Best Management Practices for Coastal Inlets

Total Page:16

File Type:pdf, Size:1020Kb

Best Management Practices for Coastal Inlets ASBPA WHITE PAPER: Best management practices for coastal inlets By Nicole Elko,1 Kimberley McKenna,2 Tiffany Roberts Briggs,3 Nicholas Brown,3 Michael Walther,4 and Dawn York5 1) ASBPA, P.O. Box 1451, Folly Beach, SC 29439; [email protected] 2) Stockton University Coastal Research Center, 30 Wilson Avenue, Port Republic, NJ 08241 3) Florida Atlantic University, Department of Geosciences, 777 Glades Road, SE43, Boca Raton, FL 33431 4) Coastal Tech–G.E.C. Inc., 3625 20th Street, Vero Beach, FL, 32960 5) Moffatt & Nichol, 272 North Front Street, Suite 204, Wilmington, NC 28401 ABSTRACT Coastal inlets separate individual barrier islands or barrier spits merical modeling, and other science-based methods, demon- and adjacent headlands (Hayes and Fitzgerald 2013). Inlets strate that BMPs improve management of sand resources and modify longshore transport and store sediment in flood and reduce impacts associated with tidal inlet dredging. For some ebb shoals leading to dynamic adjacent shorelines. For example, inlet conditions, BMPs include use of inlet sediment sinks as 80% to 85% of the beach erosion in Florida can be attributed to cost-effective and eco-friendly sand sources for beach nourish- inlets (Dean 1991). In some cases, structured inlets are designed ment projects located close to the inlet. to trap sand in a preferred location to minimize interference For optimal coastal inlet management, the ASBPA Science with navigation and facilitate its removal through dredging. and Technology Committee recommends the following BMPs Sound coastal engineering practice requires that this sand be and conservation measures: placed on adjacent eroding beaches (NRC 1995) to protect • Limit frequency and duration of impacts, coastal resources. • Follow environmental windows, This paper provides a brief overview of coastal inlet man- • Implement regional sediment management, agement and identifies Best Management Practices (BMPs) • Use beach-compatible sand, intended to balance human needs for inlet navigation with the • Conduct pre-, during-, and post-dredging monitoring, natural systems adjacent to tidal inlets. Today’s conservation • Modify dredging equipment/practices, and measures, which are a result of considerable monitoring, nu- • Design rechargeable, low-impact inlet borrow sites. ur nation’s inlets and water- resulted in serious beach erosion impacts ways play important ecologic, KEYWORDS: Tidal inlet, conserva- at some coastal inlets (Charleston Harbor, economic and national security tion measures, beach nourishment, SC; Cape Canaveral, FL; Ocean City Inlet, dredging, Coastal Barrier Resource Oroles by providing entrances to estuarine MD). A better management practice is to Act. nursery grounds and cycling nutrients place dredged sands on adjacent beaches as well as sustaining international and to mitigate beach erosion that may have domestic trade and providing harborage. governments, as well as local beach com- been exacerbated by the navigation chan- Coastal inlets interact with the natural munities, commonly support periodic nel; however, implementing this BMP has alongshore drift of sand but also provide placement of sand on eroding beaches been a coastal management policy chal- critical hydrodynamic linkages of ocean — a process called beach nourishment. lenge. A difficult and time-consuming and estuarine waters that sustain coastal USACE beach nourishment projects are challenge for some USACE Districts has ecosystems and communities. A key typically designed to (a) provide upland been proving that beach placement is agency mission of the U.S. Army Corps protection in the potential future event of a cost-effective and sound engineering of Engineers (USACE) is the maintenance a 10-year to 25-year return interval storm, practice to avoid downdrift impacts. of navigable waterways. Optimal inlet and and (b) be maintained over a lifespan of Local governments may fund the cost waterway management is vital to sustain 50 years as authorized and funded by difference between offshore placement the coastal ecosystem and to support Congress. State and local beach nourish- and a type of placement closer to shore commercial and recreational uses of inlet ment projects are commonly designed that is beneficial to eroding beaches such resources. for differing criteria without USACE as beach nourishment or placement in funding. a nearshore feeder berm (South Padre Adjacent to coastal inlets, the beach Island, TX). and dune system provide important Over the last century, many coastal national infrastructure that reduces risk inlets have been jettied and routinely For many inlets, beach and inlet main- from coastal flooding while enhancing dredged to facilitate navigation. The tenance expenditures can be reduced by opportunities for tourism and critical dredged sediment was often placed in a combining a navigation and beach nour- habitat restoration. To maintain this cheap, offshore disposal area. This remov- ishment project. For example, the USACE critical infrastructure, federal and state al of sediment from the littoral system has Jacksonville District has identified the Shore & Beach Vol. 88, No. 3 Summer 2020 Page 75 potential value to the nation of over $100 million across the southeastern United States by managing sediments across projects and business lines, and opti- mizing regional dredging activities and schedules (USACE RSM RCX 2019). This concept has such potential to reduce Figure 1 (right). Basic wasteful federal expenditures that a US- geomorphic features of ACE “systems approach” called Regional coastal inlets. Sediment Management (RSM) was cre- Figure 2 (below). Channel ated. The USACE RSM program receives avulsion model modified several million dollars of funding annu- from Hubbard 1977, ally to study and encourage projects that courtesy of Coastal Science save money, treat sediment as a resource, and Engineering Inc. and enhance ecological benefits (USACE RSM 2019a). Similar cost savings can be realized at state and local beach nour- ishment projects that utilize inlet and waterway sand sources. Sand used for beach nourishment is ideally as similar as is practically possible to the native sand in terms of composi- tion (carbonate vs quartz), grain size distribution, and color. The sand source can be offshore, nearshore (inlet shoals or navigation channels) or from upland sand mines. Sand sources, which are com- monly referred to as “borrow areas,” are carefully selected and undergo extensive study for not only sediment quality, but also for avoidance and minimization of ecological impacts. Each year, the USACE oversees the dredging of over 140 million cubic yards (Mcy) of sediment along the Atlantic, Gulf of Mexico, Great Lakes, and Puerto Rico coasts from about 360 inlets and segments of the Intracoastal Waterway (USACE RSM 2019b). Approximately 100 of these inlets are located at least partially within units established by the Coastal Barrier Resources Act (CBRA) enacted in 1982. Of the 140 Mcy of federally dredged sediment in this region, about 7 Mcy of sand is dredged from federal naviga- tion channels and placed on proximate beaches every year. Other beneficial use of finer sediments include placement elsewhere in the littoral system such as nearshore berms or to restore marsh habitat (USACE RSM 2019a). COASTAL INLETS 101 Coastal (tidal) inlets occur at breaks in the shoreline and provide for the ex- change of water between the inner shelf and back-barrier environments (Figure 1). Inlets are found within all tidal ranges worldwide. General geomorphological characteristics (Figure 1) include a main Page 76 Shore & Beach Vol. 88, No. 3 Summer 2020 inlet channel with marginal side (flood) shoal bypassing involves channel avul- the maintenance dredging of harbors, channels, and sand bodies on both the sion (Figure 2), which occurs when the inlets, and waterways along, or seaward flood (landward) and ebb (seaward) main channel migrates in the direction of of, the adjacent oceanfront shorelines ends. These flood- and ebb- tidal deltas littoral drift and begins to infill (Sexton of barrier islands. This practice helps to (also called shoals) act as ephemeral and Hayes 1983). Meanwhile, a second- maintain healthy beaches and littoral sediment sinks by temporarily retaining ary channel forms in the outer ebb delta sediment resources in the sand-sharing sands delivered via longshore and cross- which is oriented in-line with the inlet barrier-inlet system (Beck 2019). This is shore transport processes. Inlets with throat (Traynum and Kaczkowski 2015). a common operating procedure when the jetties commonly include an additional At some point, the main channel closes lowest cost disposal area is the adjacent sediment sink in the form of an updrift and its sand shoals migrate onshore. beach (e.g. Folly River, SC; St. Mary’s King fillet — sand impounded against the The secondary channel takes over as the Bay, FL; Tampa Harbor, FL) or nearshore updrift jetty. Significant weather events dominant channel. Coastal inlets have placement areas (e.g. Barnegat Inlet, NJ; commonly alter the forcing mechanisms displayed similar, dynamic sediment Burns Harbor, IN). to reshape the tidal deltas, channels, and transport processes throughout geologic Inlets or waterways are also dredged to fillets. Sediment infilling of the channel history (Hein et al. 2016). provide a sufficient volume of sediment can impede navigation and is the primary In some cases, this channel avulsion (on the order of 1 Mcy) for a large-scale reason jetty structures
Recommended publications
  • Geomorphic Classification of Rivers
    9.36 Geomorphic Classification of Rivers JM Buffington, U.S. Forest Service, Boise, ID, USA DR Montgomery, University of Washington, Seattle, WA, USA Published by Elsevier Inc. 9.36.1 Introduction 730 9.36.2 Purpose of Classification 730 9.36.3 Types of Channel Classification 731 9.36.3.1 Stream Order 731 9.36.3.2 Process Domains 732 9.36.3.3 Channel Pattern 732 9.36.3.4 Channel–Floodplain Interactions 735 9.36.3.5 Bed Material and Mobility 737 9.36.3.6 Channel Units 739 9.36.3.7 Hierarchical Classifications 739 9.36.3.8 Statistical Classifications 745 9.36.4 Use and Compatibility of Channel Classifications 745 9.36.5 The Rise and Fall of Classifications: Why Are Some Channel Classifications More Used Than Others? 747 9.36.6 Future Needs and Directions 753 9.36.6.1 Standardization and Sample Size 753 9.36.6.2 Remote Sensing 754 9.36.7 Conclusion 755 Acknowledgements 756 References 756 Appendix 762 9.36.1 Introduction 9.36.2 Purpose of Classification Over the last several decades, environmental legislation and a A basic tenet in geomorphology is that ‘form implies process.’As growing awareness of historical human disturbance to rivers such, numerous geomorphic classifications have been de- worldwide (Schumm, 1977; Collins et al., 2003; Surian and veloped for landscapes (Davis, 1899), hillslopes (Varnes, 1958), Rinaldi, 2003; Nilsson et al., 2005; Chin, 2006; Walter and and rivers (Section 9.36.3). The form–process paradigm is a Merritts, 2008) have fostered unprecedented collaboration potentially powerful tool for conducting quantitative geo- among scientists, land managers, and stakeholders to better morphic investigations.
    [Show full text]
  • Seasonal Flooding Affects Habitat and Landscape Dynamics of a Gravel
    Seasonal flooding affects habitat and landscape dynamics of a gravel-bed river floodplain Katelyn P. Driscoll1,2,5 and F. Richard Hauer1,3,4,6 1Systems Ecology Graduate Program, University of Montana, Missoula, Montana 59812 USA 2Rocky Mountain Research Station, Albuquerque, New Mexico 87102 USA 3Flathead Lake Biological Station, University of Montana, Polson, Montana 59806 USA 4Montana Institute on Ecosystems, University of Montana, Missoula, Montana 59812 USA Abstract: Floodplains are comprised of aquatic and terrestrial habitats that are reshaped frequently by hydrologic processes that operate at multiple spatial and temporal scales. It is well established that hydrologic and geomorphic dynamics are the primary drivers of habitat change in river floodplains over extended time periods. However, the effect of fluctuating discharge on floodplain habitat structure during seasonal flooding is less well understood. We collected ultra-high resolution digital multispectral imagery of a gravel-bed river floodplain in western Montana on 6 dates during a typical seasonal flood pulse and used it to quantify changes in habitat abundance and diversity as- sociated with annual flooding. We observed significant changes in areal abundance of many habitat types, such as riffles, runs, shallow shorelines, and overbank flow. However, the relative abundance of some habitats, such as back- waters, springbrooks, pools, and ponds, changed very little. We also examined habitat transition patterns through- out the flood pulse. Few habitat transitions occurred in the main channel, which was dominated by riffle and run habitat. In contrast, in the near-channel, scoured habitats of the floodplain were dominated by cobble bars at low flows but transitioned to isolated flood channels at moderate discharge.
    [Show full text]
  • Variable Hydrologic and Geomorphic Responses to Intentional Levee Breaches Along the Lower Cosumnes River, California
    Received: 21 April 2016 Revised: 29 March 2017 Accepted: 30 March 2017 DOI: 10.1002/rra.3159 RESEARCH ARTICLE Not all breaks are equal: Variable hydrologic and geomorphic responses to intentional levee breaches along the lower Cosumnes River, California A. L. Nichols1 | J. H. Viers1,2 1 Center for Watershed Sciences, University of California, Davis, California, USA Abstract 2 School of Engineering, University of The transport of water and sediment from rivers to adjacent floodplains helps generate complex California, Merced, California, USA floodplain, wetland, and riparian ecosystems. However, riverside levees restrict lateral connectiv- Correspondence ity of water and sediment during flood pulses, making the re‐introduction of floodplain hydrogeo- A. L. Nichols, Center for Watershed Sciences, morphic processes through intentional levee breaching and removal an emerging floodplain University of California, Davis, California, USA. restoration practice. Repeated topographic observations from levee breach sites along the lower Email: [email protected] Cosumnes River (USA) indicated that breach architecture influences floodplain and channel hydrogeomorphic processes. Where narrow breaches (<75 m) open onto graded floodplains, Funding information California Department of Fish and Wildlife archetypal crevasse splays developed along a single dominant flowpath, with floodplain erosion (CDFW) Ecosystem Restoration Program in near‐bank areas and lobate splay deposition in distal floodplain regions. Narrow breaches (ERP), Grant/Award Number: E1120001; The opening into excavated floodplain channels promoted both transverse advection and turbulent Nature Concervancy (TNC); Consumnes River Preserve diffusion of sediment into the floodplain channel, facilitating near‐bank deposition and potential breach closure. Wide breaches (>250 m) enabled multiple modes of water and sediment transport onto graded floodplains.
    [Show full text]
  • 1 the Influence of Groyne Fields and Other Hard Defences on the Shoreline Configuration
    1 The Influence of Groyne Fields and Other Hard Defences on the Shoreline Configuration 2 of Soft Cliff Coastlines 3 4 Sally Brown1*, Max Barton1, Robert J Nicholls1 5 6 1. Faculty of Engineering and the Environment, University of Southampton, 7 University Road, Highfield, Southampton, UK. S017 1BJ. 8 9 * Sally Brown ([email protected], Telephone: +44(0)2380 594796). 10 11 Abstract: Building defences, such as groynes, on eroding soft cliff coastlines alters the 12 sediment budget, changing the shoreline configuration adjacent to defences. On the 13 down-drift side, the coastline is set-back. This is often believed to be caused by increased 14 erosion via the ‘terminal groyne effect’, resulting in rapid land loss. This paper examines 15 whether the terminal groyne effect always occurs down-drift post defence construction 16 (i.e. whether or not the retreat rate increases down-drift) through case study analysis. 17 18 Nine cases were analysed at Holderness and Christchurch Bay, England. Seven out of 19 nine sites experienced an increase in down-drift retreat rates. For the two remaining sites, 20 retreat rates remained constant after construction, probably as a sediment deficit already 21 existed prior to construction or as sediment movement was restricted further down-drift. 22 For these two sites, a set-back still evolved, leading to the erroneous perception that a 23 terminal groyne effect had developed. Additionally, seven of the nine sites developed a 24 set back up-drift of the initial groyne, leading to the defended sections of coast acting as 1 25 a hard headland, inhabiting long-shore drift.
    [Show full text]
  • Integrated Coastal Management Act: National Estuarine Management
    26 No.35296 GOVERNMENT GAZETTE, 4 MAY 2012 DEPARTMENT OF ENVIRONMENTAL AFFAIRS No. 336 4 May 2012 NATIONAL ENVIRONMENTAL MANAGEMENT INTEGRA TED COASTAL MANAGEMENT ACT, 2008 (ACT NO. 24 OF 2008) INVITATION TO COMMENT ON THE DRAFT NATIONAL ESTUARINE MANAGEMENT PROTOCOL I, Bomo Edith Edna Molewa, the Minister of Water and Environmental Affairs, hereby in terms of section 33 (2) read with section 53 of the Integrated Coastal Management Act, 2008 (Act No. 24 of 2008) publish for comment the draft National Estuarine Management Protocol. Interested persons and organizations are invited to submit written commen~ on the draft National Estuarine Management Protocol as follows: Written comments may be submitted to the Department by no later than 16h00 on 04 June 2012, by mail, hand, e-mail or telefax transmission. Please note that comments received after the closing date may not be considered. 1.1.1 By mail 1.1.2 By hand 1.1.3 By E-mail Subject: Draft National Subject: Draft National Estuarine Subject: Draft NatiQ!]al Eswarine Estuarine Management Protocol Management Protocol Management Protocol The Deputy Director -General The Deputy Director-General; [email protected] .za Department of Environmental Department of Environmental Affairs: Telephonic enquiries Affairs: Oceans & Coasts; P.O Oceans & Coasts; East Pier 2; East Pier Mr Ayanda Matoti: +27 21 819 2476 Box 52126; V& A Waterfront, Road; V&A Waterfront CAPE TOWN, 8002 CAPETOWN The draft protocol is also available for download from the Departmenfs webs"e, www.environment.gov.za BOMO EDITH EDNA MOLEWA MINISTER OF WATER AND ENVIRONMENTAL AFFAIRS STAATSKOERANT, 4 MEl 2012 No.
    [Show full text]
  • New York State Artificial Reef Plan and Generic Environmental Impact
    TABLE OF CONTENTS EXECUTIVE SUMMARY ...................... vi 1. INTRODUCTION .......................1 2. MANAGEMENT ENVIRONMENT ..................4 2.1. HISTORICAL PERSPECTIVE. ..............4 2.2. LOCATION. .....................7 2.3. NATURAL RESOURCES. .................7 2.3.1 Physical Characteristics. ..........7 2.3.2 Living Resources. ............. 11 2.4. HUMAN RESOURCES. ................. 14 2.4.1 Fisheries. ................. 14 2.4.2 Archaeological Resources. ......... 17 2.4.3 Sand and Gravel Mining. .......... 18 2.4.4 Marine Disposal of Waste. ......... 18 2.4.5 Navigation. ................ 18 2.5. ARTIFICIAL REEF RESOURCES. ............ 20 3. GOALS AND OBJECTIVES .................. 26 3.1 GOALS ....................... 26 3.2 OBJECTIVES .................... 26 4. POLICY ......................... 28 4.1 PROGRAM ADMINISTRATION .............. 28 4.1.1 Permits. .................. 29 4.1.2 Materials Donations and Acquisitions. ... 31 4.1.3 Citizen Participation. ........... 33 4.1.4 Liability. ................. 35 4.1.5 Intra/Interagency Coordination. ...... 36 4.1.6 Program Costs and Funding. ......... 38 4.1.7 Research. ................. 40 4.2 DEVELOPMENT GUIDELINES .............. 44 4.2.1 Siting. .................. 44 4.2.2 Materials. ................. 55 4.2.3 Design. .................. 63 4.3 MANAGEMENT .................... 70 4.3.1 Monitoring. ................ 70 4.3.2 Maintenance. ................ 72 4.3.3 Reefs in the Exclusive Economic Zone. ... 74 4.3.4 Special Management Concerns. ........ 76 4.3.41 Estuarine reefs. ........... 76 4.3.42 Mitigation. ............. 77 4.3.43 Fish aggregating devices. ...... 80 i 4.3.44 User group conflicts. ........ 82 4.3.45 Illegal and destructive practices. .. 85 4.4 PLAN REVIEW .................... 88 5. ACTIONS ........................ 89 5.1 ADMINISTRATION .................. 89 5.2 RESEARCH ..................... 89 5.3 DEVELOPMENT .................... 91 5.4 MANAGEMENT .................... 96 6. ENVIRONMENTAL IMPACTS ................. 97 6.1 ECOSYSTEM IMPACTS.
    [Show full text]
  • Coastal Engineers Are Key Players WHERE C an I Coastal in the Environmental Rehabilitation and GET FURTHER Sustainable Management of Our Coast
    Most Australians live close to the coast HoW Do i and our beaches are a significant national BeCoMe A asset. Coastal Engineers are key players WHERE C An i CoAstAl in the environmental rehabilitation and GET FURTHER sustainable management of our coast. ENGINEER? INFORMAt ion? Most Coastal Engineers become Your first step should be to visit specialists in the field after the web site of Engineers Australia. graduating from universities with There you will be able to get A C Areer in a degree in civil or environmental information on a whole range of engineering. This is a 4 year full questions you might have about time course offered by most engineering or engineering courses. CoAstAl major universities in Australia. To If you would like to talk to a qualify as a specialist in coastal Coastal Engineer, contact by mail, engineering requires further post phone, fax or email the Secretary engineering graduate study. This normally of the National Committee on takes the form of formal course Coastal and Ocean Engineering in work programs that require 1 A beach profile being surveyed as Canberra. You will be referred to year of full time study or 2 to part of the COPE field experiment the committee member closest to 3 years of part time study. A at Burleigh, Gold Coast. where you live. The address is: second option is to undertake The National Committee a full time post graduate What employment on Coastal and Ocean Engineering research degree, normally opportunities are Engineers Australia requiring between 2 and 3 years there ? 11 National Circuit to complete.
    [Show full text]
  • City of Dania Beach Chapter 5 Coastal Management Element
    City of Dania Beach Chapter 5 Coastal Management Element 9J-5.012 Revised February 2009 COASTAL MANAGEMENT ELEMENT TABLE OF CONTENTS I. INTRODUCTION 1 II. DATA AND ANALYSIS REQUIREMENTS 1 A. Coastal Zone Inventory 2 B. Estuarine conditions 4 C. Natural Disaster Planning 6 III. REQUIREMENTS FOR COASTAL MANAGEMENT 10 GOALS, OBJECTIVES AND POLICIES TABLES I. Coastal Zone – Existing Land Use 1997 16 II. Coastal Zone – Vacant Land Use 1997 17 i Coastal Management Element City of Dania Beach I. INTRODUCTION The purpose of the Coastal Management Element is to provide a plan for the protection of human life and coastal resources and to limit public expenditures in areas that are subject to natural disaster. II. DATA AND ANALYSIS REQUIREMENTS The coastal zone within the City of Dania Beach (see Natural Resources Map) is considered to be that area east of U.S.1 area consisting of approximately 1,300 acres. This includes the small portion of the City on the beach approximately two (2) miles from the main portion of the City. The high hazard area is located east of Southeast 5th Avenue and includes Dania Beach. A. Coastal Zone Inventory Table I identifies the existing land uses within the coastal zone utilizing the same land use hierarchy identified in the Land Use Data Section of the Land Use Element. As noted, the land uses occurring within the coastal zone provide for a mix of uses including various intensities of residential, commercial, industrial, park and recreational, and community facilities types. In addition, approximately 136 acres are vacant. Table II identifies the vacant land within the coastal high hazard zone by future land use type utilizing the same hierarchy identified in the Future Land Use Element.
    [Show full text]
  • Overview of Connecticut's Coastal Management Program
    Overview of Connecticut’s Coastal Management Program Coastal Management in Connecticut - What is it all about? We all need Connecticut's coast for all of the services it provides for recreation, tourism, commercial activities, and enjoyment of its resources, all of which benefit the state economically. We all use our coast in one way or another, so we all have to work together to ensure it remains available for future generations. That is where coastal management comes in to guide activities taking place where the land meets the sea. In the case of Connecticut, our emphasis is on balancing protection of the fragile coastal resources of the Long Island Sound ecosystem with sustainable economic uses of the shoreline. Coastal management in Connecticut is a comprehensive, cooperative program that functions at all levels of government. Connecticut's Coastal Management Program is administered by the Department of Energy and Environmental Protection (DEEP) and is approved by the National Oceanic and Atmospheric Administration (NOAA) under the federal Coastal Zone Management Act. Under the statutory umbrella of Connecticut’s Coastal Management Act (CCMA), enacted in 1980, the Coastal Management Program ensures balanced growth along the coast, restores coastal habitat, improves public access, protects water-dependent uses, public trust waters and submerged lands, and promotes harbor management and facilitates research. The Coastal Management Program also regulates work in tidal, coastal, and navigable waters and tidal wetlands under CCMA (Sections 22a-90 – 22a-112 of the Connecticut General Statutes (CGS)), the Structures Dredging and Fill statutes (CGS Sections 22a-359 – 22a-363f) and the Tidal Wetlands Act (CGS Sections 22a-28 – 22a-35).
    [Show full text]
  • Finley Creek Alluvial Fan Geomorphic and Hydraulic Analyses and Implications for Restoration
    FINLEY CREEK ALLUVIAL FAN GEOMORPHIC AND HYDRAULIC ANALYSES AND IMPLICATIONS FOR RESTORATION Jeanne E. Godaire, Geomorphologist, Bureau of Reclamation, Denver, Colorado, [email protected]; Sean Kimbrel, Hydraulic Engineer, Bureau of Reclamation, Denver, Colorado, [email protected] INTRODUCTION Finley Creek, located on the Olympic Peninsula in western Washington, is a tributary of the Quinault River upstream of Lake Quinault. Previous observers have noted recent progressive lateral movement of the channel toward the eastern side of the Finley Creek alluvial fan, and aggradation and perching of the channel in the vicinity of the North Shore Road Bridge. The relationship between Finley Creek and the Quinault River is one of a long-term dynamic interaction between a large alluvial fan and mainstem river. The current sediment production from Finley Creek is of critical concern due to ongoing dredging at North Shore Road Bridge and the potential environmental effects of the dredging both upstream and downstream of the bridge (NPS, 2005) and sediment deposition and lateral Quinault River channel migration (GeoEngineers, 2011). Previous studies on Finley Creek have documented historical channel change using rectified aerial photography (Bountry et al. 2005) and the problems associated with aggradation and erosion on sections of Finley Creek (Kennard, 2009; Smillie, 2001; Jackson and Smillie, 1994). The objectives of this study are to (1) provide a geomorphic analysis of conditions on Finley Creek in order to place current conditions into a long term context and to identify areas of potential avulsion and lateral erosion; and (2) conduct hydraulic modeling of various scenarios to guide the evaluation of alternatives for addressing aggradation near the North Shore Road Bridge and improvement of aquatic habitat on Finley Creek.
    [Show full text]
  • Tourism in This Regional and of Cultures, Knowledge and Inter- East Africa Integrated Initia- Ests, Provided Personal and Pro- Tive
    INTERNATIONAL NEWSLETTER OF COASTAL MANAGEMENT Narragansett, Rhode Island, U.S.A. • #31 • Spring, 1998 Protecting the Maya Reef Intercoast Through Multi-National Survey Results Cooperation Show Diverse manage their coastal resources region- Readership By Juan Bezaury and ally. The overall goal is to take advan- Jennifer McCann tage of growing opportunities for sus- ore than 200 people tainable development, through the Mworldwide responded n Earth Day, June 5, 1997, rational use and conservation of reef to Intercoast‘srecent readership Oheads of state from Belize, resources. Involvement and support by survey, and the results reveal Honduras, Guatemala and Mexico, coastal communities, private compa- a truly global audience with Highlights united in Tulum, Mexico to show their nies, national and international non- diverse areas of interests in commitment towards the protection profit organizations and government coastal resource management. 3 officials is crucial Readers from more than 50 Managing to the success of countries, representing an array Tourism in this regional and of cultures, knowledge and inter- East Africa integrated initia- ests, provided personal and pro- tive. Some of the fessional profile information, 4 objectives include fields of interests, and sugges- South Africa the establishment tions to improve the look and Launches of protected usefulness of Intercoast. Coastal areas; strengthen- Although the majority of those Program ing regulations; who responded hold a Ph. D., ecotourism plan- Intercoastappealed to many who 8 ning; securing did not. Readers are employed as international environmental consultants, uni- Resource Fisher in Quintana Roo, Mexico. Conservation funding; and encouraging coastal man- versity professors and lecturers, in Malaysia and wise use of their shared coastal agement to address the need for the government employees, research habitats, especially the coral reef, sustainable use and conservation of this scientists and employees of non- 16 by signing onto the Mesoamerican area.
    [Show full text]
  • Environmentally Friendly Coastal Protection the ECOPRO Project Abstract
    Environmentally Friendly Coastal Protection The ECOPRO Project Brendan Dollard1 Abstract In the battle to preserve land against the ravages of the sea man has created many inappropriate protection structures on the coast. Often the coastline which is being protected is, inherently, in dis-equilibrium with nature. When combined with the increased recreational usage of the coastal zone, the rise in sea level and the increased incidence of storms, accelerated erosion rates are often the result. The Environmentally Friendly Coastal Protection project, or ECOPRO for short, developed a coastal erosion assessment method for the non-specialist. It devised a system for optimising erosion monitoring and developed a guide to select of an appropriate coastal protection response. The project results are contained in the ECOPRO Code of Practice. This 320-page guide explains the steps involved in assessing and monitoring coastal erosion problems, planning protective actions and evaluating their environmental impact. Prepared by the Offshore & Coastal Engineering Unit of Enterprise Ireland, it is the result of four years of work which was supported under the EU LIFE Programme and drew on expertise from Ireland, Northern Ireland and Denmark. This paper presents details of the project and the development of the Code. 1. Introduction In recent years it has become accepted that the coastline is a valuable natural resource which needs careful and sensitive management. This is especially so in the case of small island countries where the coastal zone has a direct and major influence on the economic welfare of the country. Coastal erosion has always been seen as one of the main threats to this resource and for centuries man has been fighting what was perceived as the ravages of the sea.
    [Show full text]