Some New Directions in Teichmüller Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
President's Report
Newsletter VOLUME 43, NO. 6 • NOVEMBER–DECEMBER 2013 PRESIDENT’S REPORT As usual, summer flew by all too quickly. Fall term is now in full swing, and AWM is buzzing with activity. Advisory Board. The big news this fall is the initiation of an AWM Advisory Board. The Advisory Board, first envisioned under Georgia Benkart’s presidency, con- The purpose of the Association for Women in Mathematics is sists of a diverse group of individuals in mathematics and related disciplines with distinguished careers in academia, industry, or government. Through their insights, • to encourage women and girls to breadth of experience, and connections with broad segments of the mathematical study and to have active careers in the mathematical sciences, and community, the Board will seek to increase the effectiveness of AWM, help with fund- • to promote equal opportunity and raising, and contribute to a forward-looking vision for the organization. the equal treatment of women and Members of the Board were selected to represent a broad spectrum of academia girls in the mathematical sciences. and industry. Some have a long history with AWM, and others are new to the orga- nization; all are committed to forwarding our goals. We are pleased to welcome the following Board members: Mary Gray, Chair (American University) Jennifer Chayes (Microsoft Research) Nancy Koppel (Boston University) Irwin Kra (Stony Brook University) Joan Leitzel (University of New Hampshire, Ohio State University) Jill Mesirov (Broad Institute) Linda Ness (Applied Communication Sciences) Richard Schaar (Texas Instruments) IN THIS ISSUE Mary Spilker (Pfizer) Jessica Staddon (Google) 4 AWM Election 14 Benkart Named In addition, the President, Past President (or President Elect) and Executive Noether Lecturer Director of AWM are also members of the Board. -
Math212a1403 the Spectral Theorem for Compact Self-Adjoint Operators
Outline Review of last lecture. The Riesz representation theorem. Bessel's inequality. Self-adjoint transformations. Compact self-adjoint transformations. The spectral theorem for compact self-adjoint operators. Fourier's Fourier series. Math212a1403 The spectral theorem for compact self-adjoint operators. Shlomo Sternberg Sept. 9, 2014 Shlomo Sternberg Math212a1403 The spectral theorem for compact self-adjoint operators. Outline Review of last lecture. The Riesz representation theorem. Bessel's inequality. Self-adjoint transformations. Compact self-adjoint transformations. The spectral theorem for compact self-adjoint operators. Fourier's Fourier series. 1 Review of last lecture. 2 The Riesz representation theorem. 3 Bessel's inequality. 4 Self-adjoint transformations. Non-negative self-adjoint transformations. 5 Compact self-adjoint transformations. 6 The spectral theorem for compact self-adjoint operators. 7 Fourier's Fourier series. Proof by integration by parts. Shlomo Sternberg Math212a1403 The spectral theorem for compact self-adjoint operators. This w is characterized as being the unique element of M which minimizes kv − xk; x 2 M. The idea of the proof was to use the parallelogram law to conclude that if fxng is a sequence of elements of M such that kv − xnk approaches the greatest lower bound of kv − xk; x 2 M then fxng converges to the desired w, The map v 7! w is called orthogonal projection of H onto M and is denoted by πM . Outline Review of last lecture. The Riesz representation theorem. Bessel's inequality. Self-adjoint transformations. Compact self-adjoint transformations. The spectral theorem for compact self-adjoint operators. Fourier's Fourier series. Orthogonal projection onto a complete subspace. -
Hilbert Spaces
C H A P T E R 12 Hilbert Spaces The material to be presented in this chapter is essential for all advanced work in physics and analysis. We have attempted to present several relatively diffi- cult theorems in sufficient detail that they are readily understandable by readers with less background than normally might be required for such results. However, we assume that the reader is quite familiar with the contents of Appendices A and B, and we will frequently refer to results from these appendices. Essentially, this chapter serves as an introduction to the theory of infinite-dimensional vector spaces. Throughout this chapter we let E, F and G denote normed vector spaces over the real or complex number fields only. 12.1 MATHEMATICAL PRELIMINARIES This rather long first section presents the elementary properties of limits and continuous functions. While most of this material properly falls under the heading of analysis, we do not assume that the reader has already had such a course. However, if these topics are familiar, then the reader should briefly scan the theorems of this section now, and return only for details if and when it becomes necessary. For ease of reference, we briefly repeat some of our earlier definitions and results. By a norm on a vector space E, we mean a mapping ˜ ˜: E ‘ ® satis- fying: 619 620 HILBERT SPACES (N1) ˜u˜ ˘ 0 for every u ∞ E and ˜u˜ = 0 if and only if u = 0 (positive definiteness). (N2) ˜cu˜ = \c\ ˜u˜ for every u ∞ E and c ∞ F. (N3) ˜u + v˜ ¯ ˜u˜ + ˜v˜ (triangle inequality). -
On the Kazhdan-Lusztig Polynomials for Affine Weyl Groups
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector ADVANCES IN MATHEMATICS 55, 103-130 (1985) On the Kazhdan-Lusztig Polynomials for Affine Weyl Groups SHIN-ICHI KATO * Department of Mathematics, Faculty of Science. University of Tokyo, Hongo, Tokyo, 113 Japan In 191, Kazhdan and Lusztig associated to a Coxeter group W certain polynomials P,,, (y, w E W). In the case where W is a Weyl group, these polynomials (or their values at 1, P,,,,(l)) give multiplicities of irreducible constituents in the Jordan-Holder series of Verma modules for a complex semisimple Lie algebra corresponding to W (see [ 3,4]). Also, in the case where W is an affine Weyl group, it has been conjectured by Lusztig [lo] that these polynomials or their values P,,,(l) enter the character formula of irreducible rational representations for a semisimple algebraic group (corresponding to W) over an algebraically closed field of prime charac- teristic. The purpose of this paper is to give some formula (4.2, see also 4.10) concerning the Kazhdan-Lusztig polynomials P,,, for affine Weyl groups which appear in this Lusztig conjecture; namely P,,, for y, w “dominant.” (This is a generalization of the q-analogue of Kostant’s weight multiplicity formula in [8].) As a corollary of the formula, we shall show that the Lusztig conjecture above is consistent with the Steinberg tensor product theorem [ 15 1. To be more precise, let P be the weight lattice of a root system R (II) R ‘, a positive root system). -
Introduction to Coherent Quantization
Introduction to coherent quantization Arnold Neumaier Fakult¨at f¨ur Mathematik, Universit¨at Wien Oskar-Morgenstern-Platz 1, A-1090 Wien, Austria email: [email protected] WWW: http://www.mat.univie.ac.at/~neum Arash Ghaani Farashahi Department of Pure Mathematics, School of Mathematics Faculty of Mathematics and Physical Sciences, University of Leeds Leeds, LS2 9JT, United Kingdom email: [email protected] email: [email protected] WWW: https://sites.google.com/site/ghaanifarashahi/ August 16, 2021 arXiv:1804.01400v2 Abstract. This paper is one of a series of papers on coherent spaces and their appli- cations, defined in the recent book ’Coherent Quantum Mechanics’ by the first author. The paper studies coherent quantization – the way operators in the quantum space of a coherent space can be studied in terms of objects defined directly on the coherent space. The results may be viewed as a generalization of geometric quantization, including the non-unitary case. Care has been taken to work with the weakest meaningful topology and to assume as little as possible about the spaces and groups involved. Unlike in geometric quantization, the groups are not assumed to be compact, locally compact, or finite-dimensional. This implies that the setting can be successfully applied to quantum field theory, where the groups involved satisfy none of these properties. The paper characterizes linear operators acting on the quantum space of a coherent space in terms of their coherent matrix elements. Coherent maps and associated symmetry groups for coherent spaces are introduced, and formulas are derived for the quantization arXiv:1804.01400v3 [math-ph] 16 Aug 2021 of coherent maps. -
Complex Symmetric Operators and Applications
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 358, Number 3, Pages 1285–1315 S 0002-9947(05)03742-6 Article electronically published on May 26, 2005 COMPLEX SYMMETRIC OPERATORS AND APPLICATIONS STEPHAN RAMON GARCIA AND MIHAI PUTINAR Abstract. We study a few classes of Hilbert space operators whose matrix representations are complex symmetric with respect to a preferred orthonormal basis. The existence of this additional symmetry has notable implications and, in particular, it explains from a unifying point of view some classical results. We explore applications of this symmetry to Jordan canonical models, self- adjoint extensions of symmetric operators, rank-one unitary perturbations of the compressed shift, Darlington synthesis and matrix-valued inner functions, and free bounded analytic interpolation in the disk. 1. Introduction The simultaneous diagonalization and spectral analysis of two Hermitian forms goes back to the origins of Hilbert space theory and, in particular, to the spectral theorem for self-adjoint operators. Even today the language of forms is often used when dealing with unbounded operators (see [31, 43]). The similar theory for a Hermitian and a nondefinite sesquilinear form was motivated by the Hamiltonian mechanics of strings or continuous media models; from a mathematical point of view this theory leads to Hilbert spaces with a complex linear J-involution and the associated theory of J-unitary and J-contractive operators (see for instance [19, 31, 41]). Less studied, but not less important, is the simultaneous analysis of a pair consisting of a Hermitian form and a bilinear form; this framework has appeared quite early in function theory ([9, 48, 51]), functional analysis ([37]), and elasticity theory ([17]). -
5. SPINORS 5.1. Prologue. 5.2. Clifford Algebras and Their
5. SPINORS 5.1. Prologue. 5.2. Clifford algebras and their representations. 5.3. Spin groups and spin representations. 5.4. Reality of spin modules. 5.5. Pairings and morphisms. 5.6. Image of the real spin group in the complex spin module. 5.7. Appendix: Some properties of the orthogonal groups. 5.1. Prologue. E. Cartan classified simple Lie algebras over C in his thesis in 1894, a classification that is nowadays done through the (Dynkin) diagrams. In 1913 he classified the irreducible finite dimensional representations of these algebras1. For any simple Lie algebra g Cartan's construction yields an irreducible representation canonically associated to each node of its diagram. These are the so-called fun- damental representations in terms of which all irreducible representations of g can be constructed using and subrepresentations. Indeed, if πj(1 j `) are the ⊗ ≤ ≤ fundamental representations and mj are integers 0, and if vj is the highest vector ≥ of πj, then the subrepresentation of m1 m` π = π⊗ ::: π⊗ 1 ⊗ ⊗ ` generated by m1 m` v = v⊗ ::: v⊗ 1 ⊗ ⊗ ` is irreducible with highest vector v, and every irreducible module is obtained in this manner uniquely. As is well-known, Harish-Chandra and Chevalley (independently) developed around 1950 a general method for obtaining the irreducible representa- tions without relying on case by case considerations as Cartan did. `+1 j If g = sl(` + 1) and V = C , then the fundamental module πj is Λ (V ), and all irreducible modules can be obtained by decomposing the tensor algebra over the 1 defining representation V . Similarly, for the symplectic Lie algebras, the decomposi- tion of the tensors over the defining representation gives all the irreducible modules. -
Appendix a Linear Operators in Banach Spaces
(5) Appendix A Linear operators in Banach Spaces The goal of this appendix is to recall fundamental results on linear operators in Banach and Hilbert spaces; see, e.g., Aubin [15], Brezis [56], Lax [166], Rudin [206], Yosida [251], Zeidler [252] for further reading. The results collected in this appendix provide a theoretical framework for the mathematical analysis of the finite element method. A.1 Banach and Hilbert spaces To stay general, we consider complex vector spaces, i.e., vector spaces over the field C of complex numbers. The case of real vector spaces is recovered by replacing the field C by R, by removing the real part symbol ( ) and the complex conjugate symbol , and by interpreting the symbol asℜ the· absolute value instead of the modulus.· Some additional minor adaptations|·| (regarding duality and inner products) are indicated whenever relevant. A.1.1 Banach spaces Let V be a complex vector space. Definition A.1 (Norm). A norm on V is a map V : V [0, ) satisfy- ing the following three properties: k·k → ∞ (i) Definiteness: v =0 v =0. k kV ⇐⇒ (ii) 1-homogeneity: λv V = λ v V , for all λ C and all v V . (iii) Triangle inequality:k k v + |w|k k v + w ∈ , for all v, w∈ V . k kV ≤k kV k kV ∈ A seminorm on V is a map : V [0, ) satisfying only (ii) and (iii). |·|V → ∞ Definition A.2 (Banach space). Equip V with a norm V ; then V is called a Banach space if every Cauchy sequence (with respectk·k to the metric d(x, y)= x y ) in V has a limit in V . -
Some New Directions in Teichmüller Theory
Some New Directions in Teichmu¨ller Theory by Mark Greenfield A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mathematics) in The University of Michigan 2021 Doctoral Committee: Professor Lizhen Ji, Chair Professor Christine Aidala Professor Richard Canary Associate Professor Sarah Koch Professor Ralf Spatzier Mark Greenfield [email protected] ORCID iD: 0000-0001-7676-0557 c Mark Greenfield 2021 © All Rights Reserved ACKNOWLEDGEMENTS First and foremost I am grateful to my advisor, Lizhen Ji, for supporting me throughout my graduate career. He has introduced me to many different areas of mathematics, and always had confidence in my ability to make meaningful contri- butions. I would like to thank my doctoral committee for working with me through this process during a pandemic. I am indebted to many professors at the Univer- sity of Michigan, especially Sarah Koch and Richard Canary, for numerous helpful conversations. Dmitri Gekhtman deserves special mention, as Chapter V would not exist without our fruitful collaboration and friendship. I would like to acknowledge Bradley Zykoski for many fascinating mathematical and non-mathematical discus- sions over the years, and for providing helpful comments on early drafts of this thesis. There are numerous others who deserve to be listed here, but I hope a gen- eral expression of gratitude to the wonderful people in the department and beyond, including but not limited to my fellow graduate students, postdoctoral scholars, ad- ministrative staff, lecturers, friends from my undergraduate years, as well as my students, will suffice. Most of this work was completed while I was funded by the National Science Foundation Graduate Research Fellowship Program under Grant No. -
Rigged Hilbert Space Theory for Hermitian and Quasi-Hermitian Observables
Rigged Hilbert Space Theory for Hermitian and Quasi-Hermitian Observables Bachelor Thesis: Mathematics and Physics July 2019 Student: Lars van der Laan Faculty: University of Groningen FSE Primary Advisor Mathematics: Prof. A. Sterk Primary Advisor Physics: Prof. D. Boer Abstract In this thesis, we study whether the rigged Hilbert space formulation of Quantum Mechanics can be extended to quasi-hermitian operators. The necessary mathematics to understand rigged Hilbert spaces and their representations is presented. Using the mathematics, we give rigorous meaning to Dirac’s kets and bras, using the momentum operator as an example. The mathe- matical theory culminates with the nuclear spectral theorem(Gelfand-Maurin) which guarantees an eigenket decomposition for the wave functions. Next, we illustrate the theory by applying it to the quantum system defined by a potential barrier. We then introduce non-hermitian oper- ators of interest in Quantum Mechanics, specifically PT-symmetric Hamiltonians. It is known that PT-symmetric Hamiltonians are necessarily pseudo-hermitian. We restrict our attention to a subclass of pseudo-hermitian operators, the quasi-hermitian operators, and present an extension of the nuclear spectral theorem. The extension, under certain conditions on the quasi-hermitian operator and the metric operator, guarantees an eigenket decomposition for a dense subset of the Hilbert space on which the operator is defined. We discuss how the extension may help put quasi-hermitian quantum mechanics on a rigorous footing and discuss its drawbacks and possible extensions. Lastly, we present conditions under which a spectral decomposition of quasi-hermitian operators with respect to an operator-valued measure exists. This is an extension of the spectral decomposition of self-adjoint operators with respect to a projection-valued measure. -
C –Algebras (A, K·Ka, ∗) and (B, K·Kb, ∗), We Want to Construct C∗–Norms on the Algebraic Tensor Product a ⊗ B
C∗–Algebras Christian B¨ar1 and Christian Becker2 1 Institut f¨urMathematik, Universit¨atPotsdam, [email protected] 2 Institut f¨urMathematik, Universit¨atPotsdam, [email protected] In this chapter we will collect those basic concepts and facts related to C∗– algebras that will be needed later on. We give complete proofs. In Sections 1, 2, 3, and 6 we follow closely the presentation in [1]. For more information on C∗–algebras see e. g. [2, 4, 5, 7, 8]. 1 Basic definitions Definition 1. Let A be an associative C-algebra, let k · k be a norm on the C-vector space A, and let ∗ : A → A, a 7→ a∗, be a C-antilinear map. Then (A, k · k, ∗) is called a C∗–algebra, if (A, k · k) is complete and we have for all a, b ∈ A: 1. a∗∗ = a (∗ is an involution) 2. (ab)∗ = b∗a∗ 3. kabk ≤ kak kbk (submultiplicativity) 4. ka∗k = kak (∗ is an isometry) 5. ka∗ak = kak2 (C∗–property). A (not necessarily complete) norm on A satisfying conditions (1) to (5) is called a C∗–norm. Remark 1. Note that the Axioms 1–5 are not independent. For instance, Ax- iom 4 can easily be deduced from Axioms 1,3 and 5. Example 1. Let (H, (·, ·)) be a complex Hilbert space, let A = L(H) be the algebra of bounded operators on H. Let k · k be the operator norm, i. e., kak := sup kaxk. x∈H kxk=1 Let a∗ be the operator adjoint to a, i. e., 2 Christian B¨arand Christian Becker (ax, y) = (x, a∗y) for all x, y ∈ H. -
Program of the Sessions Boston, Massachusetts, January 4–7, 2012
Program of the Sessions Boston, Massachusetts, January 4–7, 2012 AMS Short Course on Random Fields and Monday, January 2 Random Geometry, Part I 8:00 AM –5:00PM Back Bay Ballroom A, 2nd Floor, Sheraton Organizers: Robert Adler, Technion - Israel Institute of Technology AMS Short Course on Computing with Elliptic Jonathan Taylor,Stanford Curves Using Sage, Part I University 8:00AM Registration, Back Bay Ballroom D, 8:00 AM –5:00PM Back Bay Ballroom Sheraton. B, 2nd Floor, Sheraton 9:00AM Gaussian fields and Kac-Rice formulae. (3) Robert Adler, Technion Organizer: William Stein,Universityof 10:15AM Break. Washington 10:45AM The Gaussian kinematic fomula. 8:00AM Registration, Back Bay Ballroom D, (4) Jonathan Taylor, Stanford University Sheraton. 2:00PM Gaussian models in fMRI image analysis. 9:00AM Introduction to Python and Sage. (5) Jonathan Taylor, Stanford University (1) Kiran Kedlaya, University of California 3:15PM Break. San Diego 3:45PM Tutorial session. 10:30AM Break. 11:00AM Question and Answer Session: How do I MAA Short Course on Discrete and do XXX in Sage? Computational Geometry, Part I 2:00PM Computing with elliptic curves over finite (2) fields using Sage. 8:00 AM –5:00PM Back Bay Ballroom Ken Ribet, University of California, C, 2nd Floor, Sheraton Berkeley Organizers: Satyan L. Devadoss, 3:30PM Break. Williams College 4:00PM Problem Session: Try to solve a problem Joseph O’Rourke,Smith yourself using Sage. College The time limit for each AMS contributed paper in the sessions meeting will be found in Volume 33, Issue 1 of Abstracts is ten minutes.