Selected Problems in Railway Vehicle Dynamics Related to Running Safety

Total Page:16

File Type:pdf, Size:1020Kb

Selected Problems in Railway Vehicle Dynamics Related to Running Safety THE ARCHIVES OF TRANSPORT ISSN (print): 0866-9546 Volume 31, Issue 3, 2014 e-ISSN (online): 2300-8830 DOI: 10.5604/08669546.1146984 SELECTED PROBLEMS IN RAILWAY VEHICLE DYNAMICS RELATED TO RUNNING SAFETY Ewa Kardas-Cinal Warsaw University of Technology, Faculty of Transport, Warsaw, Poland e-mail: [email protected] Abstract: The paper includes a short review of selected problems in railway vehicle-track system dynamics which are related to the running safety. Different criteria used in assessment of the running safety are presented according to the standards which are in force in Europe and other countries. Investigations of relevant dynamic phenomena, including the mechanism of railway vehicle derailment, and the resulting modifications of the running safety criteria are also discussed. Key words: railway vehicle, dynamics, running safety, derailment 1. Introduction and a great development in the field of modeling of Among the first problems that have emerged in the the railway vehicle-track systems and simulations early development of the railways was guidance of of their motion, remain valid and are still used in the railway vehicle along the track and the the analysis of the dynamics of such systems. associated excessive wear of wheel flanges. Solution to both problems was achieved in the 2. Investigations of railway vehicle dynamics second and third decades of the nineteenth century The first realistic model of railway vehicle by the introduction of a conical wheel tread and a dynamics was proposed by Frederick W. Carter – a clearance between wheel flange and the rail head. British engineer who graduated in mathematics at This was primarily the result of empirical the University of Cambridge. In his model, he observations, supported by the intuition of the first established that the forces acting between the constructors of railway vehicles, starting from wheels and the rails are proportional to the slip at George Stephenson who built the steam locomotive the point of wheel-rail contact, which helped to for the first public inter-city railway, the Liverpool explain the mechanism of the wheelset hunting and Manchester Railway [11]. Already then, the within the theoretical description of the lateral designers were aware that the introduction of motion of the vehicle. Further understanding the wheels with conical profiles leads to the dynamics of railway vehicles, especially the appearance of lateral vehicle vibrations (hunting) stability of their motion, was significantly during the vehicle motion which are now known as contributed to by the studies of Tadashi Matsuidara kinematic oscillations. working at Railway Technical Research Institute of Before it was possible to solve numerically the Japanese National Railways (JNR). The aim of equations of motion of mechanical systems with these studies was to increase the vehicle speed and many degrees of freedom with the aid of their results, indicating an important role of the computers, investigations of the dynamics of vehicle suspension in ensuring the running safety, railway vehicles were mainly done in a theoretical have been applied in the technical solutions used in way and were focused on analytical relations the high-speed Shinkansen trains. Similar associated with the running safety and the stability conclusions have been obtained a result of the of the vehicle motion [52]. At this point one should investigations (largely independent of the Japanese mention the work by W. Klingel [30] on the studies) conducted by the group of A.H. Wickens at wheelset hunting and the investigations of J. Nadal the research center of the British Railways in Derby [35] aimed to determine the dynamic conditions in since the early sixties of the last century. Another which there is a danger of derailment due to the important, and, in fact, truly landmark step in the wheel climb on the rail. The results of these field of railway vehicle dynamics was the theory of studies, despite the passage of over a hundred years rolling contact developed by J.J. Kalker [25] which 37 Ewa Kardas-Cinal Selected problems in railway vehicle dynamics related to running safety has provided an effective way to determine characteristic equation with positive real parts. In tangential forces in the wheel-rail contact with high the case of nonlinear models, studies based on the accuracy. A simplified form of this theory, known bifurcation theory have shown that, the Hopf as the FASTSIM algorithm [24], is currently the bifurcation occurs in a railway vehicle-track most widely used method for determining contact system, which leads to the hunting of the wheelsets. forces in the simulation models of railway vehicle- At the same time, as it is underlined the author of track systems. the monograph [59], both sub-critical bifurcation, An important problem in the dynamics of railway with a stable limit cycle (attractor) in a certain vehicles is wheelset hunting which can strongly speed range, and supercritical bifurcation, with no affect the running safety. Hunting is an undulating stable periodic solution for any velocity, may occur motion along the track, during which oscillatory in nonlinear models. Investigations of the wheelset changes of the lateral wheelset displacement from hunting phenomenon and the stability of the the track centre line are coupled with its yaw railway vehicle motion using the bifurcation theory rotation which an oscillatory rotation of the have been the subject of many works, among others wheelset around the axis perpendicular to the track [39,49,53,58,60]. plane. In the simplest terms wheelset hunting is The rapid development of the information purely kinematic phenomenon associated with the technology and the increase in computing power of conicity of the wheels, whereas the wavelength of modern computers enables simulations of the the hunting determined with the Klingel formula is dynamics of multibody systems (MBS) using independent of the railway vehicle velocity [30,41]. increasingly accurate simulation models which The phenomenon of the wheelset swaying motion describe them. The results of simulations of railway while hunting along the track is very accurately vehicle motion can be used to understand the basic described by W. Gąsowski and R. Lang [20]. To phenomena which determine their dynamics quote these authors, "swaying of a wheelset occurs [10,13,18,23]. Simulation studies are also a widely when it moves without slip along the track used approach for evaluating the dynamic direction, and some random factor, for example, properties of railway vehicles related to the running local track irregularity knocks it out of the center safety and the ride comfort [3,6,43]. Simulations position on the track, or deviates its axis from the are used at the stage of designing railway vehicles, direction perpendicular to the track" ([20]-(7)). As in diagnosing problems occurring during vehicle the authors point out in the summary of the work operation, as well as in investigating the causes of [20] the analysis of the hunting phenomenon railway accidents and their reconstruction. extends the ability to understand manyphenomena Simulations are used even to predict the dynamics associated with the dynamics of railway vehicles. of the vehicle after its derailment [2]. The use of An example of this approach is the works of the simulations has many advantages compared to the present author [26-28], which have analysed the experimental studies of the real systems: in impact of geometrical irregularities of the track on addition to being much cheaper (by avoiding the the wheelset hunting and the derailment coefficient cost of access to railway infrastructure), they which determines the running safety. provide possibility to perform tests in a much wider In general, the wheelset hunting is related to the range of running conditions (even extreme ones stability of the railway vehicle motion and which lead to the vehicle derailment) and allow one corresponds to oscillations with a fixed amplitude to determine quantities whose direct measurement which occur at high vehicle velocities (above the is difficult or impossible (like creepages and forces critical speed). From a mathematical point of view, present in the wheel-rail contact). Simulation hunting is a kind of self-excited vibrations that after models are also used for diagnosis and monitoring a long time become periodic vibrations called limit the state of the railway vehicle-track system [7,8]. cycles. In linear models of railway vehiclestrack In the studies of railway vehicle dynamics with the systems such vibrations are represented by aid of simulations, though in many cases original asymptotically unstable solutions of the equations programmes are still used to target specific of motion, which, according to the Routh-Hurwitz problems, commercial software is increasingly criterion, correspond to the roots of the more frequently applied, since it allows not only to 38 AoT Vol. 31/Issue 3 2014 carry out the simulations, but it also provides a operation for various types of railway vehicles, convenient way to create a mathematical model including locomotives, passenger cars, freight using the graphical user interface and to wagons as well as special and auxiliary vehicles. automatically generate equations of motions. The The UIC 518 and EN 14363 standards include first such program was MEDYNA developed by permissible length of the track section, on which W. Kik [29]. A list of other currently available the condition specified in the criterion Nadal can be commercial packages includes ADAMS/Rail, violated without the risk of derailment. It should be NUCARS, SIMPACK Rail, VAMPIRE. Still, in noted, however, that despite the modifications many cases, due to the specific aspects of the taking into account, to a significant extent, the examined problems and the possibility of full dynamic aspect of the derailment phenomenon, the control over the applied simulation model and Nadal criterion is based mainly on quasi-static introduced modifications, original programmes are conditions of the vehicle motion that lead to the developed by the research groups working in the risk of derailment by the wheel flange climb on the field of the railway vehicle dynamics.
Recommended publications
  • Review and Summary of Computer Programs for Railway Vehicle Dynamics (Final Report), 1981
    9( <85 W f Review and Sum m ary of U.S. D epartm ent of Transportation Computer Programs for Federal Railroad Administration Railway Vehicle Dynam ics Office of Research and Development Washington, D.C. 20590 FRA/ORD-81/17 February 1981 Document is available to the U.S. Final Report public through the National Technical information Service, Walter D. Pilkey and Staff Springfield, Virginia 22161 School of Engineering and Applied Science University of Virginia 03 - Rail Vehicles at Charlottesville, V A 22901 Components NOTICE This document is disseminated under the sponsorship of the U.S.Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof. NOTICE The United States Government does not endorse products of manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the object of this report. Technical Report Documentation Page 1. Report No. 2. Governm ent A c c e s s io n N o. 3. R e c ip ie n t 's C a t a lo g No. FRA/0R&D-81/17 . 4. Title and Subtitle 5. R e p o rt D ate REVIEW AND SUMMARY OF COMPUTER PROGRAMS FOR RAILWAY February 1981 VEHICLE DYNAMICS . Q. 6. Performing Organization Code 8. Performing Orgoni zofion Report No. 7. A u th o r's) UVA-529162-MAE80-101 Walter D. Pilkey 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) School of Engineering and Applied Science, University of Virginia 11. Contract or Grant No.
    [Show full text]
  • BACKTRACK 22-1 2008:Layout 1 21/11/07 14:14 Page 1
    BACKTRACK 22-1 2008:Layout 1 21/11/07 14:14 Page 1 BRITAIN‘S LEADING HISTORICAL RAILWAY JOURNAL VOLUME 22 • NUMBER 1 • JANUARY 2008 • £3.60 IN THIS ISSUE 150 YEARS OF THE SOMERSET & DORSET RAILWAY GWR RAILCARS IN COLOUR THE NORTH CORNWALL LINE THE FURNESS LINE IN COLOUR PENDRAGON BRITISH ENGLISH-ELECTRIC MANUFACTURERS PUBLISHING THE GWR EXPRESS 4-4-0 CLASSES THE COMPREHENSIVE VOICE OF RAILWAY HISTORY BACKTRACK 22-1 2008:Layout 1 21/11/07 15:59 Page 64 THE COMPREHENSIVE VOICE OF RAILWAY HISTORY END OF THE YEAR AT ASHBY JUNCTION A light snowfall lends a crisp feel to this view at Ashby Junction, just north of Nuneaton, on 29th December 1962. Two LMS 4-6-0s, Class 5 No.45058 piloting ‘Jubilee’ No.45592 Indore, whisk the late-running Heysham–London Euston ‘Ulster Express’ past the signal box in a flurry of steam, while 8F 2-8-0 No.48349 waits to bring a freight off the Ashby & Nuneaton line. As the year draws to a close, steam can ponder upon the inexorable march south of the West Coast Main Line electrification. (Tommy Tomalin) PENDRAGON PUBLISHING www.pendragonpublishing.co.uk BACKTRACK 22-1 2008:Layout 1 21/11/07 14:17 Page 4 SOUTHERN GONE WEST A busy scene at Halwill Junction on 31st August 1964. BR Class 4 4-6-0 No.75022 is approaching with the 8.48am from Padstow, THE NORTH CORNWALL while Class 4 2-6-4T No.80037 waits to shape of the ancient Bodmin & Wadebridge proceed with the 10.00 Okehampton–Padstow.
    [Show full text]
  • Railway Car Dynamic Response to Track Transition Curve and Single Standard Turnout
    Computers in Railways X 849 Railway car dynamic response to track transition curve and single standard turnout J. Droździel & B. Sowiński Warsaw University of Technology, Poland Abstract In this paper vehicle dynamic responses to clothoidal, sinusoidal and parabolic types of transition curves are considered. The responses such as vehicle motion and wheel-rail forces are significantly dependent on the type of curve. Also the dynamic interaction between the railway car and a track on a switch and a crossing of a standard turnout is considered. It was made for car-running direction “on” and “from” a switch facing point, and for nominal and geometrically imperfect track. The results imply the conclusion that specific transition curve and turnout parameters create a vital cause of dynamic interaction growth between a vehicle and a track. Keywords: vehicle, track, dynamics, transition curve, standard turnout. 1 Introduction In this paper, the railway car–track system dynamic interaction influenced by track transient excitations is presented. A few transition curves and a single standard turnout are taken into account. Simulation results are obtained and discussed for elastically moveable rails. Modern railway tracks designed for high speed traffic should meet a number of requirements regarding travel comfort and safety. Designed transition track geometry changes may cause additional dynamic forces which are dependent, among others, on the shape and magnitude of these changes. During track operation the changes are additionally affected by the state of track maintenance. They are also the cause of increased local degradation of track components. For analyzing dynamic processes of this type, an appropriate simulation model was elaborated.
    [Show full text]
  • Western Route Strategic Plan V7
    Route Strategic Plan Western Route Version 7.0: Strategic Business Plan submission 2nd February 2018 Western Route Strategic Plan Contents Section Title Description Page 1 Foreword and summary Summary of our plan giving proposed high level outputs and challenges in CP6 3 2 Stakeholder priorities Overview of customer and stakeholder priorities 14 3 Route objectives Summary of our objectives for CP6 using our scorecard 26 4 Activity prioritisation on a page Overview of the opportunities, constraints and risks associated with each objective area, the 32 controls for managing these and the resulting output across CP5 and CP6 5 Activities & expenditure High level summary of the cost and activity associated with our plan based on the prioritisation in 41 section 4 6 Customer focus & capacity strategy Summary of customer and capacity themed strategies that will be employed to deliver our plan 66 7 Cost competitiveness & delivery strategy Summary of delivery strategies that will be employed, and of headwinds and efficiency plans 69 accounted developed to date 8 Culture strategy Summary of the culture themed strategies that will be deployed to deliver our plan 80 9 Strategy for commercial focus Summary of our strategy and plans to source alternative investment 86 10 CP6 regulatory framework Information relating to our revenue requirement and access charging income 88 11 Sign-off Senior level commitment from relevant functions 91 Appendix A Joint performance activity prioritisation by Overview of the opportunities, constraints and risks associated
    [Show full text]
  • 171532 – Site for a Mixed Use Development I
    MEETING: PLANNING AND REGULATORY COMMITTEE DATE: 13 NOVEMBER 2019 TITLE OF 171532 – SITE FOR A MIXED USE DEVELOPMENT REPORT: INCLUDING THE ERECTION OF UP TO 625 NEW HOMES (INCLUDING AFFORDABLE HOUSING), UP TO 2.9 HECTARES OF B1 EMPLOYMENT LAND, A CANAL CORRIDOR, PUBLIC OPEN SPACE (INCLUDING A LINEAR PARK), ACCESS, DRAINAGE AND GROUND MODELLING WORKS AND OTHER ASSOCIATED WORKS. THE PROPOSAL IS FOR OUTLINE PLANNING PERMISSION AT LAND NORTH OF VIADUCT, ADJOINING ORCHARD BUSINESS PARK, LEDBURY, HEREFORDSHIRE, For: per Mr Guy Wakefield, Thornbury House, 18 High Street, Cheltenham, Gloucestershire, GL50 1DZ WEBSITE https://www.herefordshire.gov.uk/info/200142/planning_services/planning_application_search/details?id=171532&search=171532 LINK: Reason Application submitted to Committee – Strategic Application Date Received: 28 April 2017 Ward: Ledbury North Grid Ref: 370373,238948 Expiry Date: 16 October 2018 Local Member: Councillor Liz Harvey 1. Site Description and Proposal 1.1 The site comprises 28.1 hectares of agricultural land that lies to the northern side / north of the market town of Ledbury. The site gently slopes from the northeast to the southwest. Two wet ditches cross the site east to west with some low lying vegetation and trees running along the ditch to the south. 1.2 The site is bounded by the Ledbury Viaduct and the wooded railway embankment to the south which creates both a dramatic setting and prominent feature. To the east is the Bromyard Trading Estate and to the north and west agricultural land. Accordingly the site sits adjoining an industrial context. The River Leadon runs along part of the western boundary before meandering off to the west.
    [Show full text]
  • Technical and Safety Analysis Report
    HIGH SPEED RAIL ASSESSMENT, PHASE II Norwegian National Rail Administration Technical and Safety Analysis Report JBV 900017 February 2011 HSR Assessment Norway, Phase II Technical and Safety Analysis Page 1 of (270) Preparation- and review documentation: Review documentation: Rev. Prepared by Checked by Approved by Status 1.0 DEF/18.02.2011 RFL, KJ GI Final List of versions: Revision Rev. Description revision Author chapters Nr. Date Version 1 18.02.2011 1.0 Delivery final version DEF, RFL 2 3 4 HSR Assessment Norway, Phase II Technical and Safety Analysis Page 2 of (270) Table of contents List of tables ..................................................................................................................8 List of figures...............................................................................................................11 List of abbreviations ...................................................................................................16 1 Subject – Technical solutions..............................................................................18 1.0 Introduction ...........................................................................................................18 1.0.1 Brief description of scenarios....................................................................................19 1.0.2 World high speed rail (HSR) overview......................................................................20 1.0.2.1 Infrastructure...........................................................................................................
    [Show full text]
  • Model Based System Engineering for Safety of Railway Critical Systems Pengfei Sun
    Model based system engineering for safety of railway critical systems Pengfei Sun To cite this version: Pengfei Sun. Model based system engineering for safety of railway critical systems. Automatic. Ecole Centrale de Lille, 2015. English. NNT : 2015ECLI0018. tel-01293395 HAL Id: tel-01293395 https://tel.archives-ouvertes.fr/tel-01293395 Submitted on 24 Mar 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. No d’ordre : 275 École Centrale de Lille THÈSE présentée en vue d’obtenir le grade de DOCTEUR en Spécialité : Automatique Génie Informatique, Traitement du Signal et Images par Pengfei SUN DOCTORAT DELIVRE PAR L’ÉCOLE CENTRALE DE LILLE Titre de la thèse : Ingénierie de modèle pour la sécurité des systèmes critiques ferroviaires Model based system engineering for safety of railway critical systems Soutenue le 24 juillet 2015 devant le jury d’examen : Président CR-HDR, Mohamed GHAZEL IFSTTAR, Lille Rapporteur HDR, Hélène WAESELYNCK LAAS-CNRS, Toulouse Rapporteur Pr, Hassane ALLA UJF, Grenoble Membre Pr, Xiaoyun FENG SWJTU, Chengdu Membre Pr, Jinling
    [Show full text]
  • Research Article Analytical Method of Modelling the Geometric System of Communication Route
    Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 2014, Article ID 679817, 13 pages http://dx.doi.org/10.1155/2014/679817 Research Article Analytical Method of Modelling the Geometric System of Communication Route Wladyslaw Koc Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland Correspondence should be addressed to Wladyslaw Koc; [email protected] Received 10 October 2013; Accepted 14 April 2014; Published 11 May 2014 Academic Editor: Youqing Wang Copyright © 2014 Wladyslaw Koc. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The paper presents a new analytical approach to modelling thecurvature of a communication route by making use of differential equations. The method makes it possible to identify both linear and nonlinear curvature. It enables us to join curves of thesame or opposite signs of curvature. Solutions of problems for linear change of curvature and selected variants of nonlinear curvature in polynomial and trigonometric form were analyzed. A comparison of determined horizontal transition curves was made and examples of negotiating these curves into a geometric system were given. 1. Introduction railway routes. However, it is easy to note that there is a distinct disproportion in taking interest in this problem. A A rapid progress in computer calculation technique algo- search for new solutions is going on this sphere on vehicular rithmsbasedoncurrentknowledgeandinspiredbyfurther roads (e.g., [4–12]). As regards the railway lines, the situation prospecting is also taken into account in the field of geometri- is entirely different.
    [Show full text]
  • Bakyt G., Abdullayev S., Suleyeva N., Yelshibekov A., Seidemetova
    TRANSPORT PROBLEMS 2020 Volume 15 Issue 2 PROBLEMY TRANSPORTU DOI: 10.21307/tp-2020-020 Keywords: simulation of dynamic processes, passing curves of path sections, interaction of car and railway track, dynamic forces Gabit BAKYT, Seidulla ABDULLAYEV*, Nurgul SULEYEVA, Amandyk YELSHIBEKOV, Zhanerke SEIDEMETOVA, Zhadyra SADVAKASSOVA Kazakh Academy of Transport and Communications 97, Shevchenko, Almaty, 050012, Republic of Kazakhstan *Corresponding author. E-mail: [email protected] SIMULATION OF DYNAMIC PROCESSES OF INTERACTION OF CAR AND RAILWAY TRACK DURING TRAIN PASSAGE OF CURVED SECTIONS OF THE TRACK Summary. In this article, the considered principles for the development of calculation schemes and the subsequent formation of vibration equations are a special case of classical simulation of motion in space of solid body systems connected in space by kinematic connections. This approach is useful with limited computational capabilities and an assumption of the relatively small body movements inherent in railway crew bodies, and reduces the task of motion research to analysis of fluctuations. Various design schemes of freight car truck, mathematical modeling of systems dynamics, "crew-track" safety of freight car movement and withdrawal under different technical conditions of running parts and track are considered in this work. 1. INTRODUCTION Simulation of dynamic processes of interaction of rolling stock and railway track became possible with the help of modern computer equipment evaluation of efforts acting on elements of a track when considering the operation of rolling stock-track system in dynamics. To achieve this, it is necessary to build special models of rolling stock and railway track. Most research works have examined the dynamics of rolling stock and the path for which deformations for computed forces were evaluated by finite-element analysis.
    [Show full text]
  • Optimum Railway Transition Curves—Method of the Assessment and Results
    energies Article Optimum Railway Transition Curves—Method of the Assessment and Results Krzysztof Zboinski and Piotr Woznica * Faculty of Transport, Warsaw University of Technology, 75 Koszykowa Street, 00-662 Warsaw, Poland; [email protected] * Correspondence: [email protected] Abstract: This article discusses the optimization of railway transition curves, through the application of polynomials of 9th and 11th degrees. In this work, the authors use a 2-axle rail vehicle model combined with mathematically understood optimization methods. This model is used to simulate rail vehicle movement negotiating both a transition curve and circular arc. Passenger comfort is applied as the criterion to assess which transition is actually is the best one. The 4-axle vehicle was also used to verify the results obtained using the 2-axle vehicle. Our results show that the traditionally used in a railway engineering transition—3rd degree parabola—which is not always the optimum curve. This fact is especially valid for the longest curves, with lengths greater than 150 m. For such cases, the transition curves similar to standard curves of 9th and 11th degrees is the optimum ones. This result is confirmed by the use of the 4-axle vehicle. Keywords: railway transition curve; optimization; simulation 1. Introduction Citation: Zboinski, K.; Woznica, P. Today, transport negatively influences both the environment and human health. It is Optimum Railway Transition also a big energy consumer. Due to this fact, engineers tend to project sustainable transport Curves—Method of the Assessment systems with a smaller negative impact on health and ecosystems. In railway engineering, and Results.
    [Show full text]
  • Computers in Railways X Computer System Design and Operation in the Railway and Other Transit Systems
    COMPUTERS IN RAILWAYS X COMPUTER SYSTEM DESIGN AND OPERATION IN THE RAILWAY AND OTHER TRANSIT SYSTEMS WIT Press publishes leading books in Science and Technology. Visit our website for the current list of titles. www.witpress.com WITeLibrary Home of the Transactions of the Wessex Institute. Papers presented at COMPRAIL 2006 are archived in the WIT elibrary in volume 88 of WIT Transactions on The Built Environment (ISSN 1743-3509). The WIT electronic-library provides the international scientific community with immediate and permanent access to individual papers presented at WIT conferences. http://library.witpress.com TENTH INTERNATIONAL CONFERENCE ON COMPUTERS IN RAILWAYS COMPRAIL X CONFERENCE C HAIRMEN J. Allan Rail Safety and Standards Board, UK C. A. Brebbia Wessex Institute of Technology, UK A. F. Rumsey Parsons Transportation Group G. Sciutto Universita di Genova S. Sone University of Kogakuin C. J. Goodman The University of Birmingham INTERNATIONAL SCIENTIFIC A DVISORY COMMITTEE T. Albrecht B. Ning W. Daamen A. Radtke J. Esteves J. Rodriguez I. A. Hansen E. Schnieder T. Koseki P. Tzieropoulos N. Moreira A. Yoshimura Sponsored by WIT Transactions on the Built Environment WIT Transactions on The Built Environment Transactions Editor Carlos Brebbia Wessex Institute of Technology Ashurst Lodge, Ashurst Southampton SO40 7AA, UK Email: [email protected] Editorial Board E Alarcon C Alessandri Universidad Politecnica de Madrid Universita di Ferrara Spain Italy S A Anagnostopoulos E Angelino University of Patras A.R.P.A. Lombardia Greece
    [Show full text]
  • Master's Degree in Transport Systems Engineering
    Master’s degree in Transport Systems Engineering Reduction of Noise and Vibration In Railway infrastructure Candidate Supervisor Sindhura Chellaboina Prof. Stefano Ricci 1777704 Academic Year: 2018/2019 Be like a train; go in the rain, go in the sun, go in the storm, go in the dark tunnels! Be like a train; concentrate on your road and go with no hesitation! Mehmet Murat ildan ABSTRACT Rail transport has emerged as one of the most dependable modes of transport in terms of safety. Trains are fast and the least affected by usual weather turbulences like rain or fog, compared to other transport mechanisms. Rail transport is better organised than any other medium of transport. It has fixed routes and schedules. Its services are more certain, uniform and regular compared to other modes of transport. Rail transport originated from human hauled contraptions in ancient Greece. Now it has evolved into a modern, complex and sophisticated system used both in urban and cross-country (and continent) networks over long distances. Rail transport is an enabler of economic progress, used to mobilise goods as well as people. Adaptations include passenger railways, underground (or over ground) urban metro railways and goods carriages. The Italian railway system is one of the most important parts of the infrastructure of Italy, with a total length of 24,227 km (15,054 mi) of which active lines are 16,723 km. The network has recently grown with the construction of the new high-speed rail network. Italy is a member of the International Union of Railways (UIC). The UIC Country Code for Italy is 83.
    [Show full text]