New for 2011

Total Page:16

File Type:pdf, Size:1020Kb

New for 2011 For immediate release BUICK REGAL GS New for 2013 Buick IntelliLink is now standard on Regal GS, including vehicles equipped with available GPS-enabled navigation system Exterior colors: Black Diamond Tricoat, Champagne Silver Metallic, Dark Blue Metallic XM Travel Link, with features that include fuel locations with pricing information, weather information and movie theater locations (SiriusXM subscription required) Revised look to OnStar buttons BUICK REGAL GS BALANCES PREMIUM PERFORMANCE AND EFFICIENCY The Buick Regal GS injects more performance into the Buick sedan lineup, but in an efficient and responsible way: It blends a 270-horsepower (201 kW) high-output Ecotec 2.0L turbo engine; six-speed standard automatic transmission; responsive Interactive Drive Control System suspension technology with exclusive GS-mode; Brembo front calipers; 19-inch wheels and other performance features – and still achieves an EPA- estimated 27 mpg on the highway. Regal GS also is priced thousands less than its import competitors, for today’s enthusiasts who value a dollar as much as they do horsepower. The torque from Regal GS’s exclusive Ecotec 2.0L high-output turbocharged engine provides more launch force than the Acura TSX V-6, Audi A4 Sport, Lexus IS 250 and 350, Infiniti G25, Volkswagen CC and the Volvo S60 T5. Named a Ward’s 2012 10Best Engine, the Regal GS Ecotec 2.0L turbo engine delivers the highest specific output of any production engine GM has ever offered, and at 135 horsepower per liter, it is the most power-dense engine ever certified by the Society of Automotive Engineers. For 2013, the Regal GS gets a standard six-speed automatic transmission; buyers have the option of a six-speed manual at no additional charge. It also continues to offer Buick’s IntelliLink in-vehicle communications system standard and adds IntelliLink to the available GPS-enabled navigation radio. Buick’s exclusive Interactive Drive Control System is standard on the Regal GS, and allows drivers to choose from three operating modes – Standard, Sport and GS Mode – that change the suspension settings and steering sensitivity according to driver preferences. Regal GS also features a four-wheel independent suspension with a unique High Performance Strut (HiPer Strut) front suspension design that improves ride and handling by reducing torque steer; improving vehicle sensitivity to tire irregularities and wheel balance; more linear and communicative steering through improved camber control; and improved impact isolation on bumps and rough surfaces. A lower ride height, 19-inch, 5-Twin Spoke alloy wheels (20-inch, 5-Twin Spoke polished alloy wheels with summer-rated performance tires are available) and four-piston Brembo front calipers also contribute to the GS’ performance persona. Regal GS design Exclusive design cues inside and out distinguish the Regal GS from other Regal models, beginning with a slightly lowered ride height (10 mm) that projects a sportier stance. Regal GS also wears unique body color front and rear fascias, with the front fascia incorporating prominent, vertical air intake slots accented in a satin-metallic finish. The rear fascia has a pair of integrated, satin-metallic trapezoidal exhaust outlets. Body color rocker panel extensions, rear spoiler and GS decklid badge also are exclusive to GS. Inside, the Regal GS features an exclusive ebony interior; satin-finish elements on the instrument panel; steering wheel and console; leather-appointed GS sport bucket seats and accent stitching; GS instrument panel badge; sport pedals; GS embroidered floor mats; and a three-spoke; leather-wrapped performance-inspired steering wheel. The instrument panel backlighting changes from ice blue to white when the driver engages the exclusive GS Mode of the Interactive Drive Control System (IDCS). Regal GS interior – standard and available features Standard seven-inch color touch screen radio with Buick IntelliLink, AM/FM/Sirius XM (three months of service) stereo with CD player and auxiliary input jack, USB port and Bluetooth wireless connectivity for select phones Eight standard air bags, including rear-seat thorax air bags Passive keyless entry with push-button start Harman/kardon premium 336-watt, 5.1 Matrix Surround Sound system and nine speakers Heated driver and front passenger seats, with 12-way adjustable driver and front passenger seats – including four-way lumbar adjustment. 120-volt accessory power outlet Cruise control Power windows with driver and front passenger express up/down Dual-zone automatic climate control Auto-dimming inside rearview mirror Electric parking brake Ice blue ambient lighting Power windows with express up/down feature in the front and express down in the rear Front and rear ultrasonic parking assist Bi-Xenon HID headlamps with flash-to-pass feature, auto on/off, auto delay, warning buzzer OnStar (with six months of Directions and Connections service). Buick IntelliLink is standard on all Regal GS audio systems, and uses Bluetooth wireless connectivity or USB to connect the driver’s smart phone to a seven-inch, high-resolution, full-color touch screen display radio. IntelliLink allows smart phone control via voice activation and steering wheel-mounted controls. It also enables streaming stereo audio from the phone through services such as PANDORA® Internet radio and Stitcher SmartRadio®. A new XM Travel Link feature includes fuel locations with pricing information, weather information, and movie theater locations. A SiriusXM subscription is required. IntelliLink allows Buick customers to customize how and when they want their music and news/talk programming. It also seamlessly integrates portable devices while they are safely stowed, allowing drivers to keep their hands on the wheel and eyes on the road. IntelliLink complements the safety, security and connectivity services of OnStar, also standard on all Regal models. With a simple button touch, voice command or via an app downloadable for certain smartphones, Regal owners can access popular OnStar services such as Turn-by-Turn navigation and Destination Download, hands-free calling, remote door unlock, vehicle diagnostics, emergency assistance and much more. For 2013, Regal GS also adds an audio system with available GPS-enabled navigation, when ordered with the available sunroof. It consists of IntelliLink connectivity, an AM/FM/SiriusXM stereo, single CD/DVD player and MP3 player, USB port, Radio Data System and auxiliary input jack. Other available interior features include a tilt-sliding sunroof with sunshade. Efficient, high-output turbocharged engine The Regal GS turbo delivers the responsiveness and acceleration of a V-6 with the fuel economy of a 2.0L four-cylinder engine. EPA-estimated fuel economy is 27 mpg on the highway with the standard six-speed automatic transmission. Power for the Regal GS comes from a high-output version of the Ecotec 2.0L turbocharged dual overhead cam engine with continuously variable valve timing and direct-injection technology. The Regal GS is rated at 270 horsepower (201 kW) and 295 lb.-ft. of torque (400 Nm). Peak torque is achieved at a relatively low 2400 rpm; 95 percent of peak torque is available between 2,300 and 4,900 rpm. Direct injection technology helps the engine deliver more power through increased efficiency, while maintaining fuel economy and lowering emissions. That means less fuel is consumed and lower emissions generated – including a 25-percent drop in cold-start hydrocarbon emissions. Variable valve timing optimizes power, efficiency and emissions across the entire rpm band. A six-speed automatic transmission with driver shift control is standard on the Regal GS and a six-speed manual transmission is available. Chassis and suspension The Regal GS rides on a wheelbase of 107.8 inches (2738 mm) that delivers refined, well-balanced vehicle dynamics. It also features a four-wheel-independent suspension, with a unique High Performance Strut (HiPer Strut) front suspension design to help reduce torque steer, improve grip and maintain negative camber during cornering. In addition, the Regal GS’ ride height was lowered 10 mm, and spring and stabilizer bar rates raised by 20 percent, for more responsive handling. At the rear, the four-link independent rear suspension is designed to minimize unwanted toe and camber effects. Both front and rear dampers incorporate active Computer Damping Control (CDC), which continuously changes damper characteristics to maintain optimal vehicle ride control over varying road surfaces and profiles. A powerful sedan demands powerful braking capability. Regal GS features a four-wheel disc brake system with Brembo four-piston front calipers, larger ventilated front discs and high-performance linings. Regal GS is equipped with standard StabiliTrak stability control system with integrated, full-function traction control. Interactive Drive Control System The Regal GS’ Interactive Drive Control System adapts damping and other driving functions to drivers’ preferences. While the Regal Turbo offers Interactive Drive Control with the choice of a standard adaptive setting, a more comfortable Tour mode and a Sport mode, the system in the Regal GS is deliberately tuned for those who enjoy a higher level of performance: Standard: Delivers ideal all-round performance, while maintaining comfort characteristics for everyday driving. Sport: Features a firmer level of suspension damping and reduces body roll for more agility. GS: Readies the car for dynamic, enthusiast-level driving.
Recommended publications
  • Advances in Truck and Bus Safety
    EVALUATING THE NEED FOR CHANGING CURRENT REQUIREMENTS TOWARDS INCREASING THE AMOUNT OF LIGHTING DEVICES EQUIPPING SEMI TRAILERS Krzysztof Olejnik Motor Transport Institute Poland Paper No. 07 – 0135 the driven truck in relation to the unilluminated ABSTRACT objects. The similar situation takes place when The report has pointed out the need to manoeuvres are carried out in none lit up place and provide the truck driver with a semi trailer, the there are unilluminated objects either side of the ability to see the contour of the semi trailer and road vehicle. illumination in the insufficient lighting conditions. The need for equipping the vehicle with additional THE ESTIMATION OF THE SITUATION AND contour light and lamps illuminating the section of CHANGES PROPOSED. the road overrun by the semi trailer wheels has been assessed. The driver of the vehicle or group of vehicles should This is particularly important during have the possibility to observe the surroundings of manoeuvring with such truck – semi trailer unit at the vehicle together with the elements of the night to ensure safety, as the semi trailer has a contour of this vehicle – see Figure 1 [1,2]. The different tracking circle than the towing truck. drawing presented below shows these areas around Current regulations are too (categorical) restrictive the vehicle. and limiting possibility of introducing additional The driver should have the ability to observe them lights. The proposal for technically solving this during driving, both during a day and at night. It problem as well as amending the regulations, has should be possible under the street lighting and been presented.
    [Show full text]
  • C2101, C2201, C2103 & C2203
    INSTALLATION INSTRUCTIONS S/S COMPETITION TRACTION BARS P/N'S: C2101, C2201, C2103 & C2203 Competition Engineering Leaf Spring Traction Bars are designed especially for use in drag race classes that require a bolt-on traction device such as Stock Eliminator and Bracket Racing. These bars will eliminate wheel hop and improve traction by applying the force which normally produces unwanted tire spin into a downward force where the tire meets the pavement. These bars are capable of handling horsepower levels up to 450hp. They are designed with a snubber location that is positioned directly under the front spring eye bolt, eliminating spring damage and increasing the lever effect on the rear tires. NOTE: These traction bars may not work with the stock rear sway bar on some vehicle models. We recommend that you modify the bar to fit or remove it. PARTS LIST 2) Competition Traction Bars 4) 1/2" J-Bolts 2) 7/16" Square U-Bolts 2) Rubber Snubbers 8) 1/2"-20 Nuts 8) 1/2"-20 Locknuts 12) 1/2" Flat Washers 4) 7/16"-14 Locknuts 4) 7/16"-14 Nuts 2) 3/8"-16 Locknuts INSTALLATION 1) Check rear springs for broken leaves. Replace if necessary. 2) Jack up the rear of the car and place two jack stands under the frame member directly in front of the rear spring. Allow the rear housing to hang down with its weight on the springs. 3) Disconnect the shock absorber at the lower mounting point. Remove the stock lower spring plates and U-Bolts. NOTE: When replacing U-Bolts with the supplied J-Bolts, you must use either the factory T-Bolt or a 1/2" Grade 8 bolt.
    [Show full text]
  • Service Bulletin
    ATTENTION: IMPORTANT - All GENERAL MANAGER q Service Personnel PARTS MANAGER q Should Read and Initial in the boxes CLAIMS PERSONNEL q provided, right. SERVICE MANAGER q © 2019 Subaru of America, Inc. All rights reserved. SERVICE BULLETIN APPLICABILITY: 2018-19MY STI NUMBER: 04-25-19R SUBJECT: Torque Steer Diagnostics and Repair Procedure DATE: 04/25/19 REVISED: 08/28/19 INTRODUCTION: The primary focus of this bulletin is to provide a procedure to follow when diagnosing a customer concern of Torque Steer, defined as a pulling condition to either the left or right when under full acceleration which requires a somewhat greater than standard correction of steering wheel input from the driver to counteract. As part of this diagnosis, it will be necessary to first eliminate two other conditions a customer may misinterpret as torque steer. These are: Steering Pull and Steering Off-Center. This will prevent incorrect or over-repair, both of which can negatively impact customer satisfaction. This bulletin applies only in cases where the original factory equipment wheels, tires, and all suspension components are currently installed and, the outlined condition is confirmed to be present. SERVICE PROCEDURE / DIAGNOSTIC INFORMATION: Definition of Terms: • Torque Steer: A pull to either the left or right during full acceleration (high engine torque) which requires a somewhat greater than standard steering wheel input from the driver to counteract and keep the vehicle moving straight ahead. • Steering “Pull”: A tendency for the vehicle to pull or “drift” to the left or right while at speed (not under acceleration) and holding the steering wheel straight ahead.
    [Show full text]
  • Car Suspension and Handling Fourth Edition
    Car Suspension and Handling Fourth Edition List of Chapters: Preface to the Fourth Edition 3.8 Tire Uniformity 3.9 Aspect Ratios Preface to the First Edition 3.10 Tire Selection and Air Chamber Geometry Notation 3.11 References Chapter 1 Introduction Chapter 4 Steering 1.1 Scope and Layout of the Book 4.1 Dynamic Function of the Steering 1.2 The Function of the Suspension System System 4.2 Steering Angles: Effects of Tire Slip 1.3 Suspension Geometry Angles and Steering and Suspension 1.4 Kinematics and Compliance (K&C) Kinematics 1.5 Vehicle Dynamics 4.3 Relative Positions of Front- and Rear- 1.6 References Wheel Tracks 4.4 Understeer and Oversteer Chapter 2 Disturbances and Sensitivity 4.5 Directional Stability 2.1 Road Irregularities 4.6 Torque in the Steering System 2.2 Influence of Wheel Size 4.7 Steering Torque Effects Due to 2.3 Subjective Assessment of Ride Steering Geometry 2.4 Human Sensitivity to Vibration 4.8 The Steering Column 2.5 Measurement Standards for Vibration 4.9 Steering Gear 2.6 Influence of Noise on Assessment of 4.10 Constant Velocity (CV) Driveshaft Ride Comfort Joints 2.7 Influence of Phase of Differential 4.11 Torque Steer Effects Vibration on Assessment of Ride 4.12 Front-Wheel Steering Oscillations— Comfort Shimmy 2.8 References 4.13 Power Assistance 4.14 Electric Power Steering Chapter 3 The Wheel and Tire 4.15 Rear-Wheel Steering Systems 3.1 Introduction 4.16 References 3.2 The Wheel Rim 3.3 Tire Size Designation Chapter 5 Suspension Systems and 3.4 Tire Construction Types Their Effects 3.5 Tire Properties
    [Show full text]
  • The Automotive Chassis Engineering Principles List of Chapters
    The Automotive Chassis Engineering Principles List of Chapters Preface 2.2.2 Radial ply tyres 2.2.3 Tubeless or tubed 1 Types of suspension and drive 2.2.4 Height-to-width ratio 1.1 General characteristics of wheel suspensions 2.2.5 Tyre dimensions and markings 1.2 Independent wheel suspensions - general 2.2.6 Tyre load capacities and inflation 1.2.1 Requirements pressures 1.2.2 Double wishbone suspensions 2.2.7 Tyre sidewall markings 1.2.3 McPherson struts and strut dampers 1.2.4 Rear axle trailing-arm suspension 2.2.8 Rolling circumference and driving 1.2.5 Semi-trailing-arm rear axles speed 1.2.6 Multi-link suspension 2.2.9 Influence of the tyre on the 1.3 Rigid and semi-rigid crank axles speedometer 1.3.1 Rigid axles 2.3 Wheels 1.3.2 Semi rigid crank axles 2.3.1 Concepts 1.4 Front-mounted engine, rear-mounted drive 2.3.2 Rims for passenger cars, light 1.4.1 Advantages and disadvantages of commercial vehicles and trailers the front-mounted engine, rear- 2.3.3 Wheels for passenger cars, light mounted drive design commercial vehicles and trailers 1.4.2 Non-driven front axles 2.3.4 Wheel mountings 1.4.3 Driven rear axles 2.4 Springing behaviour 1.5 Rear and mid engine drive 2.5 Non-uniformity 1.6 Front-wheel drive 2.6 Rolling resistance 1.6.1 Types of design 2.6.1 Rolling resistance in straight-line 1.6.2 Advantages and disadvantages of driving front-wheel drive 2.6.2 Rolling resistance during cornering 1.6.3 Driven front axles 2.6.3 Other influencing variables 1.6.4 Non-driven rear axles 2.7 Rolling force coefficients and sliding friction
    [Show full text]
  • Hydraulic Power Steering System Design in Road-Analysis, Testing
    avhandling marro 2007/01/14 20:34phd_andjo page2005/08/17 iii 13:51 page 1 Link¨oping Studies in Science and Technology. Dissertations Linköping StudiesNo. in Science1068 and Technology. Marcus Rösth Dissertations No.1068 965 DesignHydraulic Principles Power Steering for Noise System Reduction Design in in HydraulicHydraulicRoad Power PistonVehicles Steering Pumps SystemSimulation,Analysis, Optimisation Design Testing and in andEnhanced Road Experimental Functionality Vehicles Verification Analysis, TestingarcuMarcuss andRs Enhancedth Rösth Functionality RoadVehicles Hydraulic Power Steering System Design in Marcus R¨osth Linköping 2005 Hydraulic Piston Pumps Design Principles for NoiseAndreas Reduction Johansson in Division of Fluid and Mechanical Engineering Systems Department of Mechanical Engineering Division of FluidLink and¨oping Mechanical University Engineering Systems DepartmentSE–581 83 of Link Mechanical¨oping, Sweden Engineering 2007 Linköpings universitet SE–581 83 Linköping, Sweden Link¨oping 2007 Linköping 2005 August 17, 2005 1 avhandling marro 2007/03/07 20:41 page i Hydraulic Power Steering System Design in Road Vehicles Analysis, Testing and Enhanced Functionality avhandling marro 2007/03/07 20:41 page ii avhandling marro 2007/03/07 20:41 page iii Link¨oping Studies in Science and Technology. Dissertations No. 1068 Hydraulic Power Steering System Design in Road Vehicles Analysis, Testing and Enhanced Functionality Marcus R¨osth Division of Fluid and Mechanical Engineering Systems Department of Mechanical Engineering Link¨oping University SE–581 83 Link¨oping, Sweden Link¨oping 2007 avhandling marro 2007/03/07 20:41 page iv ISBN 978-91-85643-00-4 ISSN 0345-7524 Copyright c 2006 by Marcus R¨osth Department of Mechanical Engineering Link¨oping University SE-581 83 Link¨oping, Sweden Printed in Sweden by LTAB Link¨opings Tryckeri AB, 2007.445 avhandling marro 2007/03/07 20:41 page v To my wife Jennifer M¨angden tror att allt sv˚arfattligt ¨ar djupsinnigt, men s˚a ¨ar det icke.
    [Show full text]
  • Torque Split Between Left and Right Drive Shaft Over a Front Wheel Drive Differential
    Torque split between left and right drive shaft over a front wheel drive differential Mechanical and Automotive Engineering Master’s Thesis in the Mechanical and Automotive Engineering Msc MARC OLLÉ BERNADES Department of Applied Mechanics Division of Vehicle Dynamics and Autonomous Systems Vehicle Dynamics Group CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2012 Master’s thesis 2012:21 MASTER’S THESIS IN VEHICLE DYNAMICS AND AUTONOMOUS SYSTEMS Torque split between left and right drive shaft over a front wheel drive differential MARC OLLÉ BERNADES Department of Applied Mechanics Vehicle Dynamics and Autonomous Systems Vehicle Dynamics Group CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2012 Torque split between left and right drive shaft over a front wheel drive differential MARC OLLÉ BERNADES © MARC OLLÉ BERNADES 2012 Master’s Thesis 2012:21 ISSN 1652-8557 Department of Applied Mechanics Division of Vehicle Dynamics and Autonomous Systems Vehicle Dynamics Group Chalmers University of Technology SE-412 96 Göteborg Sweden Telephone: + 46 (0)31-772 1000 Cover: There is shown a brief representation, starting from the differential design, of all the steps that are followed (Modelling, Rig design, FEM analysis, Rig Test and Dynamic simulations) during this Thesis Work. Chalmers University of Technology / Department of Applied Mechanics Göteborg, Sweden 2012 Torque split between left and right drive shaft over a front wheel drive differential Master’s Thesis in Mechanical Engineering MARC OLLÉ BERNADES Department of Applied Mechanics Division of Vehicle Dynamics and Autonomous system Chalmers University of Technology ABSTRACT Steering feel and vehicle steering motion is affected by wheel torques from propulsion, especially for front wheel drive cars.
    [Show full text]
  • Torsen LSD in Conventional and Electric Axles with EPS Tuning (Electric Power Steering)
    EAWD’19 Torsen LSD in conventional and electric axles with EPS tuning (Electric Power Steering) Presented by Paolo Sacchettini JTEKT TORSEN EUROPE 1 Torsen is a registered trademark of JTEKT Corporation PROPRIETARY JTEKT CORPORATION Torsen LSD integration challenge topics : • New Torsen type D > achieves a new strength / compactness ratio landmark • Torsen LSD improves both Performance & Safety > maximize advantages & eliminate disturbances : & 1. "TOC" EPS tuning eliminates torque-steer while ensuring natural steering feel 2. ESC tuning eliminates initial understeer and boosts corrective yaw moments 3. Chassis tuning reduces initial understeer as well as unsmooth yaw transients + achieves adequate vehicle natural yaw balance 2 Torsen is a registered trademark of JTEKT Corporation PROPRIETARY JTEKT CORPORATION Torsen LSD integration challenge topics : • New Torsen type D > achieves a new strength / compactness ratio landmark • Torsen LSD improves both Performance & Safety > maximize advantages & eliminate disturbances : 1. "TOC" EPS tuning eliminates torque-steer while ensuring natural steering feel 2. ESC tuning eliminates initial understeer and boosts corrective yaw moments 3. Chassis tuning reduces initial understeer as well as unsmooth yaw transients + achieves adequate vehicle natural yaw balance 3 Torsen is a registered trademark of JTEKT Corporation PROPRIETARY JTEKT CORPORATION Torsen type D : robust & compact Size & Weight Reduction Smaller module & Lower helix angle Larger module & Higher helix angle 4 Torsen is a registered trademark of JTEKT Corporation PROPRIETARY JTEKT CORPORATION Torsen LSD integration challenge topics : • New Torsen type D > achieves a new strength / compactness ratio landmark • Torsen LSD improves both Performance & Safety > maximize advantages & eliminate disturbances : & 1. "TOC" EPS tuning eliminates torque-steer while ensuring natural steering feel 2.
    [Show full text]
  • SAE Vehicle Dynamics Technology Collection : Technical Papers
    SAE Vehicle Dynamics Technology Collection : Technical Papers 11th Annual SAE Brake Colloquium and Engineering Display 933070 Title: RTV—A friction material designers view 933071 Title: Practical evaluation and FEM-modelling of a squealing disc brake 933072 Title: Geometric induced instability in drum brakes 14th Annual Brake Colloquium and Engineering Display 962128 Title: Experimental analysis of low-frequency brake squeal noise 962130 Title: Development of correlation between experimental and analytical modal analysis of brake pads 17th Annual Brake Colloquium and Engineering Display 1999-01-3400 Title: Disc brake corner system modeling and simulation Title: A proposal to predict the noise frequency of a disc brake based on the friction pair interface 1999-01-3403 geometry 1999-01-3405 Title: Global NVH matrix for brake noise—A Bosch proposal 1999-01-3407 Title: Prediction of damping treatment dynamics as bonded to a brake shoe and lining Title: An experimental investigation of disk brake creep-groan in vehicles and brake dynamometer 1999-01-3408 correlation 1999-01-3410 Title: Calculation of average coefficient of friction during braking 18th Annual Brake Colloquium and Engineering Display 2000-01-2753 Title: Dynamic modeling of brake friction coefficients 2000-01-2760 Title: Ultra Q™process 2000-01-2763 Title: Cost-effective Aluminium MMC brake discs 2000-01-2764 Title: Modal participation analysis for identifying brake squeal mechanism 2000-01-2765 Title: On the analysis of brake squeal propensity using finite element method 2000-01-2766
    [Show full text]
  • Steering Drift and Wheel Movement During Braking: Parameter Sensitivity Studies
    Steering drift and wheel movement during braking: parameter sensitivity studies Item Type Article Authors Klaps, J.; Day, Andrew J. Citation Klaps, J. and Day, A.J. (2003). Steering drift and wheel movement during braking: parameter sensitivity studies. Proceedings of the Institution of Mechanical Engineers D: Journal of Automobile Engineering. Vol. 217, No. 12, pp. 1107-1115. Rights © 2003 IMechE. Reproduced in accordance with the publisher's self-archiving policy. Download date 24/09/2021 19:01:02 Link to Item http://hdl.handle.net/10454/882 1107 Steering drift and wheel movement during braking: parameter sensitivity studies J Klaps1 and A J Day2* 1Ford Motor Company,Belgium 2School of Engineering,Design and Technology, University of Bradford, Bradford, UK Abstract: In spite of the manysigni cant improvements in carchassis design over the past two decades, steering drift during braking where the driver must applya corrective steering torque in order to maintain course canstill be experienced under certain conditions whiledriving. In the past, such drift, or ‘pull’, would havebeen attributed to side-to-side braking torque variation[ 1], but modern automotive friction brakes and friction materialsare now ableto provide braking torque with such high levelsof consistency that side-to-side braking torque variationis no longer regarded asacause of steering drift during braking. Consequently, other inuences must be considered. This paper isthe rst of two papers to report on anexperimental investigation into braking-related steering drift in motor vehicles.Parameters that might inuence steering drift during braking include suspen- sion compliance and steering o set, and these havebeen investigated to establish the sensitivity of steering drift to such parameters.
    [Show full text]
  • MINI Compare Models 2011 Specifications-Pdf
    LET’S FORGET ALL OUR ASSUMPTIONS ABOUT CARS. If you’re going to motor, motor in a strange and wonderful alchemy of steel, aluminum, graphite, dreams and sweat. Motor in something built by designers who used paper and pencil instead of computers. By designers who listened to their hearts, not focus groups. Motor in a machine that’s more than a pretty face. Every MINI is small but packed with as many features as some cars costing three times as much. Read on and soon you’ll understand that even though there are three different body types, the MINI is still in a class of one. Cooper Cooper S Cooper Cooper S Cooper Cooper S Cooper Cooper S Cooper S John John Cooper John Cooper LET’S BE SMART. Hardtop Hardtop Convert. Convert. Clubman Clubman Countryman Countryman Countryman Cooper Works Works ALL4 Works Convert. Clubman 6 standard airbags w/ side curtains: Smart technology knows which airbags need to inflate when, and at what speed and force* 7 standard airbags w/ side curtains: Smart technology knows which airbags need to inflate when, and at what speed and force* Active Rollover Protection Bars and reinforced A-pillar and frame Four standard airbags: Smart technology knows which airbags need to inflate when, and at what speed and force* Side thorax airbags in the sides of the front seats that protect the bodies and the heads of the driver and front co-pilot* Advanced crumple zones re-channel forces around the passenger compartment The latest generation 4-channel Anti-lock Braking System (ABS). Vented front, solid back.
    [Show full text]
  • Alignment Theory Manual
    Fundamentals of Suspension & 4-Wheel Alignment Interactive Multimedia Edition Toe Toe In Out Copyright 1996 Fundamentals of Suspension & 4-Wheel Alignment Page - 2 Personal Notes Table of Contents SPRINGS ------------------------------------------------------------------------- 5 TORSION BARS ------------------------------------------------------------------------- 6 COIL SPRINGS ------------------------------------------------------------------------- 6 LEAF SPRINGS ------------------------------------------------------------------------- 7 AIR SPRINGS ------------------------------------------------------------------------- 8 SHOCK ABSORBERS ------------------------------------------------------------------------- 9 MACPHERSON STRUT ------------------------------------------------------------------------- 11 CONTROL ARMS ------------------------------------------------------------------------- 13 BALL JOINTS ------------------------------------------------------------------------- 15 STRUT ROD/BUSHINGS ------------------------------------------------------------------------- 18 SWAY BAR SYSTEM ------------------------------------------------------------------------- 19 STEERING SYSTEM ------------------------------------------------------------------------- 20 STEERING LINKAGES ------------------------------------------------------------------------- 22 PITMAN ARM ------------------------------------------------------------------------- 23 IDLER ARM ------------------------------------------------------------------------- 24 CENTER
    [Show full text]