: 50.0 1Â per day for 3–5 days; o. Babesia species Imidocarb D: 3–6 Possibly repeat after 12–24 h; s.c. Leishmania species Allopurinol D: 20.0 1Â per day for months up to years; o. Hepatozoon species Imidocarb (I) D: 5.0 (I) + 5.0 (I) 2Â in intervals of + Doxycycline (D) (D) 2 weeks; s.c. plus (D) 2Â per day on 7 days; o. C cat, D dog, d day, kg kilogram, mg milligram, o. orally, s.c. subcutaneously Table A.2 Selection of drugs against nematodes of dogs and cats (unfortunately not effective against a broad spectrum of parasites) Active compounds Trade names Dosage (mg/kg body weight) Application ® Fenbendazole Panacur D: 50.0 for 3 d o. C: 50.0 for 3 d Flubendazole Flubenol® D: 22.0 for 3 d o.