Articulations

Total Page:16

File Type:pdf, Size:1020Kb

Articulations SKELETAL SYSTEM OUTLINE 9.1 Articulations (Joints) 253 9.1a Classification of Joints 253 9 9.2 Fibrous Joints 254 9.2a Gomphoses 254 9.2b Sutures 255 9.2c Syndesmoses 255 Articulations 9.3 Cartilaginous Joints 255 9.3a Synchondroses 255 9.3b Symphyses 256 9.4 Synovial Joints 256 9.4a General Anatomy of Synovial Joints 257 9.4b Types of Synovial Joints 258 9.4c Movements at Synovial Joints 260 9.5 Selected Articulations in Depth 265 9.5a Joints of the Axial Skeleton 265 9.5b Joints of the Pectoral Girdle and Upper Limbs 268 9.5c Joints of the Pelvic Girdle and Lower Limbs 274 9.6 Disease and Aging of the Joints 282 9.7 Development of the Joints 284 MODULE 5: SKELETAL SYSTEM mck78097_ch09_252-287.indd 252 2/14/11 2:58 PM Chapter Nine Articulations 253 ur skeleton protects vital organs and supports soft tissues. Its The motion permitted at a joint ranges from no movement (e.g., O marrow cavity is the source of new blood cells. When it inter- where some skull bones interlock at a suture) to extensive movement acts with the muscular system, the skeleton helps the body move. (e.g., at the shoulder, where the arm connects to the scapula). The Although bones are slightly flexible, they are too rigid to bend so they structure of each joint determines its mobility and its stability. There is meet at joints, which anatomists call articulations. In this chapter, an inverse relationship between mobility and stability in articulations. we examine how bones articulate and may allow some freedom of The more mobile a joint is, the less stable it is; and the more stable movement, depending on the shapes and supporting structures of a joint is, the less mobile it is. Figure 9.1 illustrates the “tradeoff” the various joints. between mobility and stability for various joints. 9.1a Classification of Joints Joints are categorized structurally on the basis of the type of con- 9.1 Articulations (Joints) nective tissue that binds the articulating surfaces of the bones, and Learning Objectives: whether a space occurs between the articulating bones: 1. Describe the general structure of articulations. ■ A fibrous (fı̄ ́brŭ s) joint occurs where bones are held 2. Discuss the connection between degree of movement and together by dense regular (fibrous) connective tissue. joint structure. ■ A cartilaginous (kar-ti-laj ́i-nŭ s; cartilago = gristle) joint 3. Identify both the structural and functional classifications of occurs where bones are joined by cartilage. joints. ■ A synovial (si-nō v́ ē -ă l) joint has a fluid-filled joint cavity that separates the cartilage-covered articulating surfaces of A joint, or articulation (ar-tik-ū -lā sh́ ŭ n), is the place of con- the bones. The articulating surfaces are enclosed within a tact between bones, between bone and cartilage, or between bones capsule, and the bones are also joined by various ligaments. and teeth. Bones are said to articulate with each other at a joint. The scientific study of joints is called arthrology (ar-throl ́ō -jē ; Joints may also be classified functionally based on the extent arthron = joint, logos = study). of movement they permit: ■ A synarthrosis (sin ar-thŕ ō sis;́ pl., sin ar-thŕ ō ś ē z; syn = joined together) is an immobile joint. ■ An amphiarthrosis (am ́fi-ar-thrō sis;́ pl., -sē z; amphi = Study Tip! around) is a slightly mobile joint. ■ = You can figure out the names of most joints by piecing together A diarthrosis (dı̄ -ar-thrō sis;́ pl., -sē z; di two) is a freely the names of the bones that form them. For example, the glenohumeral mobile joint. joint is where the glenoid cavity of the scapula meets the head of the The following discussion of articulations is based on their humerus, and the sternoclavicular joint is where the manubrium of the structural classification, with functional categories included as sternum articulates with the sternal end of the clavicle. appropriate. As you read about the various types of joints, it may help you to refer to the summary of joint classifications in table 9.1. Mobility Most mobile Immobile Glenohumeral joint Hip joint Elbow joint Intervertebral joints Suture (shoulder) Stability Very unstable Most stable Figure 9.1 Relationship Between Mobility and Stability in Joints. In every joint, there is a “tradeoff” between the relative amounts of mobility and stability. The more mobile the joint, the less stable it is. Conversely, the more stable the joint, the less mobile it is. Note how the glenohumeral (shoulder) joint is very mobile but not very stable, while a suture is immobile and yet very stable. mck78097_ch09_252-287.indd 253 2/14/11 2:58 PM 254 Chapter Nine Articulations Table 9.1 Joint Classifi cations Structural Structural Structural Category Example Functional Classifi cation Classifi cation Characteristics Fibrous Dense regular connective Gomphosis: Periodontal Tooth to jaw Synarthrosis (immobile) tissue holds together the membranes hold tooth to ends of bones and bone bony jaw parts; no joint cavity Suture: Dense regular Lambdoid suture (connects Synarthrosis (immobile) connective tissue connects occipital and parietal bones) skull bones Syndesmosis: Dense regular Articulation between radius Amphiarthrosis (slightly mobile) connective tissue fi bers and ulna, and between tibia (interosseous membrane) and fi bula between bones Cartilaginous Pad of cartilage is wedged Synchondrosis: Hyaline Epiphyseal plates in growing Synarthrosis (immobile) between the ends of bones; cartilage plate between bones; costochondral joints no joint cavity bones Symphysis: Fibrocartilage Pubic symphysis; Amphiarthrosis (slightly mobile) pad between bones intervertebral disc articulations Synovial Ends of bones covered Plane joint: Flattened or Plane joint: Intercarpal joints, Diarthrosis (freely mobile) with articular cartilage; slightly curved faces slide intertarsal joints joint cavity separates the across one another articulating bones; enclosed Hinge joint: Permits angular Hinge joint: Elbow joint by a joint capsule, lined by a movements in a single synovial membrane; contains plane synovial fl uid Pivot joint: Permits rotation Pivot joint: Atlantoaxial joint only Biaxial Diarthrosis (freely mobile) Condylar joint: Oval Condylar joint: MP articular surface on one (metacarpophalangeal) joints bone closely interfaces with a depressed oval surface on another bone Saddle joint: Saddle-shaped Saddle joint: Articulation articular surface on one between carpal and fi rst bone closely interfaces metacarpal bone with depressed surface on another bone Multiaxial (triaxial) Ball-and-socket joint: Diarthrosis (freely mobile) Ball-and-socket joint: Glenohumeral joint, hip joint Round head of one bone rests within cup-shaped depression in another bone WHATW DID YOU LEARN? the articulating bones). The three types of fibrous joints are gom- ●1 What type of articulation uses dense regular connective tissue to phoses, sutures, and syndesmoses (figure 9.2). bind the bones? 9.2a Gomphoses ●2 What term is used to describe immobile joints? A gomphosis (gom-fō sis;́ pl., -sē z; gomphos = bolt, osis = condi- tion) resembles a “peg in a socket.” The only gomphoses in the human body are the articulations of the roots of individual teeth with the sockets of the mandible and the maxillae. A tooth is held firmly in place by a fibrous periodontal (per ḗ -ō -don t́ ă l; peri = 9.29.2 FibrousFibrous JointsJoints around, odous = tooth) membrane. This joint is functionally clas- LearningLearning OObjectives:bjectives: sified as a synarthrosis. The reasons orthodontic braces can be painful and take a 1. DescribeDescribe thethe characteristics ofof the three types ofof fibrousfibrous joints.joints. long time to correctly position the teeth are related to the gom- 2. IdentifyIdentify locations ofof gomphoses, sutures, and syndesmoses phosis architecture. The orthodontist’s job is to reposition these in tthehe body.body. normally immobile joints through the use of bands, rings, and Articulating bones are joined by dense regular connective braces. In response to these mechanical stressors, osteoblasts and tissue in fibrous joints. Most fibrous joints are immobile or only osteoclasts work together to modify the alveolus, resulting in the slightly mobile. Fibrous joints have no joint cavity (space between remodeling of the joint and the slow repositioning of the teeth. mck78097_ch09_252-287.indd 254 2/14/11 2:58 PM Chapter Nine Articulations 255 Suture Ulna Radius Syndesmosis Root of (interosseous tooth membrane) Periodontal membranes Gomphosis Alveolar process of mandible (a) Gomphosis (b) Suture (c) Syndesmosis Figure 9.2 Fibrous Joints. Dense regular connective tissue binds the articulating bones in fibrous joints to prevent or severely restrict movement. (a) A gomphosis is the immobile joint between a tooth and the jaw. ( b) A suture is an immobile joint between bones of the skull. (c) A syndesmosis permits slight mobility between the radius and the ulna. 9.2b Sutures Sutures (soo choor;́ sutura = a seam) are immobile fibrous joints 9.3 Cartilaginous Joints (synarthoses) that are found only between certain bones of Learning Objectives: the skull. Sutures have distinct, interlocking, usually irregular edges that both increase their strength and decrease the number 1. Discuss the characteristics of the two types of cartilaginous of fractures at these articulations. In addition to joining bones, joints. sutures permit the skull to grow as the brain increases in size 2. Name locations of synchondroses and symphyses in the body. during childhood. In an older adult, the dense regular connec- The articulating bones in cartilaginous joints are attached tive tissue in the suture becomes ossified, fusing the skull bones to each other by cartilage. These joints lack a joint cavity. The together. When the bones have completely fused across the two types of cartilaginous joints are synchondroses and symphy- suture line, these obliterated sutures become synostoses (sin- ses (figure 9.3). os-tō ś ē z; sing., -sis).
Recommended publications
  • The Structure and Function of Breathing
    CHAPTERCONTENTS The structure-function continuum 1 Multiple Influences: biomechanical, biochemical and psychological 1 The structure and Homeostasis and heterostasis 2 OBJECTIVE AND METHODS 4 function of breathing NORMAL BREATHING 5 Respiratory benefits 5 Leon Chaitow The upper airway 5 Dinah Bradley Thenose 5 The oropharynx 13 The larynx 13 Pathological states affecting the airways 13 Normal posture and other structural THE STRUCTURE-FUNCTION considerations 14 Further structural considerations 15 CONTINUUM Kapandji's model 16 Nowhere in the body is the axiom of structure Structural features of breathing 16 governing function more apparent than in its Lung volumes and capacities 19 relation to respiration. This is also a region in Fascla and resplrstory function 20 which prolonged modifications of function - Thoracic spine and ribs 21 Discs 22 such as the inappropriate breathing pattern dis- Structural features of the ribs 22 played during hyperventilation - inevitably intercostal musculature 23 induce structural changes, for example involving Structural features of the sternum 23 Posterior thorax 23 accessory breathing muscles as well as the tho- Palpation landmarks 23 racic articulations. Ultimately, the self-perpetuat- NEURAL REGULATION OF BREATHING 24 ing cycle of functional change creating structural Chemical control of breathing 25 modification leading to reinforced dysfunctional Voluntary control of breathing 25 tendencies can become complete, from The autonomic nervous system 26 whichever direction dysfunction arrives, for Sympathetic division 27 Parasympathetic division 27 example: structural adaptations can prevent NANC system 28 normal breathing function, and abnormal breath- THE MUSCLES OF RESPIRATION 30 ing function ensures continued structural adap- Additional soft tissue influences and tational stresses leading to decompensation.
    [Show full text]
  • Netter's Musculoskeletal Flash Cards, 1E
    Netter’s Musculoskeletal Flash Cards Jennifer Hart, PA-C, ATC Mark D. Miller, MD University of Virginia This page intentionally left blank Preface In a world dominated by electronics and gadgetry, learning from fl ash cards remains a reassuringly “tried and true” method of building knowledge. They taught us subtraction and multiplication tables when we were young, and here we use them to navigate the basics of musculoskeletal medicine. Netter illustrations are supplemented with clinical, radiographic, and arthroscopic images to review the most common musculoskeletal diseases. These cards provide the user with a steadfast tool for the very best kind of learning—that which is self directed. “Learning is not attained by chance, it must be sought for with ardor and attended to with diligence.” —Abigail Adams (1744–1818) “It’s that moment of dawning comprehension I live for!” —Calvin (Calvin and Hobbes) Jennifer Hart, PA-C, ATC Mark D. Miller, MD Netter’s Musculoskeletal Flash Cards 1600 John F. Kennedy Blvd. Ste 1800 Philadelphia, PA 19103-2899 NETTER’S MUSCULOSKELETAL FLASH CARDS ISBN: 978-1-4160-4630-1 Copyright © 2008 by Saunders, an imprint of Elsevier Inc. All rights reserved. No part of this book may be produced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system, without permission in writing from the publishers. Permissions for Netter Art figures may be sought directly from Elsevier’s Health Science Licensing Department in Philadelphia PA, USA: phone 1-800-523-1649, ext. 3276 or (215) 239-3276; or e-mail [email protected].
    [Show full text]
  • Synovial Joints Permit Movements of the Skeleton
    8 Joints Lecture Presentation by Lori Garrett © 2018 Pearson Education, Inc. Section 1: Joint Structure and Movement Learning Outcomes 8.1 Contrast the major categories of joints, and explain the relationship between structure and function for each category. 8.2 Describe the basic structure of a synovial joint, and describe common accessory structures and their functions. 8.3 Describe how the anatomical and functional properties of synovial joints permit movements of the skeleton. © 2018 Pearson Education, Inc. Section 1: Joint Structure and Movement Learning Outcomes (continued) 8.4 Describe flexion/extension, abduction/ adduction, and circumduction movements of the skeleton. 8.5 Describe rotational and special movements of the skeleton. © 2018 Pearson Education, Inc. Module 8.1: Joints are classified according to structure and movement Joints, or articulations . Locations where two or more bones meet . Only points at which movements of bones can occur • Joints allow mobility while preserving bone strength • Amount of movement allowed is determined by anatomical structure . Categorized • Functionally by amount of motion allowed, or range of motion (ROM) • Structurally by anatomical organization © 2018 Pearson Education, Inc. Module 8.1: Joint classification Functional classification of joints . Synarthrosis (syn-, together + arthrosis, joint) • No movement allowed • Extremely strong . Amphiarthrosis (amphi-, on both sides) • Little movement allowed (more than synarthrosis) • Much stronger than diarthrosis • Articulating bones connected by collagen fibers or cartilage . Diarthrosis (dia-, through) • Freely movable © 2018 Pearson Education, Inc. Module 8.1: Joint classification Structural classification of joints . Fibrous • Suture (sutura, a sewing together) – Synarthrotic joint connected by dense fibrous connective tissue – Located between bones of the skull • Gomphosis (gomphos, bolt) – Synarthrotic joint binding teeth to bony sockets in maxillae and mandible © 2018 Pearson Education, Inc.
    [Show full text]
  • Peripartum Pubic Symphysis Diastasis—Practical Guidelines
    Journal of Clinical Medicine Review Peripartum Pubic Symphysis Diastasis—Practical Guidelines Artur Stolarczyk , Piotr St˛epi´nski* , Łukasz Sasinowski, Tomasz Czarnocki, Michał D˛ebi´nski and Bartosz Maci ˛ag Department of Orthopedics and Rehabilitation, Medical University of Warsaw, 02-091 Warsaw, Poland; [email protected] (A.S.); [email protected] (Ł.S.); [email protected] (T.C.); [email protected] (M.D.); [email protected] (B.M.) * Correspondence: [email protected] Abstract: Optimal development of a fetus is made possible due to a lot of adaptive changes in the woman’s body. Some of the most important modifications occur in the musculoskeletal system. At the time of childbirth, natural widening of the pubic symphysis and the sacroiliac joints occur. Those changes are often reversible after childbirth. Peripartum pubic symphysis separation is a relatively rare disease and there is no homogeneous approach to treatment. The paper presents the current standards of diagnosis and treatment of pubic diastasis based on orthopedic and gynecological indications. Keywords: pubic symphysis separation; pubic symphysis diastasis; pubic symphysis; pregnancy; PSD 1. Introduction The proper development of a fetus is made possible due to numerous adaptive Citation: Stolarczyk, A.; St˛epi´nski,P.; changes in women’s bodies, including such complicated systems as: endocrine, nervous Sasinowski, Ł.; Czarnocki, T.; and musculoskeletal. With regard to the latter, those changes can be observed particularly D˛ebi´nski,M.; Maci ˛ag,B. Peripartum Pubic Symphysis Diastasis—Practical in osteoarticular and musculo-ligamento-fascial structures. Almost all of those changes Guidelines. J. Clin. Med.
    [Show full text]
  • 2019 IWIW Meeting Abstracts, Las Vegas, Wed. Sept. 4Th SESSION 1
    2019 IWIW Meeting Abstracts, Las Vegas, Wed. Sept. 4th SESSION 1: Carpal Ligament 1 Stable Central Column Theory of Carpal Mechanics Michael Sandow FRACS Wakefield Orthopaedic Clinic Adelaide, Australia Background: The carpus is a complicated and functionally challenged mechanical system and advancements in the understanding have been compromised by the recognition that there is no standard carpal mechanical system and no typical wrist. This paper cover component of a larger project that seeks to develop a kinetic model of wrist mechanics to allow reverse analysis of the specific biomechanical controls or rule of a specific patient's carpus, and then use those to create a forward mathematical model to reproduce the unique individual's anatomical motion based on the extracted rules. Objectives and Methods: Based on previous observations, the carpus essentially moves with only 2 degrees of freedom - pitch (flexion / extension) and yaw (radial deviation / ulnar deviation), while largely preventing roll (pronation / supination). The object of this paper is therefore to present the background and justification to support the rules based motion (RBM) concept states that the motion of a mechanical system, such as the wrist, is the net interplay of 4 rules - morphology, constraint, interaction and load. The Stable Central Column Theory (SCCT) of wrist mechanics applies the concept of RBM to the carpus, and by using a reverse engineering computational analysis model, identified a consistent pattern of isometric constraints, creating a "Two-Gear Four-Bar" linkage. This study assessed the motion of the carpus using a 3D dynamic visualization model, and the hypothesis was that the pattern and direction of motion of the proximal row, and the distal row with respect the immediately cephalad carpal bones or radius would be very similar in all directions of wrist motion.
    [Show full text]
  • Pelvic Anatomyanatomy
    PelvicPelvic AnatomyAnatomy RobertRobert E.E. Gutman,Gutman, MDMD ObjectivesObjectives UnderstandUnderstand pelvicpelvic anatomyanatomy Organs and structures of the female pelvis Vascular Supply Neurologic supply Pelvic and retroperitoneal contents and spaces Bony structures Connective tissue (fascia, ligaments) Pelvic floor and abdominal musculature DescribeDescribe functionalfunctional anatomyanatomy andand relevantrelevant pathophysiologypathophysiology Pelvic support Urinary continence Fecal continence AbdominalAbdominal WallWall RectusRectus FasciaFascia LayersLayers WhatWhat areare thethe layerslayers ofof thethe rectusrectus fasciafascia AboveAbove thethe arcuatearcuate line?line? BelowBelow thethe arcuatearcuate line?line? MedianMedial umbilicalumbilical fold Lateralligaments umbilical & folds folds BonyBony AnatomyAnatomy andand LigamentsLigaments BonyBony PelvisPelvis TheThe bonybony pelvispelvis isis comprisedcomprised ofof 22 innominateinnominate bones,bones, thethe sacrum,sacrum, andand thethe coccyx.coccyx. WhatWhat 33 piecespieces fusefuse toto makemake thethe InnominateInnominate bone?bone? PubisPubis IschiumIschium IliumIlium ClinicalClinical PelvimetryPelvimetry WhichWhich measurementsmeasurements thatthat cancan bebe mademade onon exam?exam? InletInlet DiagonalDiagonal ConjugateConjugate MidplaneMidplane InterspinousInterspinous diameterdiameter OutletOutlet TransverseTransverse diameterdiameter ((intertuberousintertuberous)) andand APAP diameterdiameter ((symphysissymphysis toto coccyx)coccyx)
    [Show full text]
  • A Review of Natural Joint Systems and Numerical Investigation of Bio-Inspired GFRP-To-Steel Joints
    materials Article A Review of Natural Joint Systems and Numerical Investigation of Bio-Inspired GFRP-to-Steel Joints Evangelos I. Avgoulas and Michael P. F. Sutcliffe * Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-1223-332-996 Academic Editor: Frank Müller Received: 25 April 2016; Accepted: 1 July 2016; Published: 12 July 2016 Abstract: There are a great variety of joint types used in nature which can inspire engineering joints. In order to design such biomimetic joints, it is at first important to understand how biological joints work. A comprehensive literature review, considering natural joints from a mechanical point of view, was undertaken. This was used to develop a taxonomy based on the different methods/functions that nature successfully uses to attach dissimilar tissues. One of the key methods that nature uses to join dissimilar materials is a transitional zone of stiffness at the insertion site. This method was used to propose bio-inspired solutions with a transitional zone of stiffness at the joint site for several glass fibre reinforced plastic (GFRP) to steel adhesively bonded joint configurations. The transition zone was used to reduce the material stiffness mismatch of the joint parts. A numerical finite element model was used to identify the optimum variation in material stiffness that minimises potential failure of the joint. The best bio-inspired joints showed a 118% increase of joint strength compared to the standard joints. Keywords: natural joints; adhesive joints; biomimetics; bio-inspiration; composites 1. Introduction In recent years, the use of composite materials in automotive and aerospace industries has shown an upward trend due to their good stiffness-to-weight (E/r) and strength-to-weight (s/r) ratios.
    [Show full text]
  • Basic Biomechanics
    Posture analysis • A quick evaluation of structure and function • Doctor views patient from behind (P-A) and from the side (lateral) • References points of patient’s anatomy relative to plumb (a position of balance) 9/3/2013 1 Posture analysis • Lateral View – Knees (anterior, posterior, plumb, genu recurvatum) – Trochanter (anterior, posterior, plumb) – Pelvis (anterior, posterior, neutral pelvic tilt) – Lumbar lordosis (hypo-, hyper-, normal) – Mid-axillary line (anterior, posterior, plumb) – Thoracic kyphosis (hyp-, hyper- normal) – Acromion (anterior, posterior, plumb) – Scapulae (protracted, retracted, normal) – Cervical lordosis (hypo-, hyper-, normal) – External auditory meatus (anterior, posterior, plumb) – Occiput (extended, neutral, flexed) 9/3/2013 2 Posture analysis • Posterior – Anterior View – Feet (pronation, supination, normal) – Achilles tendon (bowed in/out, normal) – Knees (genu valga/vera, normal - internal/external rotation) – Popliteal crease heights (low, high, level) – Trochanter heights (low, high, level) – Iliac crest heights (low on the right/left, normal) – Lumbar scoliosis (right/left, or no signs of) – Thoracic scoliosis (right/left, or no signs of) – Shoulder level (low on the right/left, or normal) – Cervical scoliosis (right/left, or no signs of) – Cervical position (rotation, tilt, neutral) – Mastoid (low on the right/left, or normal) 9/3/2013 3 …..poor postures 9/3/2013 4 Functional Anatomy of the Spine • The vertebral curvatures – Cervical Curve • Anterior convex curve (lordosis) develop in infancy
    [Show full text]
  • Module 6 : Anatomy of the Joints
    Module 6 : Anatomy of the Joints In this module you will learn: About the classification of joints What synovial joints are and how they work Where the hinge joints are located and their functions Examples of gliding joints and how they work About the saddle joint and its function 6.1 Introduction The body has a need for strength and movement, which is why we are rigid. If our bodies were not made this way, then movement would be impossible. We are designed to grow with bones, tendons, ligaments, and joints that all play a part in natural movements known as articulations – these strong connections join up bones, teeth, and cartilage. Each joint in our body makes these links possible and each joint performs a specific job – many of them differ in shape and structure, but all control a range of motion between the body parts that they connect. 6.2 Classifying Joints Joints that do not allow movement are known as synarthrosis joints. Examples of synarthroses are sutures of the skull, and the gomphoses which connect our teeth to the skull. Amphiarthrosis joints allow a small range of movement, an example of this is your intervertebral discs attached to the spine. Another example is the pubic symphysis in your hip region. The freely moving joints are classified as diarthrosis joints. These have a higher range of motion than any other type of joint, they include knees, elbows, shoulders, and wrists. Joints can also be classified depending on the kind of material each one is structurally made up of. A fibrous joint is made up of tough collagen fiber, examples of this are previously mentioned sutures of the skull or the syndesmosis joint, which holds the ulna and radius of your forearm in place.
    [Show full text]
  • Injuries to the Lower Extremity
    InjuriesInjuries toto thethe LowerLower ExtremityExtremity MostMost commoncommon duedue toto applicationapplication ofof largelarge loads.loads. ImportantImportant becausebecause ofof thethe rolerole onon thethe lowerlower extremityextremity inin locomotionlocomotion HipHip AnatomyAnatomy Ball & Socket (3D) Ligament support Iliofemoral pubofemoral ischiofemoral ligamentum teres Joint capsule: labrum HipHip MusclesMuscles Flexion Extension Abduction Adduction Int. Rotation Ext. Rotation Adductors X X Tensor XXX fascia Gluteus XX Max Gluteus XX Medius Gluteus XX Minimus Gracilis X Ilopsoas X Pectinuous X X X Piriformis + + X Hamstrings X Sartorius X Rectus X Femoris HipHip fracturesfractures High energy forces falls car accidents pelvic (side impacts) high mortality rates Femoral neck fractures > 250,000 women 3 times likely to get fracture HipHip fracturesfractures Young people: high energy impacts Mechanism direct impact lateral rotation of leg Stress fractures femur Dynamic models of falls impact forces 3-10 kN HipHip LuxationLuxation (dislocation)(dislocation) Not common: hip stability High forces Most cases posterior dislocation Car accidents: dashboard Anterior inferior dislocation 10-20% of hip dislocation Force abduction Abduction, flexion and ext. rotation (obturator) Hip retroversion (toe-in) Congenital dislocation (infants) ThighThigh injuriesinjuries Three muscular compartments Ant. Medial anterior medial posterior Quadriceps contusion blunt trauma extensive hematoma swelling increase
    [Show full text]
  • Mobilization for the Neurologically Involved Child
    MOBILIZATION FOR THE NEUROLOGICALLY INVOLVED CHILD Assessment and Application Strategies For Pediatric PTs and OTs Sandy Brooks-Scott M.S., PPT, PCS www.clinicians-view.com Chapter I Pathology and Resultant Immobility Mobility is a worthy goal. However, before it can be achieved in a child with neurological dysfunction, certain prerequisites must be in place: normal bony alignment; normal muscle strength, flexibility and endurance; a coordinating nervous system; an efficient cardiorespi­ ratory system; and normal connective tissue flexibility. Immobility after initial neurological insult affects all these systems, making assessment and treatment of all systems interfering with efficient mobility a paramount goal of the therapist. Neurological Damage-Original Insult The motor result of the neurological insult is dependent upon the age, the location, and the extent of the insult (Brann 1988; Costello et al. 1988; Nelson 1988; Pape and Wigglesworth 1979). The most widely discussed reason for brain damage in the pre-, peri- or initial postnatal stages is a change in blood pressure, causing the vessels in the developing organ to hemorrhage or become ischemic (Pape and Wigglesworth 1979). Nelson (1988) notes that most infants who live through severe asphyxia at birth do not develop cerebral palsy or mental retardation. Brann (1988), in his discussion of the effects of acute total and prolonged partial asphyxia, clearly demonstrates that the neurological changes and motor outcomes vary depending on the acuteness, duration, and severity of the asphyxia. Because a child will not have autoregulatory mechanisms to control blood pressure until 3 months of age, excessive heat loss, abnormal partial pressures of oxygen and carbon dioxide, or fluid imbalances can affect a newborn's blood pressure, producing ischemic hypoxia and neural damage.
    [Show full text]
  • Degenerative Joint Disease
    DEGENERATIVE JOINT DISEASE As our pets age, the tissues lining the bones and joints may deteriorate and degenerate. Degenerative Joint Disease (DJD) describes chronic arthritis (osteoarthritis) which is a gradual deterioration of articular cartilage within the joints. What is DJD? Joints consist of a tough fibrous joint capsule joining the bones. The joint capsule is lined by a thin membrane which produces joint fluid. This acts as a lubricant and also carries nourishment to the spongy articular cartilage which covers the ends of the bones. The articular cartilage does not have any blood supply of its own to provide nourishment and oxygen. The articular cartilage receives nourishment from small vessels in the underlying bone and through absorption from the joint fluid. DJD can follow a number of joint diseases including infection and surgery. It also occurs from excessive weight and obesity. This smooth resilient cartilage degenerates and becomes brittle and may actually split from the bone and become detached within the joint. Although DJD is said to be non-inflammatory, mild inflammation plays a part in causing clinical signs. The damaged cells of the cartilage release substances which result in inflammation, pain and further damage to the cartilage. Thus, once DJD begins it can become a vicious cycle. Can the condition be cured? Most of the damage caused by DJD is irreversible. Fortunately, new products are available that can slow the progress of the disease and promote cartilage healing. In addition, modern analgesics can effectively control pain without few side effects. We will discuss treatment options to allow your pet to enjoy a happy, pain free life.
    [Show full text]