Complex Symmetric Operators and Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Volterra-Choquet Nonlinear Operators
Volterra-Choquet nonlinear operators Sorin G. Gal Department of Mathematics and Computer Science, University of Oradea, Universitatii Street No.1, 410087, Oradea, Romania E-mail: [email protected] and Academy of Romanian Scientists, Splaiul Independentei nr. 54 050094 Bucharest, Romania Abstract In this paper we study to what extend some properties of the classical linear Volterra operators could be transferred to the nonlinear Volterra- Choquet operators, obtained by replacing the classical linear integral with respect to the Lebesgue measure, by the nonlinear Choquet integral with respect to a nonadditive set function. Compactness, Lipschitz and cyclic- ity properties are studied. MSC(2010): 47H30, 28A12, 28A25. Keywords and phrases: Choquet integral, monotone, submodular and continuous from below set function, Choquet Lp-space, distorted Lebesgue mea- sures, Volterra-Choquet nonlinear operator, compactness, Lipschitz properties, cyclicity. 1 Introduction Inspired by the electrostatic capacity, G. Choquet has introduced in [5] (see also arXiv:2003.00004v1 [math.CA] 28 Feb 2020 [6]) a concept of integral with respect to a non-additive set function which, in the case when the underlying set function is a σ-additive measure, coincides with the Lebesgue integral. Choquet integral is proved to be a powerful and useful tool in decision making under risk and uncertainty, finance, economics, insurance, pattern recognition, etc (see, e.g., [37] and [38] as well as the references therein). Many new interesting results were obtained as analogs in the framework of Choquet integral of certain known results for the Lebesgue integral. In this sense, we can mention here, for example, the contributions to function spaces theory in [4], to potential theory in [1], to approximation theory in [13]-[17] and to integral equations theory in [18], [19]. -
Functional Analysis Lecture Notes Chapter 2. Operators on Hilbert Spaces
FUNCTIONAL ANALYSIS LECTURE NOTES CHAPTER 2. OPERATORS ON HILBERT SPACES CHRISTOPHER HEIL 1. Elementary Properties and Examples First recall the basic definitions regarding operators. Definition 1.1 (Continuous and Bounded Operators). Let X, Y be normed linear spaces, and let L: X Y be a linear operator. ! (a) L is continuous at a point f X if f f in X implies Lf Lf in Y . 2 n ! n ! (b) L is continuous if it is continuous at every point, i.e., if fn f in X implies Lfn Lf in Y for every f. ! ! (c) L is bounded if there exists a finite K 0 such that ≥ f X; Lf K f : 8 2 k k ≤ k k Note that Lf is the norm of Lf in Y , while f is the norm of f in X. k k k k (d) The operator norm of L is L = sup Lf : k k kfk=1 k k (e) We let (X; Y ) denote the set of all bounded linear operators mapping X into Y , i.e., B (X; Y ) = L: X Y : L is bounded and linear : B f ! g If X = Y = X then we write (X) = (X; X). B B (f) If Y = F then we say that L is a functional. The set of all bounded linear functionals on X is the dual space of X, and is denoted X0 = (X; F) = L: X F : L is bounded and linear : B f ! g We saw in Chapter 1 that, for a linear operator, boundedness and continuity are equivalent. -
THE SCHR¨ODINGER EQUATION AS a VOLTERRA PROBLEM a Thesis
THE SCHRODINGER¨ EQUATION AS A VOLTERRA PROBLEM A Thesis by FERNANDO DANIEL MERA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 2011 Major Subject: Mathematics THE SCHRODINGER¨ EQUATION AS A VOLTERRA PROBLEM A Thesis by FERNANDO DANIEL MERA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Stephen Fulling Committee Members, Peter Kuchment Christopher Pope Head of Department, Al Boggess May 2011 Major Subject: Mathematics iii ABSTRACT The Schr¨odingerEquation as a Volterra Problem. (May 2011) Fernando Daniel Mera, B.S., Texas A&M University Chair of Advisory Committee: Stephen Fulling The objective of the thesis is to treat the Schr¨odinger equation in parallel with a standard treatment of the heat equation. In the books of the Rubensteins and Kress, the heat equation initial value problem is converted into a Volterra integral equation of the second kind, and then the Picard algorithm is used to find the exact solution of the integral equation. Similarly, the Schr¨odingerequation boundary initial value problem can be turned into a Volterra integral equation. We follow the books of the Rubinsteins and Kress to show for the Schr¨odinger equation similar results to those for the heat equation. The thesis proves that the Schr¨odingerequation with a source function does indeed have a unique solution. The Poisson integral formula with the Schr¨odingerkernel is shown to hold in the Abel summable sense. -
Spectral Properties of Volterra-Type Integral Operators on Fock–Sobolev Spaces
J. Korean Math. Soc. 54 (2017), No. 6, pp. 1801{1816 https://doi.org/10.4134/JKMS.j160671 pISSN: 0304-9914 / eISSN: 2234-3008 SPECTRAL PROPERTIES OF VOLTERRA-TYPE INTEGRAL OPERATORS ON FOCK{SOBOLEV SPACES Tesfa Mengestie Abstract. We study some spectral properties of Volterra-type integral operators Vg and Ig with holomorphic symbol g on the Fock{Sobolev p p spaces F . We showed that Vg is bounded on F if and only if g m m is a complex polynomial of degree not exceeding two, while compactness of Vg is described by degree of g being not bigger than one. We also identified all those positive numbers p for which the operator Vg belongs to the Schatten Sp classes. Finally, we characterize the spectrum of Vg in terms of a closed disk of radius twice the coefficient of the highest degree term in a polynomial expansion of g. 1. Introduction The boundedness and compactness properties of integral operators stand among the very well studied objects in operator related function-theories. They have been studied for a broad class of operators on various spaces of holomor- phic functions including the Hardy spaces [1, 2, 18], Bergman spaces [19{21], Fock spaces [6, 7, 11, 13, 14, 16, 17], Dirichlet spaces [3, 9, 10], Model spaces [15], and logarithmic Bloch spaces [24]. Yet, they still constitute an active area of research because of their multifaceted implications. Typical examples of op- erators subjected to this phenomena are the Volterra-type integral operator Vg and its companion Ig, defined by Z z Z z 0 0 Vgf(z) = f(w)g (w)dw and Igf(z) = f (w)g(w)dw; 0 0 where g is a holomorphic symbol. -
Math212a1403 the Spectral Theorem for Compact Self-Adjoint Operators
Outline Review of last lecture. The Riesz representation theorem. Bessel's inequality. Self-adjoint transformations. Compact self-adjoint transformations. The spectral theorem for compact self-adjoint operators. Fourier's Fourier series. Math212a1403 The spectral theorem for compact self-adjoint operators. Shlomo Sternberg Sept. 9, 2014 Shlomo Sternberg Math212a1403 The spectral theorem for compact self-adjoint operators. Outline Review of last lecture. The Riesz representation theorem. Bessel's inequality. Self-adjoint transformations. Compact self-adjoint transformations. The spectral theorem for compact self-adjoint operators. Fourier's Fourier series. 1 Review of last lecture. 2 The Riesz representation theorem. 3 Bessel's inequality. 4 Self-adjoint transformations. Non-negative self-adjoint transformations. 5 Compact self-adjoint transformations. 6 The spectral theorem for compact self-adjoint operators. 7 Fourier's Fourier series. Proof by integration by parts. Shlomo Sternberg Math212a1403 The spectral theorem for compact self-adjoint operators. This w is characterized as being the unique element of M which minimizes kv − xk; x 2 M. The idea of the proof was to use the parallelogram law to conclude that if fxng is a sequence of elements of M such that kv − xnk approaches the greatest lower bound of kv − xk; x 2 M then fxng converges to the desired w, The map v 7! w is called orthogonal projection of H onto M and is denoted by πM . Outline Review of last lecture. The Riesz representation theorem. Bessel's inequality. Self-adjoint transformations. Compact self-adjoint transformations. The spectral theorem for compact self-adjoint operators. Fourier's Fourier series. Orthogonal projection onto a complete subspace. -
Convergence of the Neumann Series for the Schrodinger Equation and General Volterra Equations in Banach Spaces
Convergence of the Neumann series for the Schr¨odinger equation and general Volterra equations in Banach spaces Fernando D. Mera 1 1 Department of Mathematics, Texas A&M University, College Station, TX, 77843-3368 USA Abstract. The objective of the article is to treat the Schr¨odinger equation in parallel with a standard treatment of the heat equation. In the mathematics literature, the heat equation initial value problem is converted into a Volterra integral equation of the second kind, and then the Picard algorithm is used to find the exact solution of the integral equation. The Poisson Integral theorem shows that the Poisson integral formula with the Schr¨odinger kernel holds in the Abel summable sense. Furthermore, the Source Integral theorem provides the solution of the initial value problem for the nonhomogeneous Schr¨odinger equation. Folland’s proof of the Generalized Young’s inequality is used as a model for the proof of the Lp lemma. Basically the Generalized Young’s theorem is in a more general form where the functions take values in an arbitrary Banach space. The L1, Lp and the L∞ lemmas are inductively applied to the proofs of their respective Volterra theorems in order to prove that the Neumman series converge with respect to the topology Lp(I; B), where I is a finite time interval, B is an arbitrary Banach space, and 1 ≤ p ≤ ∞. The Picard method of successive approximations is to be used to construct an approximate solution which should approach the exact solution as n → ∞. To prove convergence, Volterra kernels are introduced in arbitrary Banach spaces. -
Hilbert Spaces
C H A P T E R 12 Hilbert Spaces The material to be presented in this chapter is essential for all advanced work in physics and analysis. We have attempted to present several relatively diffi- cult theorems in sufficient detail that they are readily understandable by readers with less background than normally might be required for such results. However, we assume that the reader is quite familiar with the contents of Appendices A and B, and we will frequently refer to results from these appendices. Essentially, this chapter serves as an introduction to the theory of infinite-dimensional vector spaces. Throughout this chapter we let E, F and G denote normed vector spaces over the real or complex number fields only. 12.1 MATHEMATICAL PRELIMINARIES This rather long first section presents the elementary properties of limits and continuous functions. While most of this material properly falls under the heading of analysis, we do not assume that the reader has already had such a course. However, if these topics are familiar, then the reader should briefly scan the theorems of this section now, and return only for details if and when it becomes necessary. For ease of reference, we briefly repeat some of our earlier definitions and results. By a norm on a vector space E, we mean a mapping ˜ ˜: E ‘ ® satis- fying: 619 620 HILBERT SPACES (N1) ˜u˜ ˘ 0 for every u ∞ E and ˜u˜ = 0 if and only if u = 0 (positive definiteness). (N2) ˜cu˜ = \c\ ˜u˜ for every u ∞ E and c ∞ F. (N3) ˜u + v˜ ¯ ˜u˜ + ˜v˜ (triangle inequality). -
Bounded Operators
(April 3, 2019) 09a. Operators on Hilbert spaces Paul Garrett [email protected] http:=/www.math.umn.edu/egarrett/ [This document is http:=/www.math.umn.edu/egarrett/m/real/notes 2018-19/09a-ops on Hsp.pdf] 1. Boundedness, continuity, operator norms 2. Adjoints 3. Stable subspaces and complements 4. Spectrum, eigenvalues 5. Generalities on spectra 6. Positive examples 7. Cautionary examples 8. Weyl's criterion for continuous spectrum 1. Boundedness, continuity, operator norms A linear (not necessarily continuous) map T : X ! Y from one Hilbert space to another is bounded if, for all " > 0, there is δ > 0 such that jT xjY < " for all x 2 X with jxjX < δ. [1.1] Proposition: For a linear, not necessarily continuous, map T : X ! Y of Hilbert spaces, the following three conditions are equivalent: (i) T is continuous (ii) T is continuous at 0 (iii) T is bounded 0 Proof: For T continuous as 0, given " > 0 and x 2 X, there is small enough δ > 0 such that jT x − 0jY < " 0 00 for jx − 0jX < δ. For jx − xjX < δ, using the linearity, 00 00 jT x − T xjX = jT (x − x) − 0jX < δ That is, continuity at 0 implies continuity. Since jxj = jx − 0j, continuity at 0 is immediately equivalent to boundedness. === [1.2] Definition: The kernel ker T of a linear (not necessarily continuous) linear map T : X ! Y from one Hilbert space to another is ker T = fx 2 X : T x = 0 2 Y g [1.3] Proposition: The kernel of a continuous linear map T : X ! Y is closed. -
A Volterra-Type Integration Operator on Fock Spaces
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 140, Number 12, December 2012, Pages 4247–4257 S 0002-9939(2012)11541-2 Article electronically published on April 18, 2012 A VOLTERRA-TYPE INTEGRATION OPERATOR ON FOCK SPACES OLIVIA CONSTANTIN (Communicated by Richard Rochberg) Abstract. We study certain spectral properties and the invariant subspaces for some classes of integration operators of Volterra type on the Fock space. 1. Introduction For analytic functions f,g we consider the Volterra-type integration operator given by z Tgf(z)= f(ζ)g (ζ) dζ. 0 The boundedness and compactness, as well as some spectral properties (such as Schatten class membership) of Tg acting on various spaces of analytic functions of the unit disc D in C have been extensively investigated (see [2, 6] for Hardy spaces, [3, 5, 8, 17, 19] for weighted Bergman spaces, and [9, 10] for Dirichlet spaces, or the surveys [1, 20] and the references therein). Furthermore, the spectrum of Tg on weighted Bergman spaces was recently characterized in [3]. p In this paper we consider the operator Tg acting on the Fock spaces F ,p>0 (here, the symbol g is an entire function with g(0) = 0). Recall that, for p>0, the Fock space F p consists of entire functions f for which 1 | |2 p p − z p fp = f(z)e 2 dA(z) < ∞. 2π C The boundedness and compactness of Tg follow by classical methods, and we include a sketch of their proofs in Section 3 for the sake of completeness. It turns out that, p q if p ≤ q, Tg : F →F is bounded if and only if the symbol g is a polynomial of degree ≤ 2, while the necessary and sufficient condition for compactness is: g is a polynomial of degree ≤ 1. -
On the Kazhdan-Lusztig Polynomials for Affine Weyl Groups
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector ADVANCES IN MATHEMATICS 55, 103-130 (1985) On the Kazhdan-Lusztig Polynomials for Affine Weyl Groups SHIN-ICHI KATO * Department of Mathematics, Faculty of Science. University of Tokyo, Hongo, Tokyo, 113 Japan In 191, Kazhdan and Lusztig associated to a Coxeter group W certain polynomials P,,, (y, w E W). In the case where W is a Weyl group, these polynomials (or their values at 1, P,,,,(l)) give multiplicities of irreducible constituents in the Jordan-Holder series of Verma modules for a complex semisimple Lie algebra corresponding to W (see [ 3,4]). Also, in the case where W is an affine Weyl group, it has been conjectured by Lusztig [lo] that these polynomials or their values P,,,(l) enter the character formula of irreducible rational representations for a semisimple algebraic group (corresponding to W) over an algebraically closed field of prime charac- teristic. The purpose of this paper is to give some formula (4.2, see also 4.10) concerning the Kazhdan-Lusztig polynomials P,,, for affine Weyl groups which appear in this Lusztig conjecture; namely P,,, for y, w “dominant.” (This is a generalization of the q-analogue of Kostant’s weight multiplicity formula in [8].) As a corollary of the formula, we shall show that the Lusztig conjecture above is consistent with the Steinberg tensor product theorem [ 15 1. To be more precise, let P be the weight lattice of a root system R (II) R ‘, a positive root system). -
Introduction to Coherent Quantization
Introduction to coherent quantization Arnold Neumaier Fakult¨at f¨ur Mathematik, Universit¨at Wien Oskar-Morgenstern-Platz 1, A-1090 Wien, Austria email: [email protected] WWW: http://www.mat.univie.ac.at/~neum Arash Ghaani Farashahi Department of Pure Mathematics, School of Mathematics Faculty of Mathematics and Physical Sciences, University of Leeds Leeds, LS2 9JT, United Kingdom email: [email protected] email: [email protected] WWW: https://sites.google.com/site/ghaanifarashahi/ August 16, 2021 arXiv:1804.01400v2 Abstract. This paper is one of a series of papers on coherent spaces and their appli- cations, defined in the recent book ’Coherent Quantum Mechanics’ by the first author. The paper studies coherent quantization – the way operators in the quantum space of a coherent space can be studied in terms of objects defined directly on the coherent space. The results may be viewed as a generalization of geometric quantization, including the non-unitary case. Care has been taken to work with the weakest meaningful topology and to assume as little as possible about the spaces and groups involved. Unlike in geometric quantization, the groups are not assumed to be compact, locally compact, or finite-dimensional. This implies that the setting can be successfully applied to quantum field theory, where the groups involved satisfy none of these properties. The paper characterizes linear operators acting on the quantum space of a coherent space in terms of their coherent matrix elements. Coherent maps and associated symmetry groups for coherent spaces are introduced, and formulas are derived for the quantization arXiv:1804.01400v3 [math-ph] 16 Aug 2021 of coherent maps. -
5. SPINORS 5.1. Prologue. 5.2. Clifford Algebras and Their
5. SPINORS 5.1. Prologue. 5.2. Clifford algebras and their representations. 5.3. Spin groups and spin representations. 5.4. Reality of spin modules. 5.5. Pairings and morphisms. 5.6. Image of the real spin group in the complex spin module. 5.7. Appendix: Some properties of the orthogonal groups. 5.1. Prologue. E. Cartan classified simple Lie algebras over C in his thesis in 1894, a classification that is nowadays done through the (Dynkin) diagrams. In 1913 he classified the irreducible finite dimensional representations of these algebras1. For any simple Lie algebra g Cartan's construction yields an irreducible representation canonically associated to each node of its diagram. These are the so-called fun- damental representations in terms of which all irreducible representations of g can be constructed using and subrepresentations. Indeed, if πj(1 j `) are the ⊗ ≤ ≤ fundamental representations and mj are integers 0, and if vj is the highest vector ≥ of πj, then the subrepresentation of m1 m` π = π⊗ ::: π⊗ 1 ⊗ ⊗ ` generated by m1 m` v = v⊗ ::: v⊗ 1 ⊗ ⊗ ` is irreducible with highest vector v, and every irreducible module is obtained in this manner uniquely. As is well-known, Harish-Chandra and Chevalley (independently) developed around 1950 a general method for obtaining the irreducible representa- tions without relying on case by case considerations as Cartan did. `+1 j If g = sl(` + 1) and V = C , then the fundamental module πj is Λ (V ), and all irreducible modules can be obtained by decomposing the tensor algebra over the 1 defining representation V . Similarly, for the symplectic Lie algebras, the decomposi- tion of the tensors over the defining representation gives all the irreducible modules.