Torque Steer Torque Steer

Total Page:16

File Type:pdf, Size:1020Kb

Torque Steer Torque Steer 34 A USTRALIA’ S N ATIONAL M AGAZINE F OR C ITROËN O WNERS A ND E NTHUSIASTS 35 he internet is a wonderful of the Japanese guys years ago. the plastic was ‘barbie’ quality… order for the rack to move, a valve thing. It can be an excel- Don’t you think Diravi has some- but I had a lot of fun driving that in the rotating union has to open to Tlent source of information, thing to do with it too? car all over the US and 25,000miles allow fluid to move in the rack. CXs and disinformation. It is great way Gary around Europe living in it after I also have centre point geometry, but to share views and increase your altered it to be the smallest camper it is achieved differently from in the in the world… I presume that title D and SM. No, because until I see something on the internet The D and SM pivot point is verti- TTORQUEORQUE SSTEERTEER Gs and 2CVs to take the crown… probably cal through the top of the tyre and do not torque tomorrow. It would have to be an down to the contact patch. The knowledge, via chat groups. steer. Nor do [proper] Saab 900s. original Mini or Issette made into CX steering pivot is on a diagonal Equal-length driveshafts… a camper. For those of you who are not aware axis through the upper suspension Adrian Chapman the Yahoo website is host to a I keep thinking I might fall for a arm ball joint through the lower number of groups that are relevant BMW Mini, if they would make ball joint and the contact patch. If to Citroën. There are groups for Do not forget the DS and the SM… a Maxi version and stretch it… the tyre and wheel combination on most models from the marque, and for that matter the Traction Avant just stretch it and maybe bump the the car results in either a larger or of these the most active is the CX then eh? top up from the back of the doors a smaller rolling radius, the pivot group. I think that for every one rearward… just a little raised roof point will no longer pass through GS related message in my email Sure, if the engine is going straight of about 3inches for more room. I the centre of the contact patch. then it is easier, but I was really inbox, there must be 10 from the think they could sell boat loads of Many cars have a steering pivot CX-afflicted. referring to the transverse types them as kind of hatchbacks with and dealing with the design limita- point that is well inside of the fold down seats in back....put in a centre of the contact patch. If you The following is the majority of a tions well. surf board, snowboard etc… recent conversation thread regarding turn the wheels on these cars while torque steer. I mentioned it before but just Sorry off topic but still about it is stationary, you will often find wanted to add that the WORST car cars at least marks that form an arc. Such vehi- CXs do not torque steer. Only I have ever driven in this regard was Gary cles will often suffer from torque front wheel drive cars I know a Ford Probe that my sister-in-law steer even if the drive shafts are of that do not. had… if you gave it even SOME equal length. Gary gas when you had the wheels turned Ds and SMs do not have equal to the right it would just about length drive shafts. In fact, the D en- In order to reduce, or eliminate, LOCK the wheels there… it was… gine is located to the right of centre torque steer in these vehicles, the No properly designed FWD car startling – presumably to offset the weight of diameter of the drive shaft segments – with equal length driveshafts the driver. The reason that Ds and must be greater on the ‘long’ side to [which is why there is that centre I always wanted to like Hondas compensate for the natural twisting because when I needed a gas miser SMs have no torque steer it that the support bearing] will. steering has centre point geometry. tendency of the shaft. In effect, if Adrian Chapman during the gas crisis back when, I the shaft on one side is 2feet long loved the economy of the Honda That is, the wheels pivot around the centre of the contact patch. This is and the shafts on the other are 4feet 600 I had, but I cannot believe I put long total [using an intermediate Proving most of them are not prop- up with the other limitations of the also why it is virtually impossible for road irregularities to cause deflec- shaft with support bearing], when erly designed. Especially Honda, horrible little beast for 7 years. torque is applied the 2 outer end even the 2007 I test-drove a few tion of the steering wheel – that and Bad seats, bad doors, bad suspen- of the 2 foot long shaft will receive months ago. Citroën was way ahead the design of the steering system [in sion, bad heating, bad noise… all more torque than the outer end of 36 A USTRALIA’ S N ATIONAL M AGAZINE F OR C ITROËN O WNERS A ND E NTHUSIASTS 37 the other. Preventing this would contact patch, what size tyre does example, during full acceleration require the intermediate shaft to be Scott, The only thing wrong with it work for? Remember, CXs had the steering may pull to one side, made either larger in diameter or your argument is the fact that torque about five sizes fitted by the fac- which may be disturbing to the of a more tortionally rigid material steer does exist. Torque steer causes tory through the life. driver. This either causes a tugging so that the moment of rotation is the car to veer right or left when Adrian Chapman sensation in the steering wheel, or power is ap- else the car veers from the intended path. As the Torque Steer Effect is plied with the The original CX suspension has TTORQUEORQUE SSTEERTEER wheels point- directly related to the engine torque centre point steering when fitted capabilities this problem becomes ing straight with the original tyres [175 14 the same at both ends. This is not more and more evident with high ahead. The effect is exaggerated if – ‘80s from memory] when the necessary on the CX due to the output engines with strong low rpm the wheels are turned in the direc- suspension was at the normal ride steering geometry [and Diravi does range torque. tion of the torque steer. If the dif- height & tyre pressures. Project help, but only slightly]. ferential did, indeed, always apply the swivel axis [it is at about 10 or Torque steering may be confused Bob equal torque to both drive shafts, 15º] down to the road surface and with steering kickback. there could be no torque steer. The its contact point coincides with Causes function of the differential is to And I, unfortunately, must disagree. the centre of the tyre. This unique Root causes for Torque Steer are allow the driven wheels to turn at designed coincidence can only occur Your argument would be quite different speeds in order to prevent [1]: correct, but you have neglected the with the designed tyre diameter/ skittering in turns [skittering being Nonsymmetric driveshaft angles, action of the differential, whose rim/tyre pressure etc. a technical term]. e.g. due to function is exactly to deliver equal As well as tyre size changes there torque to both wheels, regardless Whenever you have two rods of the have been rim offset changes, origi- Nonsymmetric design of the vehi- of relative speed or relative angular same diameter but differing lengths, nally 49 mm. then with the wide cle, e.g. different driveshaft length position. the shorter rod will transfer more track it changed to 45mm, maybe Transient movement of the engine torque than the longer rod – pro- they reconsidered the centre point The worst torque steer car I have vided they have the same stiffness Tolerances in engine mounts driven is an early ‘90s VW Golf – who knows? This offset change characteristics per unit of length. occurred when they went to TRX Different driveshaft torques left GTI. It handled quite well and had Bob lots of power, but hard acceleration and 195 14 70 tyres – which have to right would more or less freeze the steer- the same diameter. Before this tyre Suspension geometry tolerances size changes had the same rolling di- ing wherever you had it. On neither I was always under the impression Unequal traction forces due to road ameters as the original 175 ‘80s. my DS with power steering or my that CXs did not [have centre point surface [µ-Split] in combination Chris Stuart, Perth, Aus rather primitive early CX with, as geometry] – the outboard brakes with Kingpin Offset we say in the States, Armstrong made it impossible – and that Diravi After this interesting, but not quite The open differential cannot fairly power steering, is any torque steer used brute force to provide a similar fruitful discussion, I headed to the distribute torque between the two perceptible. The CX is very subject effect in the event of a blown tyre. internet and did a search. The first to shaking on acceleration if the CV driveshafts, the power may be trans- Also, if the tyre and wheel combi- link was to Wikipedia.
Recommended publications
  • Advances in Truck and Bus Safety
    EVALUATING THE NEED FOR CHANGING CURRENT REQUIREMENTS TOWARDS INCREASING THE AMOUNT OF LIGHTING DEVICES EQUIPPING SEMI TRAILERS Krzysztof Olejnik Motor Transport Institute Poland Paper No. 07 – 0135 the driven truck in relation to the unilluminated ABSTRACT objects. The similar situation takes place when The report has pointed out the need to manoeuvres are carried out in none lit up place and provide the truck driver with a semi trailer, the there are unilluminated objects either side of the ability to see the contour of the semi trailer and road vehicle. illumination in the insufficient lighting conditions. The need for equipping the vehicle with additional THE ESTIMATION OF THE SITUATION AND contour light and lamps illuminating the section of CHANGES PROPOSED. the road overrun by the semi trailer wheels has been assessed. The driver of the vehicle or group of vehicles should This is particularly important during have the possibility to observe the surroundings of manoeuvring with such truck – semi trailer unit at the vehicle together with the elements of the night to ensure safety, as the semi trailer has a contour of this vehicle – see Figure 1 [1,2]. The different tracking circle than the towing truck. drawing presented below shows these areas around Current regulations are too (categorical) restrictive the vehicle. and limiting possibility of introducing additional The driver should have the ability to observe them lights. The proposal for technically solving this during driving, both during a day and at night. It problem as well as amending the regulations, has should be possible under the street lighting and been presented.
    [Show full text]
  • C2101, C2201, C2103 & C2203
    INSTALLATION INSTRUCTIONS S/S COMPETITION TRACTION BARS P/N'S: C2101, C2201, C2103 & C2203 Competition Engineering Leaf Spring Traction Bars are designed especially for use in drag race classes that require a bolt-on traction device such as Stock Eliminator and Bracket Racing. These bars will eliminate wheel hop and improve traction by applying the force which normally produces unwanted tire spin into a downward force where the tire meets the pavement. These bars are capable of handling horsepower levels up to 450hp. They are designed with a snubber location that is positioned directly under the front spring eye bolt, eliminating spring damage and increasing the lever effect on the rear tires. NOTE: These traction bars may not work with the stock rear sway bar on some vehicle models. We recommend that you modify the bar to fit or remove it. PARTS LIST 2) Competition Traction Bars 4) 1/2" J-Bolts 2) 7/16" Square U-Bolts 2) Rubber Snubbers 8) 1/2"-20 Nuts 8) 1/2"-20 Locknuts 12) 1/2" Flat Washers 4) 7/16"-14 Locknuts 4) 7/16"-14 Nuts 2) 3/8"-16 Locknuts INSTALLATION 1) Check rear springs for broken leaves. Replace if necessary. 2) Jack up the rear of the car and place two jack stands under the frame member directly in front of the rear spring. Allow the rear housing to hang down with its weight on the springs. 3) Disconnect the shock absorber at the lower mounting point. Remove the stock lower spring plates and U-Bolts. NOTE: When replacing U-Bolts with the supplied J-Bolts, you must use either the factory T-Bolt or a 1/2" Grade 8 bolt.
    [Show full text]
  • Service Bulletin
    ATTENTION: IMPORTANT - All GENERAL MANAGER q Service Personnel PARTS MANAGER q Should Read and Initial in the boxes CLAIMS PERSONNEL q provided, right. SERVICE MANAGER q © 2019 Subaru of America, Inc. All rights reserved. SERVICE BULLETIN APPLICABILITY: 2018-19MY STI NUMBER: 04-25-19R SUBJECT: Torque Steer Diagnostics and Repair Procedure DATE: 04/25/19 REVISED: 08/28/19 INTRODUCTION: The primary focus of this bulletin is to provide a procedure to follow when diagnosing a customer concern of Torque Steer, defined as a pulling condition to either the left or right when under full acceleration which requires a somewhat greater than standard correction of steering wheel input from the driver to counteract. As part of this diagnosis, it will be necessary to first eliminate two other conditions a customer may misinterpret as torque steer. These are: Steering Pull and Steering Off-Center. This will prevent incorrect or over-repair, both of which can negatively impact customer satisfaction. This bulletin applies only in cases where the original factory equipment wheels, tires, and all suspension components are currently installed and, the outlined condition is confirmed to be present. SERVICE PROCEDURE / DIAGNOSTIC INFORMATION: Definition of Terms: • Torque Steer: A pull to either the left or right during full acceleration (high engine torque) which requires a somewhat greater than standard steering wheel input from the driver to counteract and keep the vehicle moving straight ahead. • Steering “Pull”: A tendency for the vehicle to pull or “drift” to the left or right while at speed (not under acceleration) and holding the steering wheel straight ahead.
    [Show full text]
  • Car Suspension and Handling Fourth Edition
    Car Suspension and Handling Fourth Edition List of Chapters: Preface to the Fourth Edition 3.8 Tire Uniformity 3.9 Aspect Ratios Preface to the First Edition 3.10 Tire Selection and Air Chamber Geometry Notation 3.11 References Chapter 1 Introduction Chapter 4 Steering 1.1 Scope and Layout of the Book 4.1 Dynamic Function of the Steering 1.2 The Function of the Suspension System System 4.2 Steering Angles: Effects of Tire Slip 1.3 Suspension Geometry Angles and Steering and Suspension 1.4 Kinematics and Compliance (K&C) Kinematics 1.5 Vehicle Dynamics 4.3 Relative Positions of Front- and Rear- 1.6 References Wheel Tracks 4.4 Understeer and Oversteer Chapter 2 Disturbances and Sensitivity 4.5 Directional Stability 2.1 Road Irregularities 4.6 Torque in the Steering System 2.2 Influence of Wheel Size 4.7 Steering Torque Effects Due to 2.3 Subjective Assessment of Ride Steering Geometry 2.4 Human Sensitivity to Vibration 4.8 The Steering Column 2.5 Measurement Standards for Vibration 4.9 Steering Gear 2.6 Influence of Noise on Assessment of 4.10 Constant Velocity (CV) Driveshaft Ride Comfort Joints 2.7 Influence of Phase of Differential 4.11 Torque Steer Effects Vibration on Assessment of Ride 4.12 Front-Wheel Steering Oscillations— Comfort Shimmy 2.8 References 4.13 Power Assistance 4.14 Electric Power Steering Chapter 3 The Wheel and Tire 4.15 Rear-Wheel Steering Systems 3.1 Introduction 4.16 References 3.2 The Wheel Rim 3.3 Tire Size Designation Chapter 5 Suspension Systems and 3.4 Tire Construction Types Their Effects 3.5 Tire Properties
    [Show full text]
  • The Automotive Chassis Engineering Principles List of Chapters
    The Automotive Chassis Engineering Principles List of Chapters Preface 2.2.2 Radial ply tyres 2.2.3 Tubeless or tubed 1 Types of suspension and drive 2.2.4 Height-to-width ratio 1.1 General characteristics of wheel suspensions 2.2.5 Tyre dimensions and markings 1.2 Independent wheel suspensions - general 2.2.6 Tyre load capacities and inflation 1.2.1 Requirements pressures 1.2.2 Double wishbone suspensions 2.2.7 Tyre sidewall markings 1.2.3 McPherson struts and strut dampers 1.2.4 Rear axle trailing-arm suspension 2.2.8 Rolling circumference and driving 1.2.5 Semi-trailing-arm rear axles speed 1.2.6 Multi-link suspension 2.2.9 Influence of the tyre on the 1.3 Rigid and semi-rigid crank axles speedometer 1.3.1 Rigid axles 2.3 Wheels 1.3.2 Semi rigid crank axles 2.3.1 Concepts 1.4 Front-mounted engine, rear-mounted drive 2.3.2 Rims for passenger cars, light 1.4.1 Advantages and disadvantages of commercial vehicles and trailers the front-mounted engine, rear- 2.3.3 Wheels for passenger cars, light mounted drive design commercial vehicles and trailers 1.4.2 Non-driven front axles 2.3.4 Wheel mountings 1.4.3 Driven rear axles 2.4 Springing behaviour 1.5 Rear and mid engine drive 2.5 Non-uniformity 1.6 Front-wheel drive 2.6 Rolling resistance 1.6.1 Types of design 2.6.1 Rolling resistance in straight-line 1.6.2 Advantages and disadvantages of driving front-wheel drive 2.6.2 Rolling resistance during cornering 1.6.3 Driven front axles 2.6.3 Other influencing variables 1.6.4 Non-driven rear axles 2.7 Rolling force coefficients and sliding friction
    [Show full text]
  • Hydraulic Power Steering System Design in Road-Analysis, Testing
    avhandling marro 2007/01/14 20:34phd_andjo page2005/08/17 iii 13:51 page 1 Link¨oping Studies in Science and Technology. Dissertations Linköping StudiesNo. in Science1068 and Technology. Marcus Rösth Dissertations No.1068 965 DesignHydraulic Principles Power Steering for Noise System Reduction Design in in HydraulicHydraulicRoad Power PistonVehicles Steering Pumps SystemSimulation,Analysis, Optimisation Design Testing and in andEnhanced Road Experimental Functionality Vehicles Verification Analysis, TestingarcuMarcuss andRs Enhancedth Rösth Functionality RoadVehicles Hydraulic Power Steering System Design in Marcus R¨osth Linköping 2005 Hydraulic Piston Pumps Design Principles for NoiseAndreas Reduction Johansson in Division of Fluid and Mechanical Engineering Systems Department of Mechanical Engineering Division of FluidLink and¨oping Mechanical University Engineering Systems DepartmentSE–581 83 of Link Mechanical¨oping, Sweden Engineering 2007 Linköpings universitet SE–581 83 Linköping, Sweden Link¨oping 2007 Linköping 2005 August 17, 2005 1 avhandling marro 2007/03/07 20:41 page i Hydraulic Power Steering System Design in Road Vehicles Analysis, Testing and Enhanced Functionality avhandling marro 2007/03/07 20:41 page ii avhandling marro 2007/03/07 20:41 page iii Link¨oping Studies in Science and Technology. Dissertations No. 1068 Hydraulic Power Steering System Design in Road Vehicles Analysis, Testing and Enhanced Functionality Marcus R¨osth Division of Fluid and Mechanical Engineering Systems Department of Mechanical Engineering Link¨oping University SE–581 83 Link¨oping, Sweden Link¨oping 2007 avhandling marro 2007/03/07 20:41 page iv ISBN 978-91-85643-00-4 ISSN 0345-7524 Copyright c 2006 by Marcus R¨osth Department of Mechanical Engineering Link¨oping University SE-581 83 Link¨oping, Sweden Printed in Sweden by LTAB Link¨opings Tryckeri AB, 2007.445 avhandling marro 2007/03/07 20:41 page v To my wife Jennifer M¨angden tror att allt sv˚arfattligt ¨ar djupsinnigt, men s˚a ¨ar det icke.
    [Show full text]
  • Torque Split Between Left and Right Drive Shaft Over a Front Wheel Drive Differential
    Torque split between left and right drive shaft over a front wheel drive differential Mechanical and Automotive Engineering Master’s Thesis in the Mechanical and Automotive Engineering Msc MARC OLLÉ BERNADES Department of Applied Mechanics Division of Vehicle Dynamics and Autonomous Systems Vehicle Dynamics Group CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2012 Master’s thesis 2012:21 MASTER’S THESIS IN VEHICLE DYNAMICS AND AUTONOMOUS SYSTEMS Torque split between left and right drive shaft over a front wheel drive differential MARC OLLÉ BERNADES Department of Applied Mechanics Vehicle Dynamics and Autonomous Systems Vehicle Dynamics Group CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2012 Torque split between left and right drive shaft over a front wheel drive differential MARC OLLÉ BERNADES © MARC OLLÉ BERNADES 2012 Master’s Thesis 2012:21 ISSN 1652-8557 Department of Applied Mechanics Division of Vehicle Dynamics and Autonomous Systems Vehicle Dynamics Group Chalmers University of Technology SE-412 96 Göteborg Sweden Telephone: + 46 (0)31-772 1000 Cover: There is shown a brief representation, starting from the differential design, of all the steps that are followed (Modelling, Rig design, FEM analysis, Rig Test and Dynamic simulations) during this Thesis Work. Chalmers University of Technology / Department of Applied Mechanics Göteborg, Sweden 2012 Torque split between left and right drive shaft over a front wheel drive differential Master’s Thesis in Mechanical Engineering MARC OLLÉ BERNADES Department of Applied Mechanics Division of Vehicle Dynamics and Autonomous system Chalmers University of Technology ABSTRACT Steering feel and vehicle steering motion is affected by wheel torques from propulsion, especially for front wheel drive cars.
    [Show full text]
  • Torsen LSD in Conventional and Electric Axles with EPS Tuning (Electric Power Steering)
    EAWD’19 Torsen LSD in conventional and electric axles with EPS tuning (Electric Power Steering) Presented by Paolo Sacchettini JTEKT TORSEN EUROPE 1 Torsen is a registered trademark of JTEKT Corporation PROPRIETARY JTEKT CORPORATION Torsen LSD integration challenge topics : • New Torsen type D > achieves a new strength / compactness ratio landmark • Torsen LSD improves both Performance & Safety > maximize advantages & eliminate disturbances : & 1. "TOC" EPS tuning eliminates torque-steer while ensuring natural steering feel 2. ESC tuning eliminates initial understeer and boosts corrective yaw moments 3. Chassis tuning reduces initial understeer as well as unsmooth yaw transients + achieves adequate vehicle natural yaw balance 2 Torsen is a registered trademark of JTEKT Corporation PROPRIETARY JTEKT CORPORATION Torsen LSD integration challenge topics : • New Torsen type D > achieves a new strength / compactness ratio landmark • Torsen LSD improves both Performance & Safety > maximize advantages & eliminate disturbances : 1. "TOC" EPS tuning eliminates torque-steer while ensuring natural steering feel 2. ESC tuning eliminates initial understeer and boosts corrective yaw moments 3. Chassis tuning reduces initial understeer as well as unsmooth yaw transients + achieves adequate vehicle natural yaw balance 3 Torsen is a registered trademark of JTEKT Corporation PROPRIETARY JTEKT CORPORATION Torsen type D : robust & compact Size & Weight Reduction Smaller module & Lower helix angle Larger module & Higher helix angle 4 Torsen is a registered trademark of JTEKT Corporation PROPRIETARY JTEKT CORPORATION Torsen LSD integration challenge topics : • New Torsen type D > achieves a new strength / compactness ratio landmark • Torsen LSD improves both Performance & Safety > maximize advantages & eliminate disturbances : & 1. "TOC" EPS tuning eliminates torque-steer while ensuring natural steering feel 2.
    [Show full text]
  • SAE Vehicle Dynamics Technology Collection : Technical Papers
    SAE Vehicle Dynamics Technology Collection : Technical Papers 11th Annual SAE Brake Colloquium and Engineering Display 933070 Title: RTV—A friction material designers view 933071 Title: Practical evaluation and FEM-modelling of a squealing disc brake 933072 Title: Geometric induced instability in drum brakes 14th Annual Brake Colloquium and Engineering Display 962128 Title: Experimental analysis of low-frequency brake squeal noise 962130 Title: Development of correlation between experimental and analytical modal analysis of brake pads 17th Annual Brake Colloquium and Engineering Display 1999-01-3400 Title: Disc brake corner system modeling and simulation Title: A proposal to predict the noise frequency of a disc brake based on the friction pair interface 1999-01-3403 geometry 1999-01-3405 Title: Global NVH matrix for brake noise—A Bosch proposal 1999-01-3407 Title: Prediction of damping treatment dynamics as bonded to a brake shoe and lining Title: An experimental investigation of disk brake creep-groan in vehicles and brake dynamometer 1999-01-3408 correlation 1999-01-3410 Title: Calculation of average coefficient of friction during braking 18th Annual Brake Colloquium and Engineering Display 2000-01-2753 Title: Dynamic modeling of brake friction coefficients 2000-01-2760 Title: Ultra Q™process 2000-01-2763 Title: Cost-effective Aluminium MMC brake discs 2000-01-2764 Title: Modal participation analysis for identifying brake squeal mechanism 2000-01-2765 Title: On the analysis of brake squeal propensity using finite element method 2000-01-2766
    [Show full text]
  • Steering Drift and Wheel Movement During Braking: Parameter Sensitivity Studies
    Steering drift and wheel movement during braking: parameter sensitivity studies Item Type Article Authors Klaps, J.; Day, Andrew J. Citation Klaps, J. and Day, A.J. (2003). Steering drift and wheel movement during braking: parameter sensitivity studies. Proceedings of the Institution of Mechanical Engineers D: Journal of Automobile Engineering. Vol. 217, No. 12, pp. 1107-1115. Rights © 2003 IMechE. Reproduced in accordance with the publisher's self-archiving policy. Download date 24/09/2021 19:01:02 Link to Item http://hdl.handle.net/10454/882 1107 Steering drift and wheel movement during braking: parameter sensitivity studies J Klaps1 and A J Day2* 1Ford Motor Company,Belgium 2School of Engineering,Design and Technology, University of Bradford, Bradford, UK Abstract: In spite of the manysigni cant improvements in carchassis design over the past two decades, steering drift during braking where the driver must applya corrective steering torque in order to maintain course canstill be experienced under certain conditions whiledriving. In the past, such drift, or ‘pull’, would havebeen attributed to side-to-side braking torque variation[ 1], but modern automotive friction brakes and friction materialsare now ableto provide braking torque with such high levelsof consistency that side-to-side braking torque variationis no longer regarded asacause of steering drift during braking. Consequently, other inuences must be considered. This paper isthe rst of two papers to report on anexperimental investigation into braking-related steering drift in motor vehicles.Parameters that might inuence steering drift during braking include suspen- sion compliance and steering o set, and these havebeen investigated to establish the sensitivity of steering drift to such parameters.
    [Show full text]
  • MINI Compare Models 2011 Specifications-Pdf
    LET’S FORGET ALL OUR ASSUMPTIONS ABOUT CARS. If you’re going to motor, motor in a strange and wonderful alchemy of steel, aluminum, graphite, dreams and sweat. Motor in something built by designers who used paper and pencil instead of computers. By designers who listened to their hearts, not focus groups. Motor in a machine that’s more than a pretty face. Every MINI is small but packed with as many features as some cars costing three times as much. Read on and soon you’ll understand that even though there are three different body types, the MINI is still in a class of one. Cooper Cooper S Cooper Cooper S Cooper Cooper S Cooper Cooper S Cooper S John John Cooper John Cooper LET’S BE SMART. Hardtop Hardtop Convert. Convert. Clubman Clubman Countryman Countryman Countryman Cooper Works Works ALL4 Works Convert. Clubman 6 standard airbags w/ side curtains: Smart technology knows which airbags need to inflate when, and at what speed and force* 7 standard airbags w/ side curtains: Smart technology knows which airbags need to inflate when, and at what speed and force* Active Rollover Protection Bars and reinforced A-pillar and frame Four standard airbags: Smart technology knows which airbags need to inflate when, and at what speed and force* Side thorax airbags in the sides of the front seats that protect the bodies and the heads of the driver and front co-pilot* Advanced crumple zones re-channel forces around the passenger compartment The latest generation 4-channel Anti-lock Braking System (ABS). Vented front, solid back.
    [Show full text]
  • Alignment Theory Manual
    Fundamentals of Suspension & 4-Wheel Alignment Interactive Multimedia Edition Toe Toe In Out Copyright 1996 Fundamentals of Suspension & 4-Wheel Alignment Page - 2 Personal Notes Table of Contents SPRINGS ------------------------------------------------------------------------- 5 TORSION BARS ------------------------------------------------------------------------- 6 COIL SPRINGS ------------------------------------------------------------------------- 6 LEAF SPRINGS ------------------------------------------------------------------------- 7 AIR SPRINGS ------------------------------------------------------------------------- 8 SHOCK ABSORBERS ------------------------------------------------------------------------- 9 MACPHERSON STRUT ------------------------------------------------------------------------- 11 CONTROL ARMS ------------------------------------------------------------------------- 13 BALL JOINTS ------------------------------------------------------------------------- 15 STRUT ROD/BUSHINGS ------------------------------------------------------------------------- 18 SWAY BAR SYSTEM ------------------------------------------------------------------------- 19 STEERING SYSTEM ------------------------------------------------------------------------- 20 STEERING LINKAGES ------------------------------------------------------------------------- 22 PITMAN ARM ------------------------------------------------------------------------- 23 IDLER ARM ------------------------------------------------------------------------- 24 CENTER
    [Show full text]