Tutorial Article a Review of the Use of Moxidectin in Horses J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bulletin Leading the Fight Against Heartworm Disease
BULLETIN LEADING THE FIGHT AGAINST HEARTWORM DISEASE SEPTEMBER HEARTWORM 2017 Q&A VOLUME 44 No. 3 Heartworm History: In What Year Was Heartworm First INSIDE THIS ISSUE Treated? Page 4 From the President Page 8 Research Update Abstracts from the Literature Page 14 Heartworm Hotline: Role of Heat Treatment in Diagnostics Page 19 NEW! Best Practices: Minimizing Heartworm Transmission in Relocated Dogs uestions from members, prac- published in the 1998 AHS Symposium 1 titioners, technicians, and the Proceedings. Dr. Roncalli wrote, “The Page 21 Qgeneral public are often submit- first trial to assess the efficacy of a Welcome Our New AHS ted to the American Heartworm Society microfilaricide (natrium antimonyl tar- Student Liaisons (AHS) via our website. Two of our AHS trate) was conducted some 70 years Board members, Dr. John W.McCall and ago (1927) in Japan by S. Itagaki and R. Page 25 Dr. Tom Nelson, provided the resources Makino.2 Fuadin (stibophen), a trivalent In the News: Surgeons to answer this question: In What Year antimony compound, was tested, intra- Remove a Heartworm from Was Heartworm First Treated? venously, as a microfilaricide by Popescu the Femoral Artery of a Cat The first efforts to treat canine heart- in 1933 in Romania and by W.H. Wright worm disease date back to the 1920s. Dr. and P.C. Underwood in 1934 in the USA. Page 26 Nelson referenced a review article by Dr. In 1949, I.C. Mark evaluated its use Quarterly Update Raffaele Roncalli, “Tracing the History of intraperitoneally.” What’s New From AHS? Heartworms: A 400 Year Perspective,” Continues on page 7 American Heartworm Society / PO Box 8266, Wilmington, DE 19803-8266 Become an American Heartworm Society www.heartwormsociety.org / [email protected] fan on Facebook! Follow us on Twitter! OUR GENEROUS SPONSORS PLATINUM LEVEL PO Box 8266 Wilmington, DE 19803-8266 [email protected] www.heartwormsociety.org Mission Statement The mission of the American Heartworm Society is to lead the vet- erinary profession and the public in the understanding of heartworm disease. -
Specifications of Approved Drug Compound Library
Annexure-I : Specifications of Approved drug compound library The compounds should be structurally diverse, medicinally active, and cell permeable Compounds should have rich documentation with structure, Target, Activity and IC50 should be known Compounds which are supplied should have been validated by NMR and HPLC to ensure high purity Each compound should be supplied as 10mM solution in DMSO and at least 100µl of each compound should be supplied. Compounds should be supplied in screw capped vial arranged as 96 well plate format. -
COMBINED LIST of Particularly Hazardous Substances
COMBINED LIST of Particularly Hazardous Substances revised 2/4/2021 IARC list 1 are Carcinogenic to humans list compiled by Hector Acuna, UCSB IARC list Group 2A Probably carcinogenic to humans IARC list Group 2B Possibly carcinogenic to humans If any of the chemicals listed below are used in your research then complete a Standard Operating Procedure (SOP) for the product as described in the Chemical Hygiene Plan. Prop 65 known to cause cancer or reproductive toxicity Material(s) not on the list does not preclude one from completing an SOP. Other extremely toxic chemicals KNOWN Carcinogens from National Toxicology Program (NTP) or other high hazards will require the development of an SOP. Red= added in 2020 or status change Reasonably Anticipated NTP EPA Haz list COMBINED LIST of Particularly Hazardous Substances CAS Source from where the material is listed. 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide Acutely Toxic Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- Acutely Toxic 1-(2-Chloroethyl)-3-(4-methylcyclohexyl)-1-nitrosourea (Methyl-CCNU) Prop 65 KNOWN Carcinogens NTP 1-(2-Chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) IARC list Group 2A Reasonably Anticipated NTP 1-(2-Chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) (Lomustine) Prop 65 1-(o-Chlorophenyl)thiourea Acutely Toxic 1,1,1,2-Tetrachloroethane IARC list Group 2B 1,1,2,2-Tetrachloroethane Prop 65 IARC list Group 2B 1,1-Dichloro-2,2-bis(p -chloropheny)ethylene (DDE) Prop 65 1,1-Dichloroethane -
Computational Studies of Drug Repurposing Targeting P-Glycoprotein Mediated Multidrug-Resistance Phenotypes in Agents of Neglect
bioRxiv preprint doi: https://doi.org/10.1101/2020.06.12.147926; this version posted June 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Computational studies of drug repurposing targeting P- glycoprotein mediated multidrug-resistance phenotypes in agents of neglected tropical diseases Nivedita Jaishankar 1, Sangeetha Muthamilselvan 2, Ashok Palaniappan 1,2* 1 Department of Biotechnology, Sri Venkateswara College of Engineering, Post Bag No. 1, Pennalur, Sriperumbudur Tk 602117. India 2 Department of Bioinformatics, School of Chemical and BioTechnology, SASTRA Deemed University, Thanjavur 613401. India * Corresponding author: [email protected] ABSTRACT Mammalian ABCB1 P-glycoprotein is an ATP- dependent efflux pump with broad substrate specificity associated with cellular drug resistance. Homologous to this role in mammalian biology, the P-glycoprotein of agents of neglected tropical diseases (NTDs) mediates the emergence of multidrug- resistance phenotypes. The clinical and socioeconomic implications of NTDs are exacerbated by the lack of research interest among Big Pharma for treating such conditions. This work aims to characterise P-gp homologues in certain agents of key NTDs, namely (1) Protozoa: Leishmania major, Trypanosoma cruzi; (2) Helminths: Onchocerca volvulus, Schistosoma mansoni. PSI-BLAST searches against the genome of each of these organisms confirmed the presence of P-gp homologues. Each homologue was aligned against five P- gp sequences of known structure, to identify the most suitable template based on sequence homology, phylogenetic nearest neighbor, and query coverage. -
Equimax & Eraquell Oral Gel for Horses
Equimax & Eraquell Oral Gel for Horses Annual Wormer Pack [active ingredients: Ivermectin & Praziquantel] (POM-VPS) Revised AN Equimax Oral Gel for Horses January 2013 01009/2012 Eraquell Oral Gel for Horses December 2015 01163/2015 Page 1 of 15 SUMMARY OF PRODUCT CHARACTERISTICS 1. NAME OF THE VETERINARY MEDICINAL PRODUCT Equimax Oral Gel for Horses 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Each gram of Equimax contains Active substances Ivermectin ........................................................ 18.7 mg Praziquantel ..................................................... 140.3 mg Excipients Titanium dioxide (E171) ................................... 20 mg Propylene glycol ............................................... 731 mg For a full list of excipents, see section 6.1 3. PHARMACEUTICAL FORM Oral gel. 4. CLINICAL PARTICULARS 4.1 Target species Horses. 4.2 Indications for use, specifying the target species For the treatment of mixed cestode and nematode or arthropod infestations, due to adult and immature roundworms, lungworms, bots and tapeworms in horses: Nematodes Large-strongyle: Strongylus vulgaris (adult and arterial larvae) Strongylus edentatus (adult and L4 tissue larval stages) Strongylus equinus (adult) Triodontophorus spp. (adult) Small-strongyle: Cyathostomum: Cylicocyclus spp., Cylicostephanus spp., Cylicodontophorus spp., Gyalocephalus spp. (adult and non-inhibited mucosal larvae). Parascaris: Parascaris equorum (adult and larvae). Page 2 of 15 Oxyuris: Oxyuris equi (larvae). Trichostrongylus:Trichostrongylus -
Veterinary Guide to Resistance & Parasites
Veterinary Guide to Resistance & Parasites How to make the Get Rotation Right deworming strategy part of your equine health wellness protocol. ||||||||||||||||||||||||||||||||||||||||| GET ROTATION RIGHT Resistant parasites – veterinary involvement is needed now. Deworming has come a long way in the past 50 years – from products that were nearly toxic and required complicated tubing to the easy-to-administer dewormers we know now. As more horse owners recognize the value of regular deworming, past troublemakers such as large strongyles have become much less of a threat. Still, deworming is nothing to take lightly. As internal parasites become more resistant, your expertise is needed Horseowners unknowingly more than ever to make sure deworming programs remain efficient contribute to resistance. and effective. Only with veterinary involvement will we control parasite • Rotating brand names, not populations, combat resistance and get rotation right. chemical classes – general confusion about when and RESISTANCE IS REAL: MULTIPLE DRUGS, MULTIPLE PARASITES. how to use different classes • No new drug class since avermectins in 1981. of dewormers. • Benzimidazole resistance in cyathostomes.1-3 • Lack of knowledge about • Pyrantel resistance in cyathostomes and ascarids.4-8,11 resistance issues. • Ivermectin and moxidectin resistance among ascarids.8,9,11 • Deworming many horses more • Early warning signs of macrocyclic-lactone-resistant cyathostomes.10 frequently than necessary. • Health-related issues caused by parasites: • Misunderstanding about the ~ Ascarids (roundworms) unique properties of larvicidal Verminous pneumonia: cough, nasal discharge, low-grade fever treatments and how to maximize Unthriftiness – rough hair coat their efficacy. Intestinal obstruction/colic • Underdosing their horses. Intestinal perforation leading to peracute death Decreased performance and reduced weight gain ~ Cyathostomes (small strongyles) Most common in young and old horses, but can afflict any horse. -
Table of Contents Introduction
TABLE OF CONTENTS INTRODUCTION............................................................................................................. 2 DEFINITIONS .................................................................................................................. 2 ADVERSE EVENT REPORTING FOR ANIM AL DRUGS ....................................... 4 CANINE HEARTW ORM DISEASE.............................................................................. 7 M ACROCYCLIC LACTONES ...................................................................................... 8 PROHEART 6 PRODUCT INFORM ATION ............................................................... 8 REGULATORY HISTORY OF PROHEART 6 ......................................................... 10 ADE REPORTS FOR PROHEART 6 AND OTHER HEARTW ORM PREVENTIVES .............................................................................................................. 11 PROHEART 6 ADES ..................................................................................................... 16 TRENDS IN PROHEART 6 ADE REPORTING ....................................................... 19 CLINICAL M ANIFESTATIONS ................................................................................. 22 ANAPHYLAXIS/ANAPHYLACTOID REACTIONS ................................................................ 22 CONVULSIONS ................................................................................................................ 24 LIVER SIGNS.................................................................................................................. -
210867Orig1s000
CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 210867Orig1s000 OTHER REVIEW(S) Clinical Inspection Summary (CIS) NDA 210867 (Moxidectin) Clinical Inspection Summary Date May 31, 2018 From John Lee, M.D., Medical Officer Janice Pohlman, M.D., M.P.H., Team Leader Kassa Ayalew, M.D., M.P.H., Branch Chief Good Clinical Practice Assessment Branch (GCPAB) Division of Clinical Compliance Evaluation (DCCE) Office of Scientific Investigations (OSI) To Kristine Park, Ph.D., Regulatory Project Manager Hiwot Hiruwy, M.D., Ph.D., Medical Officer Dmitri Iarikov, M.D., Ph.D., Clinical Team Leader Sumati Nambiar, M.D., M.P.H., Director Division of Anti-Infective Products (DAIP) Application NDA 210867 Applicant Medicines Development for Global Health (MDGH) Drug Moxidectin (trade name pending) NME Yes Review Status Priority Proposed Indication Treatment of ochocerciasis due to Onchocerca volvulus Consultation Date December 15, 2017 CIS Goal Date June 1, 2018 Action Goal Date June 13, 2018 PDUFA Due Date June 13, 2018 I. OVERALL ASSESSMENT OF FINDINGS Studies 3110A1-200-GH and 3110A1-3000-AF/ONCBL60801 were audited at good clinical practice (GCP) inspections of a clinical investigator (CI) and a contract research organization (CRO). For both inspections, the establishment inspection report (EIR) has not been received from the field office and the inspection outcome shown is based on preliminary communication with the field investigator. Both inspections revealed significant GCP deficiencies, typically (apparently) deficiencies in recordkeeping (Form FDA 483 issued at CI inspection, not issued at CRO inspection). Evidence of serious deficiencies indicative of unreliable study data was not observed and study conduct otherwise appeared GCP-compliant. -
Summary of Product Characteristics 1. Name Of
Revised: July 2018 AN: 02259/2017 SUMMARY OF PRODUCT CHARACTERISTICS 1. NAME OF THE VETERINARY MEDICINAL PRODUCT Paramectin Drench 0.8 mg/ml Oral Solution 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Active Substance: Ivermectin 0.8 mg/ml Excipients: Benzyl alcohol 30 ml/ml For the full list of excipients, see section 6.1 3. PHARMACEUTICAL FORM Oral solution A pale yellow clear liquid 4. CLINICAL PARTICULARS 4.1 Target species Sheep 4.2 Indications for use, specifying the target species Treatment and control of gastrointestinal nematodes, lungworms and nasal bots of sheep Gastrointestinal worms (adult and immature): Haemonchus contortus, Ostertagia circumcincta, Trichostrongylus spp, Cooperia spp, Nematodirus spp including N. battus, Strongyloides papillosus, Oesophagostomum spp, and adult Chabertia ovina Inhibited larval stages and benzimidazole resistant strains of H. contortus and Ostertagia circumcincta are also controlled. Lungworms (adult and immature): Dictyocaulus filaria Nasal bot (all larval stages): Oestrus ovis 4.3 Contraindications The product has been formulated specifically for use in sheep. It should not be used in other species, as severe adverse reactions, including fatalities in dogs, may occur. Page 1 of 5 Revised: July 2018 AN: 02259/2017 Do not use in cases of hypersensitivity to the active substances or to any of the excipients. The product is not for intravenous or intramuscular use. Do not use in sheep producing milk for human consumption. 4.4 Special warnings for each target species Care should be taken to avoid the following practices because they increase the risk of development of resistance and could ultimately result in ineffective therapy: Too frequent and repeated use of anthelmintics from the same class, over an extended period of time. -
Organophosphate Pesticide) in Soil by Bacterial Isolates
Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.3, No.8, 2013 Biodegradation of Dichlorovos (Organophosphate Pesticide) in Soil by Bacterial Isolates S. E. AGARRY, O. A. OLU-AROTIOWA, *M. O. AREMU AND L. A. JIMODA Biochemical Engineering and Environmental Biotechnology Research Laboratory, Department of Chemical Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria *Corresponding Author: [email protected] Abstract Excessive and continuous dispersion of pesticides which are toxic heterogeneous compound in the environment results in environmental pollution with ecological effects that require remediation. This study investigated the potential of microbial isolates to biodegrade or cleans up agricultural soil artificially contaminated with Dichlorvos (2, 2-dichlorovinyldimethylphosphate) pesticide. A bacterial consortium which degraded Dichlorvos pesticide was isolated from agricultural soil using pour plate method. This consortium was composed of four pure strains which were characterized based on their morphological and biochemical characteristics. The strains were presumptively identifies as Proteus vulgaris , Vibrio sp., Serratia sp. and Acinetobacte r sp. The consortium and the four bacteria were evaluated in order to discover their ability to biodegrade Dichlorvos pesticide in medium supplied with different nutrients (NH 4NO 3, KH 2PO 4 and NPK (20:10:10) fertilizer). The results showed that the bacterial consortium and the four bacteria isolates were able to grow in nutrient medium containing Dichlorvos as the only carbon source. Moreover, the bacterial consortium was able to remove greater amount of DDP in soil amended with inorganic fertilizer (NPK) than those amended with NH 4NO 3 and KH 2PO 4, respectively. -
Etude Rétrospective Des Déclarations D'effets Indésirables Graves Lors D
Etude rétrospective des déclarations d’effets indésirables graves lors d’utilisation d’antiparasitaires externes chez le chat et le chien Kim Schumacher To cite this version: Kim Schumacher. Etude rétrospective des déclarations d’effets indésirables graves lors d’utilisation d’antiparasitaires externes chez le chat et le chien. Médecine vétérinaire et santé animale. Université Paris-Est Créteil Val de Marne (UPEC); École nationale vétérinaire d’Alfort, 2016. Français. tel- 01874183 HAL Id: tel-01874183 https://tel.archives-ouvertes.fr/tel-01874183 Submitted on 14 Sep 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ÉCOLE NATIONALE VÉTÉRINAIRE D’ALFORT Année 2016 ÉTUDE RÉTROSPECTIVE DES DÉCLARATIONS D’EFFETS INDÉSIRABLES GRAVES LORS D’UTILISATION D’ANTIPARASITAIRES EXTERNES CHEZ LE CHAT ET LE CHIEN THÈSE Pour le DOCTORAT VÉTÉRINAIRE Présentée et soutenue publiquement devant LA FACULTÉ DE MÉDECINE DE CRÉTEIL le…………… par Kim Charlotte Amédée SCHUHMACHER Née le 4 décembre 1991 à Vélizy-Villacoublay (Yvelines) JURY Président : Pr. Professeur à la Faculté de Médecine de CRÉTEIL Membres Directeur : M. PERROT Sébastien Maître de conférences en Pharmacologie à l’ENVA Assesseur : Mme DARMON Céline Maître de conférences en Parasitologie à l’ENVA REMERCIEMENTS Au Professeur de la Faculté de médecine de Créteil, Qui nous a fait l’honneur d’accepter la présidence de notre jury de thèse, Hommage respectueux. -
Efficacy of Albendazole and Moxidectin and Resistance To
Veterinary Parasitology 189 (2012) 387–389 Contents lists available at SciVerse ScienceDirect Veterinary Parasitology jo urnal homepage: www.elsevier.com/locate/vetpar Short communication Efficacy of albendazole and moxidectin and resistance to ivermectin against Libyostrongylus douglassii and Libyostrongylus dentatus in ostriches a a b Lara Pereira de Souza , Rosane Teixeira Lelis , Igor Rio Apa Granja , a a,∗ Renato Augusto DaMatta , Clóvis de Paula Santos a Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, 28013-602 Campos dos Goytacazes, RJ, Brazil b Rioapavestruzes, 28013-600 Guarani, MG, Brazil a r t i c l e i n f o a b s t r a c t Article history: Anthelmintic resistance has emerged globally as a problem amongst nematode of livestock Received 17 February 2012 and has been particularly well documented in equine and small ruminants. There are no Received in revised form 18 April 2012 studies regarding the efficacy of anthelmintics against the hematophagous nematodes in Accepted 20 April 2012 ostriches, Libyostrongylus dentatus; and just a few on L. douglassii. Here the efficacy of alben- dazole, ivermectin and moxidectin were evaluated against these two species in an ostrich Keywords: farm in Minas Gerais state, Brazil. The feces were collected on the day of treatment and Libyostrongylus douglassii after 13 days of an oral dose of albendazole (6 mg/kg), or an injected dose (0.2 mg/kg) of Libyostrongylus dentatus ivermectin or moxidectin. The fecal egg count reduction test and coprocultures were per- Anthelmintic resistance Ostrich formed to determine possible resistance against the drugs used.