(April 3, 2019) 09a. Operators on Hilbert spaces Paul Garrett
[email protected] http:=/www.math.umn.edu/egarrett/ [This document is http:=/www.math.umn.edu/egarrett/m/real/notes 2018-19/09a-ops on Hsp.pdf] 1. Boundedness, continuity, operator norms 2. Adjoints 3. Stable subspaces and complements 4. Spectrum, eigenvalues 5. Generalities on spectra 6. Positive examples 7. Cautionary examples 8. Weyl's criterion for continuous spectrum 1. Boundedness, continuity, operator norms A linear (not necessarily continuous) map T : X ! Y from one Hilbert space to another is bounded if, for all " > 0, there is δ > 0 such that jT xjY < " for all x 2 X with jxjX < δ. [1.1] Proposition: For a linear, not necessarily continuous, map T : X ! Y of Hilbert spaces, the following three conditions are equivalent: (i) T is continuous (ii) T is continuous at 0 (iii) T is bounded 0 Proof: For T continuous as 0, given " > 0 and x 2 X, there is small enough δ > 0 such that jT x − 0jY < " 0 00 for jx − 0jX < δ. For jx − xjX < δ, using the linearity, 00 00 jT x − T xjX = jT (x − x) − 0jX < δ That is, continuity at 0 implies continuity. Since jxj = jx − 0j, continuity at 0 is immediately equivalent to boundedness. === [1.2] Definition: The kernel ker T of a linear (not necessarily continuous) linear map T : X ! Y from one Hilbert space to another is ker T = fx 2 X : T x = 0 2 Y g [1.3] Proposition: The kernel of a continuous linear map T : X ! Y is closed.