Individual-Based Model of the Reproduction Cycle of Moina Macrocopa (Crustacea: Cladocera) Egor S

Total Page:16

File Type:pdf, Size:1020Kb

Individual-Based Model of the Reproduction Cycle of Moina Macrocopa (Crustacea: Cladocera) Egor S Ecological Modelling 162 (2003) 15–31 Individual-based model of the reproduction cycle of Moina macrocopa (Crustacea: Cladocera) Egor S. Zadereev∗, Igor G. Prokopkin, Vladimir G. Gubanov, Michail V. Gubanov Institute of Biophysics, Akademgorodok, 660036 Krasnoyarsk, Russia Received 9 October 2001; received in revised form 22 July 2002; accepted 30 September 2002 Abstract An individual-based model of cyclic development of Cladocera populations was developed on the basis of experimental data. The model takes into account the following processes describing the development of an individual animal: maturation, transition into other reproductive classes, selection of the reproduction mode (parthenogenetic or gamogenetic), release of parthenogenetic progeny and death. The model assumes that switching from asexual to sexual reproduction is controlled by the concentration of food and metabolic by-products of the animal population. Verification of the model by independent experiments demonstrated that (1) during population growth, metabolic by-products build up in the medium, and (2) the effect of metabolic by-products on gamogenesis induction depends on concentration. The hypothesis that the effect of regulating reproductive switching factors should synchronise the development of population with the change of environmental conditions in order to ensure production of the maximum number of diapausing eggs was tested. It is shown that combination of regulating reproductive switching factors maximises the production of diapausing eggs. © 2002 Elsevier Science B.V. All rights reserved. Keywords: Individual-based model; Cladocera; Change of reproduction mode; Metabolic by-products 1. Introduction ability of this kind of models to describe populations with pronounced time periodicity of life cycles. Most Individual-based modelling is a rapidly develop- efficiently discrete models are used to describe fish ing method of mathematical analysis of population populations (Grimm, 1999). Cladocera are very inter- dynamics. A single animal with its individual charac- esting for the investigation of population dynamics and teristics acts as a modelling unit in individual-based application of discrete modelling. These organisms models. This approach describes properties of the are the key trophic elements of aquatic ecosystems. population through the sum and interaction of its parts. Cladocera populations (in particular those inhabiting Generally, development of such models employs the ephemeral water bodies) develop in cycles deter- theory of discrete models (Bolker et al., 1997). Wide mined by their ability to alternate parthenogenetic application of discrete models to describe the popula- and gamogenetic modes of reproduction. Gamoge- tion dynamics of aquatic animals is determined by the netic progeny enter the diapause in the embryonic stage of development and in this state are capable ∗ Corresponding author. Tel.: +7-3912-495839; of surviving drying and freezing (Makrushin, 1996). fax: +7-3912-433400. Thus, depending on conditions, Cladocera females E-mail address: [email protected] (E.S. Zadereev). form either parthenogenetic eggs (which develop into 0304-3800/02/$ – see front matter © 2002 Elsevier Science B.V. All rights reserved. PII: S0304-3800(02)00348-4 16 E.S. Zadereev et al. / Ecological Modelling 162 (2003) 15–31 females or into males without fertilisation) or gamo- females of M. macrocopa. These results allowed a genetic latent eggs (which require fertilisation and detailed parameterisation of gamogenesis induction develop into females after the stage of rest). by these factors. It is safe to conclude that an almost The ecological significance of these different modes complete data set pertaining to the M. macrocopa of reproduction is as follows: parthenogenesis allows life cycle is available. It makes possible the use of the population to increase rapidly to use favourable discrete modelling to analyse cyclic development of environmental conditions with maximum efficiency. this species. The aim of the presented work was to Gamogenesis, does not increase the growth rate of a develop an individual-based model of cyclic develop- population (as parthenogenesis does), but expands the ment of Cladocera population and on the basis of this genetic base of populations to form multiple geno- model: (1) based on comparative analysis to select the types; the ability of gamogenetic progeny to enter mechanism of control of gamogenesis induction by diapause allows a population to survive under adverse density-dependent factors, and (2) to analyse the role environmental conditions. Also, if the number of of reproductive switching in population dynamics. produced latent eggs is important for the short-term success of a population in the next cycle of its devel- opment, then the bank of latent eggs in the sediments 2. Description of the mathematical model of a water body “passes” the genetic material through the time (Marcus et al., 1994) and can ensure the 2.1. The general structure of the model long-term success of the population. The major factors that directly influence induction As a rule, discrete modelling divides a model pop- of gamogenesis are photoperiod, temperature, trophic ulation into classes, by age, weight, or sex criteria. In conditions and effect of population density (Alekseev, our case, the population of M. macrocopa is divided 1990). For inhabitants of temporary water bodies, into four classes of living animals (juvenile, gamo- the effect of density-dependent factors (food concen- genetic and parthenogenetic females and males) and tration and metabolic by-products) is of high eco- ephippial eggs (Fig. 1). logical significance (Zadereev and Gubanov, 1996). Each class is described by a single characteristic— NX Even though such complex nature of development of the number of animals j in the class X at time j. Cladocera species has been known for quite a time, Each i-th animal at time j of development of a popula- W the existing mathematical models of Cladocera popu- tion is described by its weight i,j (mg of dry weight), t g lations usually either do not incorporate switching to age i,j (days), index i,j and by a set of discrete vari- g = sexual reproduction (e.g. De Roos et al., 1997; Koh ables. According to the index i,j 1, 2, 3, 4, the i-th et al., 1997) or use population level approaches to animal belongs at time j to juvenile, gamogenetic or control reproductive switching (Acevedo et al., 1995; parthenogenetic females or males. Acevedo and Waller, 2000). As individual-based mod- The model takes into account the following pro- els are able to describe populations with pronounced cesses describing the development of an i-th animal maturity time periodicity of life cycle and as there are a number (Fig. 2): maturation (Pi,j ), transition into other change G→P of evolution and ecological questions connected with reproductive classes (Pi,j , Pi,j ), selection of the presence of the reproductive switching and dia- the reproduction mode (parthenogenetic or gamoge- P G pause in the life cycle of a population, we consider the netic, Pi,j or Pi,j ), release of parthenogenetic progeny development of an individual-based model of cyclic (Pbirth) and death (Pdeath), at time j of population reproduction of Cladocera to be absolutely necessary. i,j i,j development. Previously, we experimentally investigated Discrete variables PP , PG , Pdeath describing the (Zadereev, 1997; Zadereev and Gubanov, 1996, 1999; i,j i,j i,j development of an animal are determined through Zadereev et al., 1998) the effect of density-dependent comparison of the value of the function describing factors (food concentration and concentration of the given process with random number PR ∈ [0, 1] metabolic by-products) on the induction of gamogene- Pmaturity sis, the survival, fecundity, sex ratio in parthenogenetic (Eqs. (8), (9) and (13)). Discrete variables i,j , change birth G→P progeny, the period between clutches in individual Pi,j , Pi,j , Pi,j are connected to the steady pe- E.S. Zadereev et al. / Ecological Modelling 162 (2003) 15–31 17 Fig. 1. Schematic diagram of M. macrocopa population model structure. (Rectangles): population classes; (ovals): elements of the culture medium; (solid arrows): interactions between population classes; (dotted arrows): hatching of progeny. Fig. 2. Model life cycle of a single M. macrocopa. (A) Birth; (B) maturation; (C) transition into the class of gamogenetic females; (D) transition into the class of parthenogenetic females; (E) transition from the class of gamogenetic female to the class of parthenogenetic females. 18 E.S. Zadereev et al. / Ecological Modelling 162 (2003) 15–31 riodicity of the animal’s life cycle, i.e. the values of parthenogenetic female, Di is the proportion of fe- these characteristics depend on the animal’s age ti,j males in progeny, released by the i-th parthenogenetic and are not stochastically determined (Eqs. (6), (10), female. (18) and (19)). Each of the discrete variables can take The model allows the number of ephippial eggs to only two values: 0 or 1. When the value of a variable be tracked. However, at this stage of development of is 1, an animal enters the process described by this the model they are supposed to be in diapause indef- variable, with value 0 this process is not realised. For initely; that is why we excluded the equation of the death males all variables, except for Pi,j , are always zero. dynamics of ephippial eggs from the description of the Neonates have initial zero values for all variables. model. Thus, a model life cycle of an animal is varia- The proposed model applies to a laboratory culture tion of values ti,j , Wi,j (growth of an animal) and with artificially controlled environmental conditions. ∗∗∗ Pi,j , gi,j (development of an animal) through dis- The population dynamics was simulated for the fol- crete time j. Dynamics of different classes is stochastic lowing experimental conditions: temperature, 26 ◦C; and is based on individual characteristics of animals, photoperiod, 16 h light, 8 h dark; volume of experi- death birth change (Eqs.
Recommended publications
  • Cladocera: Anomopoda: Daphniidae) from the Lower Cretaceous of Australia
    Palaeontologia Electronica palaeo-electronica.org Ephippia belonging to Ceriodaphnia Dana, 1853 (Cladocera: Anomopoda: Daphniidae) from the Lower Cretaceous of Australia Thomas A. Hegna and Alexey A. Kotov ABSTRACT The first fossil ephippia (cladoceran exuvia containing resting eggs) belonging to the extant genus Ceriodaphnia (Anomopoda: Daphniidae) are reported from the Lower Cretaceous (Aptian) freshwater Koonwarra Fossil Bed (Strzelecki Group), South Gippsland, Victoria, Australia. They represent only the second record of (pre-Quater- nary) fossil cladoceran ephippia from Australia (Ceriodaphnia and Simocephalus, both being from Koonwarra). The occurrence of both of these genera is roughly coincident with the first occurrence of these genera elsewhere (i.e., Mongolia). This suggests that the early radiation of daphniid anomopods predates the breakup of Pangaea. In addi- tion, some putative cladoceran body fossils from the same locality are reviewed; though they are consistent with the size and shape of cladocerans, they possess no cladoceran-specific synapomorphies. They are thus regarded as indeterminate diplostracans. Thomas A. Hegna. Department of Geology, Western Illinois University, Macomb, IL 61455, USA. ta- [email protected] Alexey A. Kotov. A.N. Severtsov Institute of Ecology and Evolution, Leninsky Prospect 33, Moscow 119071, Russia and Kazan Federal University, Kremlevskaya Str.18, Kazan 420000, Russia. alexey-a- [email protected] Keywords: Crustacea; Branchiopoda; Cladocera; Anomopoda; Daphniidae; Cretaceous. Submission: 28 March 2016 Acceptance: 22 September 2016 INTRODUCTION tions that the sparse known fossil record does not correlate with a meager past diversity. The rarity of Water fleas (Crustacea: Cladocera) are small, the cladoceran fossils is probably an artifact, a soft-bodied branchiopod crustaceans and are a result of insufficient efforts to find them in known diverse and ubiquitous component of inland and new palaeontological collections (Kotov, aquatic communities (Dumont and Negrea, 2002).
    [Show full text]
  • The Benthic Feeding Ecology of Round Goby Fry Dylan Samuel Olson University of Wisconsin-Milwaukee
    University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations August 2016 The Benthic Feeding Ecology of Round Goby Fry Dylan Samuel Olson University of Wisconsin-Milwaukee Follow this and additional works at: https://dc.uwm.edu/etd Part of the Ecology and Evolutionary Biology Commons Recommended Citation Olson, Dylan Samuel, "The Benthic Feeding Ecology of Round Goby Fry" (2016). Theses and Dissertations. 1397. https://dc.uwm.edu/etd/1397 This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. THE BENTHIC FEEDING ECOLOGY OF ROUND GOBY FRY by Dylan S. Olson A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Freshwater Sciences and Technology at The University of Wisconsin-Milwaukee August 2016 ABSTRACT THE BENTHIC FEEDING ECOLOGY OF ROUND GOBY FRY by Dylan S. Olson The University of Wisconsin-Milwaukee, 2016 Under the Supervision of Professor John Janssen Larval and juvenile stage events play a dominant role in regulating the ultimate recruitment strength of fish populations. As such, the feeding ecology of early life stages are useful for interpreting the proximate causes of recruitment variability. This study provides the first targeted study of the early juvenile (“fry”) diet of the round goby (Neogobius melanostomus, Pallas 1814), a prominent Great Lakes invasive fish. Previous accounts of the diets of round goby fry in the Great Lakes have been based upon by-catch from nocturnal, pelagic studies.
    [Show full text]
  • Element from S. W. Yugoslavia
    ©Zoologische Staatssammlung München;download: http://www.biodiversitylibrary.org/; www.biologiezentrum.at SPIXIANA 14 1 1-7 München, 1. März 1991 ISSN 0341-8391 Moina weismanni Ishikawa, 1896, a rare East Palearctic faunistic element from S. W. Yugoslavia (Crustacea, Cladocera) By Swetozar T. Petkovski Petkovski, S. T. (1991): Moina weismanni Ishikawa, 1896, a rare East Palearctic faunistic element from S. W. Yugoslavia (Crustacea, Cladocera). — Spixiana 14/1: 1-7. Moina weismanni Ishikawa, 1896, tili recently was known as a rare Far-Eastern faunistic element. Some time ago this species was introduced in Europe and to date evidenced in some ricefields of North Italy and in several inondation pools of the Pa- nonian lowland. Our discovery of the species in S. W. Yugoslavia shows that it suc- ceded to inhabit the Balkan Peninsula, too. Based on specimens of both sexes collected from Macedonia a short description is given. In addition, some important features are emphasized. These include the form of the ephippium in dorsal aspect and the presence of rows of setae at the dorsal mar- gin of the postabdomen in the female. In the male, the armature of the ventral shell rim and the first pair of legs, which are mutually asymmetrical, are also significant diagno- stic characters. Swetozar T. Petkovski, Prirodonaucen muzej na Makedonija, Bulevar Ilinden 86, Yu-91 000, Skopje 55, Yugoslavia Introduction Moina weismanni Ishikawa is a rare anomopod 'cladoceran', which was described almost a Century ago from the vicinity of Tokio and Sendai, Japan (Ishikawa, 1896). Shortly afterwards, in his cultures reared from dried mud taken from fish ponds and inundated rice fields in the neighbourhood of Pu- ching, South China, Sars (1903) revealed an animal very similar to M.
    [Show full text]
  • Freshwater Crustaceans As an Aboriginal Food Resource in the Northern Great Basin
    UC Merced Journal of California and Great Basin Anthropology Title Freshwater Crustaceans as an Aboriginal Food Resource in the Northern Great Basin Permalink https://escholarship.org/uc/item/3w8765rq Journal Journal of California and Great Basin Anthropology, 20(1) ISSN 0191-3557 Authors Henrikson, Lael S Yohe, Robert M, II Newman, Margaret E et al. Publication Date 1998-07-01 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Joumal of Califomia and Great Basin Anthropology Vol. 20, No. 1, pp. 72-87 (1998). Freshwater Crustaceans as an Aboriginal Food Resource in the Northern Great Basin LAEL SUZANN HENRIKSON, Bureau of Land Management, Shoshone District, 400 W. F Street, Shoshone, ID 83352. ROBERT M. YOHE II, Archaeological Survey of Idaho, Idaho State Historical Society, 210 Main Street, Boise, ID 83702. MARGARET E. NEWMAN, Dept. of Archaeology, University of Calgary, Alberta, Canada T2N 1N4. MARK DRUSS, Idaho Power Company, 1409 West Main Street, P.O. Box 70. Boise, ID 83707. Phyllopods of the genera Triops, Lepidums, and Branchinecta are common inhabitants of many ephemeral lakes in the American West. Tadpole shrimp (Triops spp. and Lepidums spp.) are known to have been a food source in Mexico, and fairy shrimp fBranchinecta spp.) were eaten by the aborigi­ nal occupants of the Great Basin. Where found, these crustaceans generally occur in numbers large enough to supply abundant calories and nutrients to humans. Several ephemeral lakes studied in the Mojave Desert arul northern Great Basin currently sustain large seasonal populations of these crusta­ ceans and also are surrounded by numerous small prehistoric camp sites that typically contain small artifactual assemblages consisting largely of milling implements.
    [Show full text]
  • A Dissertation Entitled Evolution, Systematics
    A Dissertation Entitled Evolution, systematics, and phylogeography of Ponto-Caspian gobies (Benthophilinae: Gobiidae: Teleostei) By Matthew E. Neilson Submitted as partial fulfillment of the requirements for The Doctor of Philosophy Degree in Biology (Ecology) ____________________________________ Adviser: Dr. Carol A. Stepien ____________________________________ Committee Member: Dr. Christine M. Mayer ____________________________________ Committee Member: Dr. Elliot J. Tramer ____________________________________ Committee Member: Dr. David J. Jude ____________________________________ Committee Member: Dr. Juan L. Bouzat ____________________________________ College of Graduate Studies The University of Toledo December 2009 Copyright © 2009 This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. _______________________________________________________________________ An Abstract of Evolution, systematics, and phylogeography of Ponto-Caspian gobies (Benthophilinae: Gobiidae: Teleostei) Matthew E. Neilson Submitted as partial fulfillment of the requirements for The Doctor of Philosophy Degree in Biology (Ecology) The University of Toledo December 2009 The study of biodiversity, at multiple hierarchical levels, provides insight into the evolutionary history of taxa and provides a framework for understanding patterns in ecology. This is especially poignant in invasion biology, where the prevalence of invasiveness in certain taxonomic groups could
    [Show full text]
  • Check List the Journal Of
    13 3 the journal of 2144 biodiversity data 17 June 2017 Check List NOTES ON GEOGRAPHIC DISTRIBUTION Check List 13(3): 2144, 17 June 2017 https://doi.org/10.15560/13.3.2144 ISSN 1809-127X © 2017 Check List and Authors First record of Moina dumonti Kotov, Elías-Gutiérrez & Granado- Ramírez, 2005 (Branchiopoda: Anomopoda) in Brazil Daniel da Silva Farias,1, 3 Lourdes Maria Abdu Elmoor-Loureiro2 & Christina Wyss Castelo Branco1 1 Núcleo de Estudos Limnológicos, Universidade Federal do Estado do Rio de Janeiro, Av. Pasteur, 458, IBIO, sala 403, CEP 22290-240, Rio de Janeiro, RJ, Brazil 2 Laboratório de Zoologia, Universidade Católica de Brasília, QS 7 lote 1, Bloco M, sala 331, CEP 71966-700, Taguatinga, DF, Brazil 3 Corresponding author. E-mail: [email protected] Abstract. The cladoceran Moina dumonti Kotov, Elías- of the water surface and has also Lemna minor L. in marginal Gutiérrez & Granado-Ramírez, 2005 (Anomopoda: Moinidae) areas. This waterbody is part of the lagoon system of Jacarep- was found in a hypereutrophic lagoon, Lagoinha, Rio de aguá, which also includes the lagoons of Jacarepaguá, Camor- Janeiro, Brazil. It represents the first record of this species in im, Tijuca and Marapendi (Soares 1999). The lagoon system is Brazil and in the Southern Hemisphere; it also represents the polluted by the inflow of rainwater drainage, untreated sewage, first record of this species in a perennial lagoon. The reasons and wastes from various other sources. The park is known to be for the success of the species in Lagoinha are discussed. a refuge for the wildlife of large aquatic vertebrates, including populations of Capybaras (Hydrochoreus hydrochaeris) and Key words.
    [Show full text]
  • Population Dynamics of <Emphasis Type="Italic">Moina Micrura
    Proc, Indian Acad. Sci. (Anim, Sci.), Vol. 98, No.3, May 1989, pp. 211-222. © Printed in India. Population dynamics of Moina micrurs Kurz (Cladocera: Moinidae) inhabiting a eutrophic pond of Madurai (south India)* N MURUGAN Department of Zoology, Madura College, Madurai 625011. India MS received 13 July 1988; revised 10 March 1989 Abstract. Population density, composition, age structure and fecundity of Moina micrura have been studied in a eutrophic pond. The average clutch size of this species ranged from 1-4-4 eggs. The relationship between mean brood size and body length has been established. The volume of parthenogenetic eggs of this cladoceran ranges between 0·2 and 0·9 millions JL J and the adaptive significance of this has been discussed. The mean instantaneous birth rate which preceded maximum density of population resulted in a value of more than one. Keywords. Moina micrura; population density; composition; age structure; fecundity; egg volume. l. Introduction Moina micrura, a member of the family Moinidae primarily inhabits astatic ponds and pools in tropical and subtropical regions. This species is highly adapted to survive frequent dry periods and propagate rapidly in newly formed ponds. The review of literature on zooplankton species of Moina shows that the information about the population dynamics of M. micrura from tropical Indian waters is far from complete. Hence, an attempt has been made to investigate its population density and composition, fecundity and age structure in natural habitats. 2. Study area The present study was carried out in a seasonal shallow pond (figure 1) located in the Madura College campus at Madurai (Long: 78'8' E; Lat: 9'56' N), south India.
    [Show full text]
  • Volume 2, Chapter 10-1: Arthropods: Crustacea
    Glime, J. M. 2017. Arthropods: Crustacea – Copepoda and Cladocera. Chapt. 10-1. In: Glime, J. M. Bryophyte Ecology. Volume 2. 10-1-1 Bryological Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 19 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 10-1 ARTHROPODS: CRUSTACEA – COPEPODA AND CLADOCERA TABLE OF CONTENTS SUBPHYLUM CRUSTACEA ......................................................................................................................... 10-1-2 Reproduction .............................................................................................................................................. 10-1-3 Dispersal .................................................................................................................................................... 10-1-3 Habitat Fragmentation ................................................................................................................................ 10-1-3 Habitat Importance ..................................................................................................................................... 10-1-3 Terrestrial ............................................................................................................................................ 10-1-3 Peatlands ............................................................................................................................................. 10-1-4 Springs ...............................................................................................................................................
    [Show full text]
  • Feeding Ecology of the Invasive Round Goby
    Aquatic Invasions (2015) Volume 10, Issue 4: 463–474 doi: http://dx.doi.org/10.3391/ai.2015.10.4.09 Open Access © 2015 The Author(s). Journal compilation © 2015 REABIC Research Article Feeding ecology of the invasive round goby, Neogobius melanostomus (Pallas, 1814), based on laboratory size preference and field diet in different habitats in the western basin of Lake Erie 1,4 1,2 1,2 1,3 Melanie M. Perello , Thomas P. Simon *, Hilary A. Thompson and Douglas D. Kane 1F.T. Stone Laboratory, The Ohio State University, Put-in-Bay, OH 43456, USA 2School of Public and Environmental Affairs, Indiana University, 1315 E. Tenth Street, Bloomington, IN 47405, USA 3Natural Science, Applied Science, and Mathematics Division, Defiance College, Defiance, OH 43512, USA 4Center for the Environment, Plymouth State University, Plymouth, NH 03264, USA E-mail: [email protected] (MMP), [email protected] (TPS), [email protected] (DDK) *Corresponding author Received: 17 May 2014 / Accepted: 21 July 2015 / Published online: 5 August 2015 Handling editor: Vadim Panov Abstract The round goby, Neogobius melanostomus, is an invasive benthic fish species in the Laurentian Great Lakes that is threatening native fish populations through competition, predation, and trophic dynamic change. This study examined the trophic dynamic plasticity of round goby along a depth gradient based on laboratory and field observations to determine prey species consumed and mussel prey size selection. Prey size selection in the laboratory was assessed by presenting individual round goby with quagga mussels ( Dreissena rostriformis bugensis) of various class sizes (i.e., 6.0– 9.9 mm, 10.0– 12.9 mm, 13.0– 15.9 mm, and 16.0– 18.9 mm in length).
    [Show full text]
  • Littoral Cladocera (Crustacea: Branchiopoda) from the Altai Mountain Lakes, with Remarks on the Taxonomy of Chydorus Sphaericus (O.F
    Arthropoda Selecta 12 (34): 171182 © ARTHROPODA SELECTA, 2003 Littoral Cladocera (Crustacea: Branchiopoda) from the Altai mountain lakes, with remarks on the taxonomy of Chydorus sphaericus (O.F. Müller, 1776) Ëèòîðàëüíûå Cladocera (Crustacea: Branchiopoda) ãîðíûõ îçåð Àëòàÿ ñ òàêñîíîìè÷åñêèìè çàìåòêàìè î Chydorus sphaericus (O.F. Müller, 1776) Mariya A. Belyaeva Ì.À. Áåëÿåâà A. N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Leninsky prospekt 33, Moscow 119071 Russia. Èíñòèòóò ïðîáëåì ýêîëîãèè è ýâîëþöèè èì. À. Í. Ñåâåðöîâà ÐÀÍ, Ëåíèíñêèé ïð-ò, 33, Ìîñêâà 119071 Ðîññèÿ. e-mail: [email protected]. KEY WORDS: faunistics, Cladocera, Chydorus sphaericus, Altai, mountain lakes, littoral zone. ÊËÞ×ÅÂÛÅ ÑËÎÂÀ: ôàóíèñòèêà, Cladocera , Chydorus sphaericus, Àëòàé, ãîðíûå îçåðà, ëèòîðàëüíàÿ çîíà. ABSTRACT: The faunistic data on Cladocera (Crus- faunistic survey on Cladocera was made by Sars and tacea) of the Altai Mountains are summarized from published in two papers [Sars, 1903a, b]. There were published and the authors records. The latter include also a few studies on zooplankton, some of which data on 18 lakes situated between 450 and 2700 m a.s.l. contained occasional records of littoral species [Rylov, Of 22 species of littoral cladocerans, which are mostly 1949; Shipunova, 1991; Zuykova, 1998; Vesnina et al., eurytopic and widely distributed, five are recorded for 1999; Popov et al., 2003]. All the species so far recorded the region for the first time. Cluster analysis revealed from the Altai Mountains are widely distributed, occur- three groups of habitats that differ in their cladoceran ring in lowlands as well, and a sole species the species composition.
    [Show full text]
  • Cladocera (Crustacea: Branchiopoda) of the South-East of the Korean Peninsula, with Twenty New Records for Korea*
    Zootaxa 3368: 50–90 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) Cladocera (Crustacea: Branchiopoda) of the south-east of the Korean Peninsula, with twenty new records for Korea* ALEXEY A. KOTOV1,2, HYUN GI JEONG2 & WONCHOEL LEE2 1 A. N. Severtsov Institute of Ecology and Evolution, Leninsky Prospect 33, Moscow 119071, Russia E-mail: [email protected] 2 Department of Life Science, Hanyang University, Seoul 133-791, Republic of Korea *In: Karanovic, T. & Lee, W. (Eds) (2012) Biodiversity of Invertebrates in Korea. Zootaxa, 3368, 1–304. Abstract We studied the cladocerans from 15 different freshwater bodies in south-east of the Korean Peninsula. Twenty species are first records for Korea, viz. 1. Sida ortiva Korovchinsky, 1979; 2. Pseudosida cf. szalayi (Daday, 1898); 3. Scapholeberis kingi Sars, 1888; 4. Simocephalus congener (Koch, 1841); 5. Moinodaphnia macleayi (King, 1853); 6. Ilyocryptus cune- atus Štifter, 1988; 7. Ilyocryptus cf. raridentatus Smirnov, 1989; 8. Ilyocryptus spinifer Herrick, 1882; 9. Macrothrix pen- nigera Shen, Sung & Chen, 1961; 10. Macrothrix triserialis Brady, 1886; 11. Bosmina (Sinobosmina) fatalis Burckhardt, 1924; 12. Chydorus irinae Smirnov & Sheveleva, 2010; 13. Disparalona ikarus Kotov & Sinev, 2011; 14. Ephemeroporus cf. barroisi (Richard, 1894); 15. Camptocercus uncinatus Smirnov, 1971; 16. Camptocercus vietnamensis Than, 1980; 17. Kurzia (Rostrokurzia) longirostris (Daday, 1898); 18. Leydigia (Neoleydigia) acanthocercoides (Fischer, 1854); 19. Monospilus daedalus Kotov & Sinev, 2011; 20. Nedorchynchotalona chiangi Kotov & Sinev, 2011. Most of them are il- lustrated and briefly redescribed from newly collected material. We also provide illustrations of four taxa previously re- corded from Korea: Sida crystallina (O.F.
    [Show full text]
  • Taxonomic Atlas of the Water Fleas, “Cladocera” (Class Crustacea) Recorded at the Old Woman Creek National Estuarine Research Reserve and State Nature Preserve, Ohio
    Taxonomic Atlas of the Water Fleas, “Cladocera” (Class Crustacea) Recorded at the Old Woman Creek National Estuarine Research Reserve and State Nature Preserve, Ohio by Jakob A. Boehler, Tamara S. Keller and Kenneth A. Krieger National Center for Water Quality Research Heidelberg University Tiffin, Ohio, USA 44883 January 2012 Taxonomic Atlas of the Water Fleas, “Cladocera” (Class Crustacea) Recorded at the Old Woman Creek National Estuarine Research Reserve and State Nature Preserve, Ohio by Jakob A. Boehler, Tamara S. Keller* and Kenneth A. Krieger Acknowledgements The authors are grateful for the assistance of Dr. David Klarer, Old Woman Creek National Estuarine Research Reserve, for providing funding for this project, directing us to updated taxonomic resources and critically reviewing drafts of this atlas. We also thank Dr. Brenda Hann, Department of Biological Sciences at the University of Manitoba, for her thorough review of the final draft. This work was funded under contract to Heidelberg University by the Ohio Department of Natural Resources. This publication was supported in part by Grant Number H50/CCH524266 from the Centers for Disease Control and Prevention. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of Centers for Disease Control and Prevention. The Old Woman Creek National Estuarine Research Reserve in Ohio is part of the National Estuarine Research Reserve System (NERRS), established by Section 315 of the Coastal Zone Management Act, as amended. Additional information about the system can be obtained from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration, U.S.
    [Show full text]