5419 Berrendero Gomez Esther.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

5419 Berrendero Gomez Esther.Pdf UNIVERSIDAD AUTÓNOMA DE MADRID FACULTAD DE CIENCIAS DEPARTAMENTO DE BIOLOGÍA CARACTERIZACIÓN MORFOLÓGICA, GENÉTICA Y FISIOLÓGICA DE CIANOBACTERIAS DOMINANTES EN SISTEMAS FLUVIALES TESIS DOCTORAL Esther Berrendero Gómez Madrid, 2008 Memoria presentada para optar al Grado de Doctor de Ciencias Madrid a 1 de Marzo de 2008 Fdo. Esther Berrendero Gómez Licenciada en Bioquímica DIRECTORA Fdo. Dra. Pilar Mateo Ortega Profesora Titular Dpto. Biología Universidad Autónoma de Madrid Este trabajo ha sido realizado en el Departamento de Biología de la Universidad Autónoma de Madrid, bajo la dirección de la doctora Pilar Mateo Ortega (Profesora Titular. UAM). Para ello se contó con una beca de formación del profesorado universitario del Ministerio de Educación y Ciencia (FPU-MEC) Gracias a toda la gente a la que quiero y me quiere Por regalarme amor, cariño, respeto, critica, consejos y apoyo Por calmar mi ansiedad y controlar mis nervios Por entender como soy y aclarar mis dudas. En especial a: Mi familia, el eterno apoyo ABREVIATURAS Y ACRÓNIMOS AA – medio Allen y Arnon ADN – ácido desoxirsibonucleico ARNr – ácido ribonucleico ribosómico Bis-pNPP – bis (para-nitrofenil) fosfato BLAST – acrónimo del inglés Basic Local Alignment and Search Tool BSA – albúmina de suero bovino del inglés “bovine suerum albumine” BTP – bis tris propano Chl a – clorofila a CI – Cromatografía iónica. cpcBA-IGS - espacio intergénico y las regions flanqueantes del operon de la ficocianina del inglés “the phycocyanin intergenic spacer and flanking regions” CTAB - N-Cetil-N,N,N-Trimetilamonio bromuro DGGE – electroforesis en geles desnaturalizantes por gradiente químico del inglés Desnaturing gradient gel electrophoresis dNTPs – desoxinucleótidos trifostatos EDTA - ácido etileno diamino tetra acético, acrónimo del inglés ethylene diamine tetra acetic acid g - gramo h - hora HEPES - N-(2-Hidroxietil) piperazina- N’-(2-ácido etanosulfónico) kb – kilo bases KM – constante de Michaelis-Menten l - litro LB – iniciales de las palabras inglesas Lysogeny broth (caldo lisogénico) min - minuto mg - miligramo ml - mililitro µg - microgramo µl - microlitro ML – maximum likelihood Abreviaturas y Acrónimos _______________________________________________ MP – maximum parsimony MU – 4 – metil umbeliferona MUP – 4 – metil umbeliferil fosfato NCBI – acrónimo del inglés Nacional Center for Biotechnology Information NID – nitrógeno inorgánico disuelto NJ – neighbor-joining nmol - nanomoles PAR – radicación activa fotosintética PCR - reacción en cadena de la polimerasa, del inglés polymerase chain reaction PDEase - fosfodiesterasa PMEase - fosfomonoesterasa pNP - para-nitrofenol pNPP - para-nitrofenil fosfato. POS – fósforo orgánico soluble PRS - fósforo reactivo soluble PTF - fósforo reactivo total filtrado RFLPs - polimorfismo de los fragmentos de restricción del ADN, del inglés restriction fragment length polymorphisms rpm - revoluciones por minuto S - Sustrato SIDI - Servicio Interdepartamental de Investigación. Tª agua – temperatura del agua Tª amb – temperatura ambiente TAE – tris acético tampon TEMED – N,N,N’,N’ - tetrametiletilenediamina TGGE - electroforesis en geles desnaturalizantes por gradiente térmico del inglés temperature gradient gel electrophoresis Tt – tiempo de transformación del sustrato o “turn over” V – velocidad Vmax – velocidad máxima ÍNDICE INTRODUCCIÓN .................................................................................................. 1 I. CIANOBACTERIAS. CARACTERÍSTICAS GENERALES ......................... 1 I.1. Ecologia. Distribución de las cianobacterias .............................................. 2 I.2. Organización celular. ................................................................................... 4 I.2.1. Células vegetativas ............................................................................ 4 I.2.2. Células especializadas ....................................................................... 6 II. DIVERSIDAD MORFOLÓGICA. CLASIFICACIÓN TAXONÓMICA .... 7 II.1. Orden Oscillatoriales. Subsección III ..................................................... 13 II.1.1. Clasificación taxonómica ............................................................... 15 II.2. Orden Nostocales. Subsección IV. ........................................................... 17 II.2.1. Clasificación taxonómica ............................................................... 18 II.2.2. Género Nostoc. ............................................................................... 21 II.2.3. Género Calothrix ............................................................................ 21 II.2.4. Género Rivularia ............................................................................ 22 II.2.5. Género Tolypothrix ........................................................................ 22 III. DIVERSIDAD GENÉTICA. INCORPORACIÓN DE MÉTODOS MOLECULARES EN LA IDENTIFICACIÓN Y CARACTERIZACIÓN DE CIANOBACTERIAS. ................................................................................. 23 III. 1. Métodos moleculares empleados para la caracterización de cianobacterias. ............................................................................................ 24 III.1.1. Operon de la ficocianina (cpcBA-IGS). ........................................ 25 III.1.2. Subunidad del ARN ribosómico 16S (ARNr 16S). ...................... 27 III.1.3. Técnicas de perfiles genéticos o “finger printing”. ....................... 28 IV. DIVERSIDAD FISIOLÓGICA ...................................................................... 30 IV.1. Metabolismo de las cianobacterias ......................................................... 30 IV.1.1. Actividad fosfatasa ....................................................................... 31 IV.1.1.1. Enzimas fosfatasas. Localización. ............................................. 34 IV.1.1.2. Factores que influyen en la síntesis y degradación de la enzima fosfatasa. ............................................................................................ 35 IV.1.1.3. Factores ambientales que regulan la actividad fosfatasa. .......... 37 IV.1.1.4. Medida de la actividad fosfatasa. ............................................... 39 i IV.1.1.5. Ventajas adaptativas relacionadas con el metabolismo del P y la actividad fosfatasa. ............................................................................ 40 Formación del pelo ............................................................................ 40 Polifosfatos ........................................................................................ 41 IV.1.2. Fijación de N2 ............................................................................... 42 IV.1.2.1. Estructura del complejo enzimatico nitrogenasa.. ..................... 43 IV.1.2.2. Estrategias adoptadas por los diferentes organismos para la fijación del nitrógeno. ........................................................................ 44 IV.1.2.3. Mecanismo de fijación del nitrógeno y asimilación. ................. 46 ANTECEDENTES Y OBJETIVOS DEL TRABAJO ............................................ 48 DESCRIPCIÓN DEL MEDIO ................................................................................. 50 I. Río Alberche. ...................................................................................................... 51 II. Río Alhárabe. .................................................................................................... 52 III. Río Amir. .......................................................................................................... 53 IV. Río Blanco. ....................................................................................................... 54 V. Río Endrinales. .................................................................................................. 55 VI. Río Guadarrama. ............................................................................................. 55 VII. Río Matarraña. ............................................................................................... 57 VIII. Arroyo Mediano ........................................................................................... 58 IX. Arroyo Tejada Y Arroyo Cereal .................................................................... 59 X. Arroyo Red ........................................................................................................ 60 XI. Río Muga. ......................................................................................................... 61 XI.1. Descripción del punto de muestreo ........................................................ 62 XI.2. Características fisico-químicas del agua ............................................... 66 MATERIALES Y MÉTODOS ......................................................................... 70 I. MATERIAL BIOLÓGICO. .............................................................................. 70 II. TÉCNICAS DE CULTIVO DE CIANOBACTERIAS. ................................ 72 II.1. Medios de cultivo ..................................................................................... 72 II.2. Condiciones de cultivo y siembra ............................................................ 73 III. TÉCNICAS DE AISLAMIENTO DE CIANOBACTERIAS...................... 74 III.1. Aislamientos de cianobacterias del epiliton .......................................... 74 III.2. Aislamientos de cepas a partir de colonias de Rivularia ...................... 75 IV.TÉCNICAS UTILIZADAS PARA LA CARACTERIZACIÓN MORFOLÓGICA
Recommended publications
  • DOMAIN Bacteria PHYLUM Cyanobacteria
    DOMAIN Bacteria PHYLUM Cyanobacteria D Bacteria Cyanobacteria P C Chroobacteria Hormogoneae Cyanobacteria O Chroococcales Oscillatoriales Nostocales Stigonematales Sub I Sub III Sub IV F Homoeotrichaceae Chamaesiphonaceae Ammatoideaceae Microchaetaceae Borzinemataceae Family I Family I Family I Chroococcaceae Borziaceae Nostocaceae Capsosiraceae Dermocarpellaceae Gomontiellaceae Rivulariaceae Chlorogloeopsaceae Entophysalidaceae Oscillatoriaceae Scytonemataceae Fischerellaceae Gloeobacteraceae Phormidiaceae Loriellaceae Hydrococcaceae Pseudanabaenaceae Mastigocladaceae Hyellaceae Schizotrichaceae Nostochopsaceae Merismopediaceae Stigonemataceae Microsystaceae Synechococcaceae Xenococcaceae S-F Homoeotrichoideae Note: Families shown in green color above have breakout charts G Cyanocomperia Dactylococcopsis Prochlorothrix Cyanospira Prochlorococcus Prochloron S Amphithrix Cyanocomperia africana Desmonema Ercegovicia Halomicronema Halospirulina Leptobasis Lichen Palaeopleurocapsa Phormidiochaete Physactis Key to Vertical Axis Planktotricoides D=Domain; P=Phylum; C=Class; O=Order; F=Family Polychlamydum S-F=Sub-Family; G=Genus; S=Species; S-S=Sub-Species Pulvinaria Schmidlea Sphaerocavum Taxa are from the Taxonomicon, using Systema Natura 2000 . Triochocoleus http://www.taxonomy.nl/Taxonomicon/TaxonTree.aspx?id=71022 S-S Desmonema wrangelii Palaeopleurocapsa wopfnerii Pulvinaria suecica Key Genera D Bacteria Cyanobacteria P C Chroobacteria Hormogoneae Cyanobacteria O Chroococcales Oscillatoriales Nostocales Stigonematales Sub I Sub III Sub
    [Show full text]
  • Biodiversidad De Cianobacterias En Ríos De La Comunidad De Madrid
    UNIVERSIDAD AUTÓNOMA DE MADRID FACULTAD DE CIENCIAS DEPARTAMENTO DE BIOLOGÍA BIODIVERSIDAD DE CIANOBACTERIAS EN RÍOS DE LA COMUNIDAD DE MADRID. ANÁLISIS POLIFÁSICO Y APLICACIÓN EN BIOMONITORIZACIÓN. TESIS DOCTORAL Virginia Loza Calvo Madrid, 2011 Memoria presentada para optar al Grado de Doctor de Ciencias Madrid, a 10 de Mayo de 2011 Fdo. Virginia Loza Calvo Licenciada en Ciencias Ambientales DIRECTORA Fdo. Dra. Pilar Mateo Ortega Catedrática Dpto. Biología Universidad Autónoma de Madrid Este trabajo ha sido realizado en el Departamento de Biología de la Universidad Autónoma de Madrid, bajo la dirección de la doctora Pilar Mateo Ortega (Catedrática. UAM). Financiado por el proyecto C.A.M.: S-0505/AMB/0321. A mi familia _______________ABREVIATURAS Y ACRÓNIMOS ABREVIATURAS Y ACRÓNIMOS AAN – medio Allen y Arnon BLAST – acrónimo del inglés Basic Local Alignment and Search Tool BSA – albúmina de suero bovino del inglés “bovine serum albumine” CTAB - N-Cetil-N,N,N-Trimetilamonio bromuro DGGE – electroforesis en geles desnaturalizantes por gradiente químico del inglés Desnaturing gradient gel electrophoresis dNTPs – desoxinucleótidos trifosfatos EDTA - ácido etileno diamino tetra acético, acrónimo del inglés ethylene diamine tetra acetic acid HEPES - N-(2-Hidroxietil) piperazina- N’-(2-ácido etanosulfónico) kb – kilo bases L - litro LB – iniciales de las palabras inglesas Lysogeny broth (caldo lisogénico) ML – maximum likelihood MP – maximum parsimony NCBI – acrónimo del inglés Nacional Center for Biotechnology Information NID – nitrógeno inorgánico
    [Show full text]
  • (Cyanobacterial Genera) 2014, Using a Polyphasic Approach
    Preslia 86: 295–335, 2014 295 Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach Taxonomické hodnocení cyanoprokaryot (cyanobakteriální rody) v roce 2014 podle polyfázického přístupu Jiří K o m á r e k1,2,JanKaštovský2, Jan M a r e š1,2 & Jeffrey R. J o h a n s e n2,3 1Institute of Botany, Academy of Sciences of the Czech Republic, Dukelská 135, CZ-37982 Třeboň, Czech Republic, e-mail: [email protected]; 2Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 31, CZ-370 05 České Budějovice, Czech Republic; 3Department of Biology, John Carroll University, University Heights, Cleveland, OH 44118, USA Komárek J., Kaštovský J., Mareš J. & Johansen J. R. (2014): Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. – Preslia 86: 295–335. The whole classification of cyanobacteria (species, genera, families, orders) has undergone exten- sive restructuring and revision in recent years with the advent of phylogenetic analyses based on molecular sequence data. Several recent revisionary and monographic works initiated a revision and it is anticipated there will be further changes in the future. However, with the completion of the monographic series on the Cyanobacteria in Süsswasserflora von Mitteleuropa, and the recent flurry of taxonomic papers describing new genera, it seems expedient that a summary of the modern taxonomic system for cyanobacteria should be published. In this review, we present the status of all currently used families of cyanobacteria, review the results of molecular taxonomic studies, descriptions and characteristics of new orders and new families and the elevation of a few subfamilies to family level.
    [Show full text]
  • ABSTRACT Title of Dissertation: STUDIES of PERIPHYTIC ALGAE on ALGAL TURF SCRUBBERS™ ALONG the CHESAPEAKE
    ABSTRACT Title of dissertation: STUDIES OF PERIPHYTIC ALGAE ON ALGAL TURF SCRUBBERS™ ALONG THE CHESAPEAKE BAY: COMMUNITY STRUCTURE, SYSTEMATICS, AND INFLUENCING FACTORS Haywood Dail Laughinghouse IV, Doctor of Philosophy, 2012 Directed by: Professor Patrick Kangas Department of Environmental Science & Technology, UMCP This is an ecological and systematic study of periphytic algae growing in an ecologically-engineered system used for water quality improvement: the Algal Turf Scrubber or ATSTM. This technology consists of an attached algal community growing on screens in a shallow floway through which water is pumped. The study was conducted on small-scale, experimental floways at three sites within the Chesapeake Bay watershed: on the Susquehanna River in southeastern Pennsylvania (freshwater) and on the Great Wicomico and York Rivers in Virginia (brackish water). A total of 330 taxa were identified at the sites from 2008-2011. The majority of taxa at all three sites belonged to the phylum Bacillariophyta, but a large number of taxa from Chlorophyta and, to a lesser degree, Cyanobacteria were also found at the freshwater site. Algae found in the ATSTM exhibited a diversity of life forms and modes of attachment within the community. Although these system appear to be dominated by a “canopy” of attached, filamentous species, more than half of the total abundance (cell density) were solitary, unattached taxa that grow as an “understory” within the three dimensional structure of the community. Longitudinal patterns were examined on the longest floways (90 m long) at the freshwater site. The community nutrient uptake rate (mass of nitrogen or phosphorus m-2 day-1) for the harvested algal biomass was found to decline from the top to the bottom of the floway for a system constructed at 2% slope but no distinct pattern was found for a system constructed at 1% slope.
    [Show full text]
  • Cryptic Diversity of Cyanobacteria
    CRYPTIC DIVERSITY OF CYANOBACTERIA DOCTORAL THESIS FOR A DOCTORAL DEGREE Department of Botany Faculty of Science, Palacký University Olomouc Author MGR. EVA JAHODÁŘOVÁ Supervisor DOC. RNDR. PETR HAŠLER, PH.D. Olomouc 2019 © Eva Jahodářová, Palacký University Olomouc, 2019 You can't even begin to understand biology, you can't understand life, unless you understand what it's all there for, how it arose-and that means evolution. Richard Dawkins ACKNOWLEDGMENTS I owe many thanks to colleagues, advisors, friends, and family: PETR HAŠLER, PETR DVOŘÁK and ALOISIE POULÍČKOVÁ for accepting me into Algological laboratory and taking care of me during my study. I would also like to express my greeting for the opportunity to undertake my doctoral studies with their advice, feedback, inspiration, support, guidance, and total assistance. MATĚJ BOČEK, MARKÉTA LETÁKOVÁ, LUCIE KOBRLOVÁ, MICHAL HRONEŠ, JANA RŮŽIČKOVÁ, MICHAELA ŠVÉCAROVÁ, IVETA HRADILOVÁ, and other members of the botanical and zoological department for their help, advice and support. Foundation NADÁNÍ JOSEFA, MARIE A ZDEŇKY HLÁVKOVÝCH for its financial support during my internship in the Natural History Museum, London. My dear family and my boyfriend MICHAL MOTYKA for everything! DECLARATION I declare that this Ph.D. thesis has been written solely by myself. All the sources quoted in this work are listed in the Reference section. All published results included in this thesis have been approved with the help of mentioned co-authors. In Olomouc 15.5.2019 Mgr. Eva Jahodářová ABSTRACT Cyanobacteria emerged on Earth approximately 3.5 billion years ago. They are the major contributor to global biogeochemical cycles and are ancestors of today's chloroplast of higher plants.
    [Show full text]
  • Morphological and Genetical Variability of Cyanobacteria
    Palacký University Olomouc Faculty of Science Department of Botany Morphological and genetical variability of cyanobacteria Ph.D. Thesis Mgr. Petr Dvořák Supervisor: Prof. RNDr. Aloisie Poulíčková, CSc. Olomouc 2013 Acknowledgements I would like to express my gratitude to Professor Aloisie Poulíčková for her friendly and professional supervision. I am also grateful to Doc. Petr Hašler who helped me get through the complicated microcosm of cyanobacterial evolution. I thank my colleagues Dr. Jeff Johansen and Melissa Vaccarino who introduced me to molecular techniques. Finally, gratitude goes to my colleagues from the Departments of Botany and Ecology who provided a friendly and inspiring environment for my research. Declaration I declare that this Ph.D. thesis has been written solely by myself. All the sources quoted in this work are listed in the “Reference” sections. All published results included in this thesis have been approved by the co-authors. In Olomouc, 16th January, 2013 Mgr. Petr Dvořák Abstract Recent discoveries point to the significance of cyanobacteria as primary producers in diverse ecosystems. However, given their enormous diversity, the majority remain uncharacterized. In this thesis, I have investigated the morphological and molecular features of benthic and aerophytic cyanobacteria and explored the global spatial and temporal patterns of their dispersal within free-living cyanobacteria. The taxonomy of Nodularia sphaerocarpa, N. harveyana, and N. moravica was investigated by a combination of 16S rRNA sequencing, AFLP and ecophysiological experiments using a gradient of salinity. Ecophysiological experiments revealed that N. sphaerocarpa together with N. moravica are more sensitive to higher salinity while, N. harveyana is less sensitive and its morphology (i.e.
    [Show full text]
  • Diazotrophy and Diversity of Benthic Cyanobacteria in Tropical Coastal Zones
    Diazotrophy and diversity of benthic cyanobacteria in tropical coastal zones Karolina Bauer Stockholm University © Karolina Bauer, Stockholm 2007 ISBN 91-7155-367-3 pp. 1-48 Printed in Sweden by Universitetsservice, US-AB, Stockholm 2007 Distributor: Stockholm University library Till mamma och pappa Abstract Discoveries in recent years have disclosed the importance of marine cyano- bacteria in the context of primary production and global nitrogen cycling. It is hypothesized here that microbial mats in tropical coastal habitats harbour a rich diversity of previously uncharacterized cyanobacteria and that benthic marine nitrogen fixation in coastal zones is substantial. A polyphasic approach was used to investigate cyanobacterial diversity in three tropical benthic marine habitats of different characters; an intertidal sand flat and a mangrove forest floor in the Indian Ocean, and a beach rock in the Pacific Ocean. In addition, nitrogenase activity was measured over diel cycles at all sites. The results revealed high cyanobacterial diversity, both morphologically and genetically. Substantial nitrogenase activity was observed, with highest rates at daytime where heterocystous species were present. However, the three habitats were dominated by non-heterocystous and unicellular genera such as Microcoleus, Lyngbya, Cyanothece and a large group of thin filamentous species, identified as members of the Pseu- danabaenaceae family. In these consortia nocturnal nitrogenase activities were highest and nifH sequencing also revealed presence of non- cyanobacterial potential diazotrophs. A conclusive phylogenetic analysis of partial nifH sequences from the three sites and sequences from geographi- cally distant microbial mats revealed new clusters of benthic potentially ni- trogen-fixing cyanobacteria. Further, the non-heterocystous cyanobacterium Lyngbya majuscula was subjected to a physiological characterization to gain insights into regulatory aspects of its nitrogen fixation.
    [Show full text]