Module 6 : Anatomy of the Joints

Total Page:16

File Type:pdf, Size:1020Kb

Module 6 : Anatomy of the Joints Module 6 : Anatomy of the Joints In this module you will learn: About the classification of joints What synovial joints are and how they work Where the hinge joints are located and their functions Examples of gliding joints and how they work About the saddle joint and its function 6.1 Introduction The body has a need for strength and movement, which is why we are rigid. If our bodies were not made this way, then movement would be impossible. We are designed to grow with bones, tendons, ligaments, and joints that all play a part in natural movements known as articulations – these strong connections join up bones, teeth, and cartilage. Each joint in our body makes these links possible and each joint performs a specific job – many of them differ in shape and structure, but all control a range of motion between the body parts that they connect. 6.2 Classifying Joints Joints that do not allow movement are known as synarthrosis joints. Examples of synarthroses are sutures of the skull, and the gomphoses which connect our teeth to the skull. Amphiarthrosis joints allow a small range of movement, an example of this is your intervertebral discs attached to the spine. Another example is the pubic symphysis in your hip region. The freely moving joints are classified as diarthrosis joints. These have a higher range of motion than any other type of joint, they include knees, elbows, shoulders, and wrists. Joints can also be classified depending on the kind of material each one is structurally made up of. A fibrous joint is made up of tough collagen fiber, examples of this are previously mentioned sutures of the skull or the syndesmosis joint, which holds the ulna and radius of your forearm in place. Cartilaginous types are made up of a band of cartilage that binds the bone together. A few examples of cartilaginous joints include those between the ribs and the intervertebral disks in your spine. The most abundant joint found in the human body is a synovial joint, they feature a fluid filled section that runs between cartilage pads, found at the end of articulating bones. Synovial joints are surrounded with dense connective tissue that forms a protective capsule lined with a synovial membrane. Sometimes part of the outer capsule extends into thick, resistant bands known as ligaments. Ligaments support joints and help prevent injury or dangerous movements. Synovial fluid acts as a lubricant to protect the area from general wear and tear. 6.3 Different Types of Synovial Joints Ball and socket joints have the highest range of motion due to their unique structural components. The only ball and socket joints are the shoulder and hips. These two areas have a high need for a range of motion as they partially regulate all upper and lower body movements. They are also responsible for allowing the limbs to move. The two main components of a ball and socket joint are two bones, one has a spherical head and the other has a cup-shaped socket. When referring to the shoulder joint, the spherical part of the upper arm bone is connected to a small cavity known as the glenoid (part of the scapula). The glenoid cavity allows the shoulder region to have the greatest range of motion in the human body. The glenoid cavity is surrounded by a cartilage ring known as the labrum, which allows flexibility and reinforcement to the shoulder joint. The rotator cuff muscles keep the humerus secured within the cavity. Hip joints These are less mobile than shoulder joints, but are much stronger and harder to damage. Hip joints need to be stable because they must uphold the body weight that rests above the legs. The hip region is the link between upper and lower body functions like walking, running and standing. The spherical head of the thigh bone (femur) fits into a deeper socket in the hip bone called the acetabulum. The hip bones are supported by strong muscles and ligaments to aid in holding the head of the femur in place. The deliberate depth of the acetabulum aids in preventing any damage by limiting the movement of the area within the socket. Ball and socket joints These are commonly referred to as multi-axial due to their ability to move bones along several axes. The muscles surrounding these joints allow the upper arms and hip joints to abduct away from your body, move along the body, allow flexion and extension movements. Both the hip and shoulder joint can move in a full circular motion, they can both also rotate in lateral and medial movements. 6.4 Hinge Joints These fall under the class of synovial joints, but have other distinctive features. These include the ankle, knee joint and elbows. Hinge joints are formed in between two bones or more, allowing the bones to move alongside one axis, enabling flexion or extension. The simplest form of hinge joints is the interphalangeal joints that are located between your fingers and toes. These hinge joints provide flexion and the ability to move digits at an angle, i.e. clenching your fist or curling your toes. They also allow the digits to increase angular movement by 180 degrees when feet or hands are flat. Little body weight or mechanical force is needed to exert this type of joint and they are made up of standard synovial material, including small ligaments that aid in reinforcing the area. The elbow This is another type of hinge joint, but one that is much more complex. This forms where the humerus connects to the radius and ulna of the forearm. Elbows have to endure stronger force than your knuckles so they are supported by accessory ligaments and complex bone structures. The radius and ulna ligaments provide support for the humerus in every movement in the area. At the end of the ulna is the olecranon, this forms the tip of your elbow and attaches to a part of the humerus called the olecranon fossa. This acts as a regulator for elbow extension and limits the movement to 180 degrees before it locks in to the olecranon fossa. The ankle joint This is another hinge joint that forms between your fibula and tibia in the lower leg region, along with the talus bone in your foot. Parts of the fibula and tibia bones form a socket around the talus which limits movement of your feet to one single axis. There are 4 accessory ligaments that include deltoid ligament (not to be confused with shoulder) these hold the bones together and reinforce joints, so they can withstand any stress from body weight when standing, jumping, walking or running. The knee joint This is found between the femur (upper leg bone) and tibia/ fibula (lower leg bones). This is the largest, most complex hinge joint in your body. Over time they have evolved to become strong and sturdy while still providing a large range of motion that is necessary for humans to move. The area is supported by internal and external ligaments to make up for the lack of support from surrounding bones in the area. The lack of bone support allows for the knee joint to flex to a larger degree than if it was supported by surrounding bones. A cartilage, known as the meniscus, located between tibia and femur bones, protects the area more acting as a shock absorber during high-impact exercises and movements. 6.5 Gliding Joint A gliding joint is also referred to as a plane joint or planar joint, this is another common type of synovial joint that forms between bones meeting on flat articulate surfaces. Most gliding joints allow bones to glide next to each other in directions alongside the plane of the joint. This can be up/down, left/right or diagonal. They also allow for slight rotation, but this is limited by the shape of surrounding bones, elasticity and how the joint capsule is structured. The typical structure of synovial joints helps provide flexibility in gliding joints and also limits movement in order to minimize risk of injury. The synovial membrane protects the area with oil-like fluid, lubricating the area and reduces friction on joints and bones. The joint capsule and attached ligaments hold the bones together so that they can glide without dislocating. Between the bones lies articular cartilage – a smooth surface that also aids in safe gliding motion and a shock absorber to protect bones from impact. Most gliding joints are formed within the appendicular skeleton located between your carpal wrist bones, carpal, and metacarpal bones of your palms and tarsal bones of your ankle. Also between the metatarsal and tarsals of your feet. Such bones form flattened surfaces between each other to provide flexibility in your hands and feet. Another example of a complex gliding joint is the acromioclavicular joint in your shoulder region. This gliding joint provides a pivot point for increased flexibility and allows the shoulder to be elevated or be depressed. Gliding joints These are also located in the axial skeleton (between your neck and trunk to improve regional flexibility). There are two sets of gliding joints in your thoracic region – one set is between the sternum and ribs by your intercostal joints, the other set is located between your vertebrae, ribs and vertebrocostal joints. They allow the ribs to elevate and depress, changing the volume of the thoracic cavity. These movements allow the normal and necessary process of breathing by working in alignment with your lungs. Your spine has 26 vertebrae and the gliding joints found here are located between these by the intervertebral joints.
Recommended publications
  • The Proximal Interphalangeal Joint: Arthritis and Deformity
    4.1800EOR0010.1302/2058-5241.4.180042 research-article2019 EOR | volume 4 | June 2019 DOI: 10.1302/2058-5241.4.180042 Instructional Lecture: Hand & Wrist www.efortopenreviews.org The proximal interphalangeal joint: arthritis and deformity Daniel Herren Finger joints are of the most common site of osteoarthritis Most authors, especially in the rheumatology and arthritis and include the DIP, PIP and the thumb saddle joint. literature, use a modification of the Kellgren and Lawrence 1 Joint arthroplasty provides the best functional outcome scale, initially described for patellofemoral arthritis, for for painful destroyed PIP joints, including the index finger. radiographic classification: Adequate bone stock and functional tendons are required for a successful PIP joint replacement Grade 1: doubtful narrowing of joint space and pos- sible osteophytic lipping Fixed swan-neck and boutonnière deformity are better served with PIP arthrodesis rather than arthroplasty. Grade 2: definite osteophytes, definite narrowing of joint space Silicone implants are the gold standard in terms of implant choice. Newer two-component joints may have potential Grade 3: moderate multiple osteophytes, definite nar- to correct lateral deformities and improve lateral stability. rowing of joint space, some sclerosis and possible deformation of bone contour Different surgical approaches are used for PIP joint implant arthroplasty according to the needs and the experience of Grade 4: large osteophytes, marked narrowing of joint the surgeon. space, severe sclerosis and definite deformation of bone contour Post-operative rehabilitation is as critical as the surgical procedure. Early protected motion is a treatment goal. Revision and exchange PIP arthroplasty may successfully Treatment be used to treat chronic pain, but will not correct defor- mity.
    [Show full text]
  • Joints Classification of Joints
    Joints Classification of Joints . Functional classification (Focuses on amount of movement) . Synarthroses (immovable joints) . Amphiarthroses (slightly movable joints) . Diarthroses (freely movable joints) . Structural classification (Based on the material binding them and presence or absence of a joint cavity) . Fibrous mostly synarthroses . Cartilagenous mostly amphiarthroses . Synovial diarthroses Table of Joint Types Functional across Synarthroses Amphiarthroses Diarthroses (immovable joints) (some movement) (freely movable) Structural down Bony Fusion Synostosis (frontal=metopic suture; epiphyseal lines) Fibrous Suture (skull only) Syndesmoses Syndesmoses -fibrous tissue is -ligaments only -ligament longer continuous with between bones; here, (example: radioulnar periosteum short so some but not interosseous a lot of movement membrane) (example: tib-fib Gomphoses (teeth) ligament) -ligament is periodontal ligament Cartilagenous Synchondroses Sympheses (bone united by -hyaline cartilage -fibrocartilage cartilage only) (examples: (examples: between manubrium-C1, discs, pubic epiphyseal plates) symphesis Synovial Are all diarthrotic Fibrous joints . Bones connected by fibrous tissue: dense regular connective tissue . No joint cavity . Slightly immovable or not at all . Types . Sutures . Syndesmoses . Gomphoses Sutures . Only between bones of skull . Fibrous tissue continuous with periosteum . Ossify and fuse in middle age: now technically called “synostoses”= bony junctions Syndesmoses . In Greek: “ligament” . Bones connected by ligaments only . Amount of movement depends on length of the fibers: longer than in sutures Gomphoses . Is a “peg-in-socket” . Only example is tooth with its socket . Ligament is a short periodontal ligament Cartilagenous joints . Articulating bones united by cartilage . Lack a joint cavity . Not highly movable . Two types . Synchondroses (singular: synchondrosis) . Sympheses (singular: symphesis) Synchondroses . Literally: “junction of cartilage” . Hyaline cartilage unites the bones . Immovable (synarthroses) .
    [Show full text]
  • 38.3 Joints and Skeletal Movement.Pdf
    1198 Chapter 38 | The Musculoskeletal System Decalcification of Bones Question: What effect does the removal of calcium and collagen have on bone structure? Background: Conduct a literature search on the role of calcium and collagen in maintaining bone structure. Conduct a literature search on diseases in which bone structure is compromised. Hypothesis: Develop a hypothesis that states predictions of the flexibility, strength, and mass of bones that have had the calcium and collagen components removed. Develop a hypothesis regarding the attempt to add calcium back to decalcified bones. Test the hypothesis: Test the prediction by removing calcium from chicken bones by placing them in a jar of vinegar for seven days. Test the hypothesis regarding adding calcium back to decalcified bone by placing the decalcified chicken bones into a jar of water with calcium supplements added. Test the prediction by denaturing the collagen from the bones by baking them at 250°C for three hours. Analyze the data: Create a table showing the changes in bone flexibility, strength, and mass in the three different environments. Report the results: Under which conditions was the bone most flexible? Under which conditions was the bone the strongest? Draw a conclusion: Did the results support or refute the hypothesis? How do the results observed in this experiment correspond to diseases that destroy bone tissue? 38.3 | Joints and Skeletal Movement By the end of this section, you will be able to do the following: • Classify the different types of joints on the basis of structure • Explain the role of joints in skeletal movement The point at which two or more bones meet is called a joint, or articulation.
    [Show full text]
  • Spline Joints for Multibody Dynamics
    To appear in the ACM SIGGRAPH conference proceedings Spline Joints for Multibody Dynamics Sung-Hee Lee∗ Demetri Terzopoulos† University of California, Los Angeles Figure 1: A spline joint can much more accurately model complex biological joints than is possible using conventional joint models. Abstract When it comes to designing practical machines, using only the lower pair joints seems reasonable, not because they are ideal Spline joints are a novel class of joints that can model general scle- choices for every mechanism, but because it is difficult to man- ronomic constraints for multibody dynamics based on the minimal- ufacture more complex types of joints. For the same reason, coordinates formulation. The main idea is to introduce spline the creation of more sophisticated joints has been largely ne- curves and surfaces in the modeling of joints: We model 1-DOF glected in multibody dynamics research. Not surprisingly, there- joints using splines on SE(3), and construct multi-DOF joints as fore, most dynamics simulators and game physics engines, such the product of exponentials of splines in Euclidean space. We as ADAMS (www.mscsoftware.com), the Open Dynamics Engine present efficient recursive algorithms to compute the derivatives of (www.ode.org), and SD/FAST (www.sdfast.com), provide only the spline joint, as well as geometric algorithms to determine op- fairly simple types of joint models limited to fixed joint axes. timal parameters in order to achieve the desired joint motion. Our spline joints can be used to create interesting new simulated mecha- By contrast, more complex joints are common in biological sys- nisms for computer animation and they can more accurately model tems.
    [Show full text]
  • Gen Anat-Joints
    JOINTS Joint is a junction between two or more bones Classification •Functional Based on the range and type of movement they permit •Structural On the basis of their anatomic structure Functional Classification • Synarthrosis No movement e.g. Fibrous joint • Amphiarthrosis Slight movement e.g. Cartilagenous joint • Diarthrosis Movement present Cavity present Also called as Synovial joint eg.shoulder joint Structural Classification Based on type of connective tissue binding the two adjacent articulating bones Presence or absence of synovial cavity in between the articulating bone • Fibrous • Cartilagenous • Synovial Fibrous Joint Bones are connected to each other by fibrous (connective ) tissue No movement No synovial cavity • Suture • Syndesmosis • Gomphosis Sutural Joints • A thin layer of dens fibrous tissue binds the adjacent bones • These appear between the bones which ossify in membrane • Present between the bones of skull e.g . coronal suture, sagittal suture • Schindylesis: – rigid bone fits in to a groove on a neighbouring bone e.g. Vomer and sphenoid Gomphosis • Peg and socket variety • Cone shaped root of tooth fits in to a socket of jaw • Immovable • Root is attached to the socket by fibrous tissue (periodontal ligament). Syndesmosis • Bony surfaces are bound together by interosseous ligament or membrane • Membrane permits slight movement • Functionally classified as amphiarthrosis e.g. inferior tibiofibular joint Cartilaginous joint • Bones are held together by cartilage • Absence of synovial cavity . Synchondrosis . Symphysis Synchondrosis • Primary cartilaginous joint • Connecting material between two bones is hyaline cartilage • Temporary joint • Immovable joint • After a certain age cartilage is replaced by bone (synostosis) • e.g. Epiphyseal plate connecting epiphysis and diphysis of a long bone, joint between basi-occiput and basi-sphenoid Symphysis • Secondary cartilaginous joint (fibrocartilaginous joint) • Permanent joint • Occur in median plane of the body • Slightly movable • e.g.
    [Show full text]
  • Biomechanics
    BIOMECHANICS SAGAR BIOMECHANICS The study of mechanics in the human body is referred to as biomechanics. Biomechanics Kinematics Kinetics U Kinematics: Kinematics is the area of biomechanics that includes descriptions of motion without regard for the forces producing the motion. [It studies only the movements of the body.] Kinematics variables for a given movement may include following: y Type of motion. y Location of motion. y Direction of motion. y Magnitude of motion. y Rate or Duration of motion. Ö Type of Motion: There are four types of movement that can be attributed to any rigid object or four pathways through which a rigid object can travel. < Rotatory (Angular) Motion: It is movement of an object or segment around a fixed axis in a curved path. Each point on the object or segment moves through the same angle, at the same time, at a constant distance from the axis of rotation. Eg – Each point in the forearm/hand segment moves through the same angle, in the same time, at a constant distance from the axis of rotation during flexion at the elbow joint. < Translatory (Linear) Motion: It is the movement of an object or segment in a straight line. Each point on the object moves through the same distance, at the same time, in parallel paths. Translation of a body segment without some concomitant rotation rarely occurs. EgSAGAR – The movement of the combined forearm/hand segment to grasp an object, in this all points on the forearm/hand segment move through the same distance at the same time but the translation of the forearm/hand segment is actually produced by rotation of both the shoulder and the elbow joints.
    [Show full text]
  • Effectiveness of Physical Therapy Intervention to the Proximal Tibiofibular Joint for a Marathon Runner with Lateral Knee Pain
    Case Report Clinical Case Reports International Published: 19 Dec, 2017 Effectiveness of Physical Therapy Intervention to the Proximal Tibiofibular Joint for a Marathon Runner with Lateral Knee Pain Steven Jackson1* and Sarah Macrowski2 1Department of Physical Therapy and Rehabilitation, Orange Park Medical Center, USA 2Department of Physical Therapy and Rehabilitation, Houston Methodist Orthopedics &Sports Medicine, USA Abstract Background & Purpose: The knee is the most common site of injury in running athletes. An often overlooked contributor to lateral knee pain is the Proximal Tibiofibular Joint (PTFJ). There is a paucity of literature regarding physical therapy management of those with PTFJ dysfunction. The purpose of this case study is to report the physical therapy management for a patient with lateral knee pain. Case Description: A 26-year-old female marathon runner presented with right lateral knee pain after slipping on ice while running. The patient presented with difficulty running, squatting, descending stairs, sitting greater than 30 minutes, and walking on uneven surfaces. After two weeks of rest, foam rolling, and hip abductor strengthening, the patient had reduced pain with all functional activities, but was still unable to run without pain. Oscillatory Grade III anterior to posterior mobilizations were performed to the PTFJ. Following this addition to her plan of care, the patient was able to return to running pain free. Discussion: When examining a patient with lateral knee pain, the PTFJ should be considered in the differential diagnosis as a source of pain and the mechanisms regarding manual therapy-induced hypoalgesia. OPEN ACCESS Background and Purpose *Correspondence: Steven Jackson, Department of The knee is the most common site of injury in running athletes, with a prevalence of 42.1% [1].
    [Show full text]
  • METHODICAL GUIDANCE for the Lecture Academic Subject Human Anatomy Module No 1
    Ministry of Public Health of Ukraine Ukrainian Medical Stomatological Academy "Approved" at the meeting of the Department of Human Anatomy «29»_08__2020 Minutes № Head of the Department Professor O.O. Sherstjuk ________________________ METHODICAL GUIDANCE for the lecture Academic subject Human Anatomy Module No 1 "Anatomy of the locomotor system" Lecture No 2 General osteology. General anatomy of the skeleton of human body. Development and classification of the bones. Bone as a multifunctional organ. General arthrology. The theoretical background to the study of the connection of the bones. Classification of the continuos and discontinuos articulations Year of study І Faculty Foreign students' training faculty, specialty «Medicine» Number of 2 academic hours Poltava – 2020 1. Educational basis of the topic Supporting function of the skeleton allows human body to maintain upright (vertical) position. Bones serve as attachment points for the muscles, other soft tissues, and internal organs. Bony skeleton resists Earth’s gravitational force, thus it is often called antigravitational construction. Movement cannot be carried out without bones. Bones act as dynamically joint together levers, which are led into motion by the action of muscles. Skeleton performs protective function in the body. It forms bony cavities and chambers (skull, vertebral canal, thoracic cavity, and pelvis minor) for the protection of vitally important organs. Red bone marrow performs haemopoietic and immune functions of the skeleton. Biological function of the skeleton is concerned with the participation of bones in metabolic processes such as mineral metabolism (phosphorus, calcium, etc.). Skeletal tissue is a storage depot for inorganic compounds; consequently, bone can accumulate radioactive substances. Various forms of bone articulations in humans result from the historical and individual development of skeletal tissues.
    [Show full text]
  • For Occupational Therapists
    CONTINUING EDUCATION for Occupational Therapists OSTEOARTHRITIS IN THE HANDS: AN INTRODUCTION TO REHABILITATIVE EVALUATION AND TREATMENT PDH Academy Course #OT-1603 | 2.5 CE HOURS This course is offered for 0.25 CEUs (Intermediate level; Category 2 – Occupational Therapy Process: Evaluation; Category 2 – Occupational Therapy Process: Intervention; Category 2 – Occupational Therapy Process: Outcomes). The assignment of AOTA CEUs does not imply endorsement of specific course content, products, or clinical procedures by AOTA. Course Abstract This course focuses on new research surrounding the epidemiology of osteoarthritis (OA), relating it to treatment rationale in patients diagnosed with OA of the hand. It discusses applicable definitions and terminology; the normal joint anatomy and functional position of the CMC joint of the thumb, the PIP joints, and the DIP joints; the etiology and pathology of OA; the medical diagnosis and treatment of OA; and the role of therapy as it pertains to OA. Target audience: Occupational Therapists, Therapy Assistants, Physical Therapists, Physical Therapy Assistants (no prerequisites). NOTE: Links provided within the course material are for informational purposes only. No endorsement of processes or products is intended or implied. Learning Objectives By the end of this course, learners will be able to: ❏ Recognize definitions and terminology pertaining to osteoarthritis (OA) of the hand ❏ Recognize the normal joint anatomy and functional position of the hand ❏ Recall the etiology and pathology of OA ❏ Identify elements of medical diagnosis and treatment of OA ❏ Identify roles of therapy as it pertains to OA OCCUPATIONAL THERAPISTS Osteoarthritis in the Hands | 1 Introduction Timed Topic Outline For decades, the common belief I.
    [Show full text]
  • Examples of Hinge Joints in the Body
    Examples Of Hinge Joints In The Body Affirmative Claudius maps, his rin sparkle zincify floridly. Saxe overpersuade her vicereines anagogically, craggiest and gneissic. When Rodrique sue his blow ablated not posh enough, is Lefty undepraved? The website can not function properly without these cookies. These joints are also called sutures. The structural classification divides joints into bony, but for also be used to model chains, jump simply move from fork to place. Spring works like in hinge joint examples of mobility. There are referred to prevent its location where it is displayed as two layers of hinge joints in the examples on structure is responsible for! A box joint is done common class of synovial joint that includes the sensitive elbow wrist knee joints Hinge joints are formed between soil or more bones where the bones can say move a one axis to flex and extend. But severe hip. A split joint ginglymus is within bone sometimes in mid the articular surfaces are molded to each. Examples are the decorate and the interphalangeal joints of the fingers The knee complex is focus of the edge often injured joints in past human blood A finger joint. Here control the facts and trivia that smart are buzzing about. Examples are examples include injury or leg to each other half of arthritis is? We smile and in the examples include the end of the hinges of the flat bone, like the lower extremities that of! Knees and elbows are much common examples of hinge joints 5 Pivot Joints This type of joint allows for rotation Unlike many other synovial.
    [Show full text]
  • Synovial Joints
    Chapter 9 Lecture Outline See separate PowerPoint slides for all figures and tables pre- inserted into PowerPoint without notes. Copyright © McGraw-Hill Education. Permission required for reproduction or display. 1 Introduction • Joints link the bones of the skeletal system, permit effective movement, and protect the softer organs • Joint anatomy and movements will provide a foundation for the study of muscle actions 9-2 Joints and Their Classification • Expected Learning Outcomes – Explain what joints are, how they are named, and what functions they serve. – Name and describe the four major classes of joints. – Describe the three types of fibrous joints and give an example of each. – Distinguish between the three types of sutures. – Describe the two types of cartilaginous joints and give an example of each. – Name some joints that become synostoses as they age. 9-3 Joints and Their Classification • Joint (articulation)— any point where two bones meet, whether or not the bones are movable at that interface Figure 9.1 9-4 Joints and Their Classification • Arthrology—science of joint structure, function, and dysfunction • Kinesiology—the study of musculoskeletal movement – A branch of biomechanics, which deals with a broad variety of movements and mechanical processes 9-5 Joints and Their Classification • Joint name—typically derived from the names of the bones involved (example: radioulnar joint) • Joints classified according to the manner in which the bones are bound to each other • Four major joint categories – Bony joints – Fibrous
    [Show full text]
  • Synovial Joints • Typically Found at the Ends of Long Bones • Examples of Diarthroses • Shoulder Joint • Elbow Joint • Hip Joint • Knee Joint
    Chapter 8 The Skeletal System Articulations Lecture Presentation by Steven Bassett Southeast Community College © 2015 Pearson Education, Inc. Introduction • Bones are designed for support and mobility • Movements are restricted to joints • Joints (articulations) exist wherever two or more bones meet • Bones may be in direct contact or separated by: • Fibrous tissue, cartilage, or fluid © 2015 Pearson Education, Inc. Introduction • Joints are classified based on: • Function • Range of motion • Structure • Makeup of the joint © 2015 Pearson Education, Inc. Classification of Joints • Joints can be classified based on their range of motion (function) • Synarthrosis • Immovable • Amphiarthrosis • Slightly movable • Diarthrosis • Freely movable © 2015 Pearson Education, Inc. Classification of Joints • Synarthrosis (Immovable Joint) • Sutures (joints found only in the skull) • Bones are interlocked together • Gomphosis (joint between teeth and jaw bones) • Periodontal ligaments of the teeth • Synchondrosis (joint within epiphysis of bone) • Binds the diaphysis to the epiphysis • Synostosis (joint between two fused bones) • Fusion of the three coxal bones © 2015 Pearson Education, Inc. Figure 6.3c The Adult Skull Major Sutures of the Skull Frontal bone Coronal suture Parietal bone Superior temporal line Inferior temporal line Squamous suture Supra-orbital foramen Frontonasal suture Sphenoid Nasal bone Temporal Lambdoid suture bone Lacrimal groove of lacrimal bone Ethmoid Infra-orbital foramen Occipital bone Maxilla External acoustic Zygomatic
    [Show full text]