5. SPINORS 5.1. Prologue. 5.2. Clifford Algebras and Their
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Math 651 Homework 1 - Algebras and Groups Due 2/22/2013
Math 651 Homework 1 - Algebras and Groups Due 2/22/2013 1) Consider the Lie Group SU(2), the group of 2 × 2 complex matrices A T with A A = I and det(A) = 1. The underlying set is z −w jzj2 + jwj2 = 1 (1) w z with the standard S3 topology. The usual basis for su(2) is 0 i 0 −1 i 0 X = Y = Z = (2) i 0 1 0 0 −i (which are each i times the Pauli matrices: X = iσx, etc.). a) Show this is the algebra of purely imaginary quaternions, under the commutator bracket. b) Extend X to a left-invariant field and Y to a right-invariant field, and show by computation that the Lie bracket between them is zero. c) Extending X, Y , Z to global left-invariant vector fields, give SU(2) the metric g(X; X) = g(Y; Y ) = g(Z; Z) = 1 and all other inner products zero. Show this is a bi-invariant metric. d) Pick > 0 and set g(X; X) = 2, leaving g(Y; Y ) = g(Z; Z) = 1. Show this is left-invariant but not bi-invariant. p 2) The realification of an n × n complex matrix A + −1B is its assignment it to the 2n × 2n matrix A −B (3) BA Any n × n quaternionic matrix can be written A + Bk where A and B are complex matrices. Its complexification is the 2n × 2n complex matrix A −B (4) B A a) Show that the realification of complex matrices and complexifica- tion of quaternionic matrices are algebra homomorphisms. -
Equivalence of A-Approximate Continuity for Self-Adjoint
Equivalence of A-Approximate Continuity for Self-Adjoint Expansive Linear Maps a,1 b, ,2 Sz. Gy. R´ev´esz , A. San Antol´ın ∗ aA. R´enyi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, P.O.B. 127, 1364 Hungary bDepartamento de Matem´aticas, Universidad Aut´onoma de Madrid, 28049 Madrid, Spain Abstract Let A : Rd Rd, d 1, be an expansive linear map. The notion of A-approximate −→ ≥ continuity was recently used to give a characterization of scaling functions in a multiresolution analysis (MRA). The definition of A-approximate continuity at a point x – or, equivalently, the definition of the family of sets having x as point of A-density – depend on the expansive linear map A. The aim of the present paper is to characterize those self-adjoint expansive linear maps A , A : Rd Rd for which 1 2 → the respective concepts of Aµ-approximate continuity (µ = 1, 2) coincide. These we apply to analyze the equivalence among dilation matrices for a construction of systems of MRA. In particular, we give a full description for the equivalence class of the dyadic dilation matrix among all self-adjoint expansive maps. If the so-called “four exponentials conjecture” of algebraic number theory holds true, then a similar full description follows even for general self-adjoint expansive linear maps, too. arXiv:math/0703349v2 [math.CA] 7 Sep 2007 Key words: A-approximate continuity, multiresolution analysis, point of A-density, self-adjoint expansive linear map. 1 Supported in part in the framework of the Hungarian-Spanish Scientific and Technological Governmental Cooperation, Project # E-38/04. -
INTEGER POINTS and THEIR ORTHOGONAL LATTICES 2 to Remove the Congruence Condition
INTEGER POINTS ON SPHERES AND THEIR ORTHOGONAL LATTICES MENNY AKA, MANFRED EINSIEDLER, AND URI SHAPIRA (WITH AN APPENDIX BY RUIXIANG ZHANG) Abstract. Linnik proved in the late 1950’s the equidistribution of in- teger points on large spheres under a congruence condition. The congru- ence condition was lifted in 1988 by Duke (building on a break-through by Iwaniec) using completely different techniques. We conjecture that this equidistribution result also extends to the pairs consisting of a vector on the sphere and the shape of the lattice in its orthogonal complement. We use a joining result for higher rank diagonalizable actions to obtain this conjecture under an additional congruence condition. 1. Introduction A theorem of Legendre, whose complete proof was given by Gauss in [Gau86], asserts that an integer D can be written as a sum of three squares if and only if D is not of the form 4m(8k + 7) for some m, k N. Let D = D N : D 0, 4, 7 mod8 and Z3 be the set of primitive∈ vectors { ∈ 6≡ } prim in Z3. Legendre’s Theorem also implies that the set 2 def 3 2 S (D) = v Zprim : v 2 = D n ∈ k k o is non-empty if and only if D D. This important result has been refined in many ways. We are interested∈ in the refinement known as Linnik’s problem. Let S2 def= x R3 : x = 1 . For a subset S of rational odd primes we ∈ k k2 set 2 D(S)= D D : for all p S, D mod p F× . -
CLIFFORD ALGEBRAS and THEIR REPRESENTATIONS Introduction
CLIFFORD ALGEBRAS AND THEIR REPRESENTATIONS Andrzej Trautman, Uniwersytet Warszawski, Warszawa, Poland Article accepted for publication in the Encyclopedia of Mathematical Physics c 2005 Elsevier Science Ltd ! Introduction Introductory and historical remarks Clifford (1878) introduced his ‘geometric algebras’ as a generalization of Grassmann alge- bras, complex numbers and quaternions. Lipschitz (1886) was the first to define groups constructed from ‘Clifford numbers’ and use them to represent rotations in a Euclidean ´ space. E. Cartan discovered representations of the Lie algebras son(C) and son(R), n > 2, that do not lift to representations of the orthogonal groups. In physics, Clifford algebras and spinors appear for the first time in Pauli’s nonrelativistic theory of the ‘magnetic elec- tron’. Dirac (1928), in his work on the relativistic wave equation of the electron, introduced matrices that provide a representation of the Clifford algebra of Minkowski space. Brauer and Weyl (1935) connected the Clifford and Dirac ideas with Cartan’s spinorial represen- tations of Lie algebras; they found, in any number of dimensions, the spinorial, projective representations of the orthogonal groups. Clifford algebras and spinors are implicit in Euclid’s solution of the Pythagorean equation x2 y2 + z2 = 0 which is equivalent to − y x z p = 2 p q (1) −z y + x q ! " ! " # $ so that x = q2 p2, y = p2 + q2, z = 2pq. If the numbers appearing in (1) are real, then − this equation can be interpreted as providing a representation of a vector (x, y, z) R3, null ∈ with respect to a quadratic form of signature (1, 2), as the ‘square’ of a spinor (p, q) R2. -
LECTURES on PURE SPINORS and MOMENT MAPS Contents 1
LECTURES ON PURE SPINORS AND MOMENT MAPS E. MEINRENKEN Contents 1. Introduction 1 2. Volume forms on conjugacy classes 1 3. Clifford algebras and spinors 3 4. Linear Dirac geometry 8 5. The Cartan-Dirac structure 11 6. Dirac structures 13 7. Group-valued moment maps 16 References 20 1. Introduction This article is an expanded version of notes for my lectures at the summer school on `Poisson geometry in mathematics and physics' at Keio University, Yokohama, June 5{9 2006. The plan of these lectures was to give an elementary introduction to the theory of Dirac structures, with applications to Lie group valued moment maps. Special emphasis was given to the pure spinor approach to Dirac structures, developed in Alekseev-Xu [7] and Gualtieri [20]. (See [11, 12, 16] for the more standard approach.) The connection to moment maps was made in the work of Bursztyn-Crainic [10]. Parts of these lecture notes are based on a forthcoming joint paper [1] with Anton Alekseev and Henrique Bursztyn. I would like to thank the organizers of the school, Yoshi Maeda and Guiseppe Dito, for the opportunity to deliver these lectures, and for a greatly enjoyable meeting. I also thank Yvette Kosmann-Schwarzbach and the referee for a number of helpful comments. 2. Volume forms on conjugacy classes We will begin with the following FACT, which at first sight may seem quite unrelated to the theme of these lectures: FACT. Let G be a simply connected semi-simple real Lie group. Then every conjugacy class in G carries a canonical invariant volume form. -
The Unitary Representations of the Poincaré Group in Any Spacetime
The unitary representations of the Poincar´e group in any spacetime dimension Xavier Bekaert a and Nicolas Boulanger b a Institut Denis Poisson, Unit´emixte de Recherche 7013, Universit´ede Tours, Universit´ed’Orl´eans, CNRS, Parc de Grandmont, 37200 Tours (France) [email protected] b Service de Physique de l’Univers, Champs et Gravitation Universit´ede Mons – UMONS, Place du Parc 20, 7000 Mons (Belgium) [email protected] An extensive group-theoretical treatment of linear relativistic field equa- tions on Minkowski spacetime of arbitrary dimension D > 2 is presented in these lecture notes. To start with, the one-to-one correspondence be- tween linear relativistic field equations and unitary representations of the isometry group is reviewed. In turn, the method of induced representa- tions reduces the problem of classifying the representations of the Poincar´e group ISO(D 1, 1) to the classification of the representations of the sta- − bility subgroups only. Therefore, an exhaustive treatment of the two most important classes of unitary irreducible representations, corresponding to massive and massless particles (the latter class decomposing in turn into the “helicity” and the “infinite-spin” representations) may be performed via the well-known representation theory of the orthogonal groups O(n) (with D 4 <n<D ). Finally, covariant field equations are given for each − unitary irreducible representation of the Poincar´egroup with non-negative arXiv:hep-th/0611263v2 13 Jun 2021 mass-squared. Tachyonic representations are also examined. All these steps are covered in many details and with examples. The present notes also include a self-contained review of the representation theory of the general linear and (in)homogeneous orthogonal groups in terms of Young diagrams. -
Unitary Group - Wikipedia
Unitary group - Wikipedia https://en.wikipedia.org/wiki/Unitary_group Unitary group In mathematics, the unitary group of degree n, denoted U( n), is the group of n × n unitary matrices, with the group operation of matrix multiplication. The unitary group is a subgroup of the general linear group GL( n, C). Hyperorthogonal group is an archaic name for the unitary group, especially over finite fields. For the group of unitary matrices with determinant 1, see Special unitary group. In the simple case n = 1, the group U(1) corresponds to the circle group, consisting of all complex numbers with absolute value 1 under multiplication. All the unitary groups contain copies of this group. The unitary group U( n) is a real Lie group of dimension n2. The Lie algebra of U( n) consists of n × n skew-Hermitian matrices, with the Lie bracket given by the commutator. The general unitary group (also called the group of unitary similitudes ) consists of all matrices A such that A∗A is a nonzero multiple of the identity matrix, and is just the product of the unitary group with the group of all positive multiples of the identity matrix. Contents Properties Topology Related groups 2-out-of-3 property Special unitary and projective unitary groups G-structure: almost Hermitian Generalizations Indefinite forms Finite fields Degree-2 separable algebras Algebraic groups Unitary group of a quadratic module Polynomial invariants Classifying space See also Notes References Properties Since the determinant of a unitary matrix is a complex number with norm 1, the determinant gives a group 1 of 7 2/23/2018, 10:13 AM Unitary group - Wikipedia https://en.wikipedia.org/wiki/Unitary_group homomorphism The kernel of this homomorphism is the set of unitary matrices with determinant 1. -
Representations of Certain Semidirect Product Groups* H
JOURNAL OF FUNCTIONAL ANALYSIS 19, 339-372 (1975) Representations of Certain Semidirect Product Groups* JOSEPH A. WOLF Department of Mathematics, University of California, Berkeley, California 94720 Communicated by the Editovs Received April I, 1974 We study a class of semidirect product groups G = N . U where N is a generalized Heisenberg group and U is a generalized indefinite unitary group. This class contains the Poincare group and the parabolic subgroups of the simple Lie groups of real rank 1. The unitary representations of G and (in the unimodular cases) the Plancherel formula for G are written out. The problem of computing Mackey obstructions is completely avoided by realizing the Fock representations of N on certain U-invariant holomorphic cohomology spaces. 1. INTRODUCTION AND SUMMARY In this paper we write out the irreducible unitary representations for a type of semidirect product group that includes the Poincare group and the parabolic subgroups of simple Lie groups of real rank 1. If F is one of the four finite dimensional real division algebras, the corresponding groups in question are the Np,Q,F . {U(p, 4; F) xF+}, where FP~*: right vector space F”+Q with hermitian form h(x, y) = i xiyi - y xipi ) 1 lJ+1 N p,p,F: Im F + F”q* with (w. , ~o)(w, 4 = (w, + 7.0+ Im h(z, ,4, z. + 4, U(p, Q; F): unitary group of Fp,q, F+: subgroup of the group generated by F-scalar multiplication on Fp>*. * Research partially supported by N.S.F. Grant GP-16651. 339 Copyright 0 1975 by Academic Press, Inc. -
Modules and Lie Semialgebras Over Semirings with a Negation Map 3
MODULES AND LIE SEMIALGEBRAS OVER SEMIRINGS WITH A NEGATION MAP GUY BLACHAR Abstract. In this article, we present the basic definitions of modules and Lie semialgebras over semirings with a negation map. Our main example of a semiring with a negation map is ELT algebras, and some of the results in this article are formulated and proved only in the ELT theory. When dealing with modules, we focus on linearly independent sets and spanning sets. We define a notion of lifting a module with a negation map, similarly to the tropicalization process, and use it to prove several theorems about semirings with a negation map which possess a lift. In the context of Lie semialgebras over semirings with a negation map, we first give basic definitions, and provide parallel constructions to the classical Lie algebras. We prove an ELT version of Cartan’s criterion for semisimplicity, and provide a counterexample for the naive version of the PBW Theorem. Contents Page 0. Introduction 2 0.1. Semirings with a Negation Map 2 0.2. Modules Over Semirings with a Negation Map 3 0.3. Supertropical Algebras 4 0.4. Exploded Layered Tropical Algebras 4 1. Modules over Semirings with a Negation Map 5 1.1. The Surpassing Relation for Modules 6 1.2. Basic Definitions for Modules 7 1.3. -morphisms 9 1.4. Lifting a Module Over a Semiring with a Negation Map 10 1.5. Linearly Independent Sets 13 1.6. d-bases and s-bases 14 1.7. Free Modules over Semirings with a Negation Map 18 2. -
Majorana Spinors
MAJORANA SPINORS JOSE´ FIGUEROA-O'FARRILL Contents 1. Complex, real and quaternionic representations 2 2. Some basis-dependent formulae 5 3. Clifford algebras and their spinors 6 4. Complex Clifford algebras and the Majorana condition 10 5. Examples 13 One dimension 13 Two dimensions 13 Three dimensions 14 Four dimensions 14 Six dimensions 15 Ten dimensions 16 Eleven dimensions 16 Twelve dimensions 16 ...and back! 16 Summary 19 References 19 These notes arose as an attempt to conceptualise the `symplectic Majorana{Weyl condition' in 5+1 dimensions; but have turned into a general discussion of spinors. Spinors play a crucial role in supersymmetry. Part of their versatility is that they come in many guises: `Dirac', `Majorana', `Weyl', `Majorana{Weyl', `symplectic Majorana', `symplectic Majorana{Weyl', and their `pseudo' counterparts. The tra- ditional physics approach to this topic is a mixed bag of tricks using disparate aspects of representation theory of finite groups. In these notes we will attempt to provide a uniform treatment based on the classification of Clifford algebras, a work dating back to the early 60s and all but ignored by the theoretical physics com- munity. Recent developments in superstring theory have made us re-examine the conditions for the existence of different kinds of spinors in spacetimes of arbitrary signature, and we believe that a discussion of this more uniform approach is timely and could be useful to the student meeting this topic for the first time or to the practitioner who has difficulty remembering the answer to questions like \when do symplectic Majorana{Weyl spinors exist?" The notes are organised as follows. -
14.2 Covers of Symmetric and Alternating Groups
Remark 206 In terms of Galois cohomology, there an exact sequence of alge- braic groups (over an algebrically closed field) 1 → GL1 → ΓV → OV → 1 We do not necessarily get an exact sequence when taking values in some subfield. If 1 → A → B → C → 1 is exact, 1 → A(K) → B(K) → C(K) is exact, but the map on the right need not be surjective. Instead what we get is 1 → H0(Gal(K¯ /K), A) → H0(Gal(K¯ /K), B) → H0(Gal(K¯ /K), C) → → H1(Gal(K¯ /K), A) → ··· 1 1 It turns out that H (Gal(K¯ /K), GL1) = 1. However, H (Gal(K¯ /K), ±1) = K×/(K×)2. So from 1 → GL1 → ΓV → OV → 1 we get × 1 1 → K → ΓV (K) → OV (K) → 1 = H (Gal(K¯ /K), GL1) However, taking 1 → µ2 → SpinV → SOV → 1 we get N × × 2 1 ¯ 1 → ±1 → SpinV (K) → SOV (K) −→ K /(K ) = H (K/K, µ2) so the non-surjectivity of N is some kind of higher Galois cohomology. Warning 207 SpinV → SOV is onto as a map of ALGEBRAIC GROUPS, but SpinV (K) → SOV (K) need NOT be onto. Example 208 Take O3(R) =∼ SO3(R)×{±1} as 3 is odd (in general O2n+1(R) =∼ SO2n+1(R) × {±1}). So we have a sequence 1 → ±1 → Spin3(R) → SO3(R) → 1. 0 × Notice that Spin3(R) ⊆ C3 (R) =∼ H, so Spin3(R) ⊆ H , and in fact we saw that it is S3. 14.2 Covers of symmetric and alternating groups The symmetric group on n letter can be embedded in the obvious way in On(R) as permutations of coordinates. -
LECTURE 12: LIE GROUPS and THEIR LIE ALGEBRAS 1. Lie
LECTURE 12: LIE GROUPS AND THEIR LIE ALGEBRAS 1. Lie groups Definition 1.1. A Lie group G is a smooth manifold equipped with a group structure so that the group multiplication µ : G × G ! G; (g1; g2) 7! g1 · g2 is a smooth map. Example. Here are some basic examples: • Rn, considered as a group under addition. • R∗ = R − f0g, considered as a group under multiplication. • S1, Considered as a group under multiplication. • Linear Lie groups GL(n; R), SL(n; R), O(n) etc. • If M and N are Lie groups, so is their product M × N. Remarks. (1) (Hilbert's 5th problem, [Gleason and Montgomery-Zippin, 1950's]) Any topological group whose underlying space is a topological manifold is a Lie group. (2) Not every smooth manifold admits a Lie group structure. For example, the only spheres that admit a Lie group structure are S0, S1 and S3; among all the compact 2 dimensional surfaces the only one that admits a Lie group structure is T 2 = S1 × S1. (3) Here are two simple topological constraints for a manifold to be a Lie group: • If G is a Lie group, then TG is a trivial bundle. n { Proof: We identify TeG = R . The vector bundle isomorphism is given by φ : G × TeG ! T G; φ(x; ξ) = (x; dLx(ξ)) • If G is a Lie group, then π1(G) is an abelian group. { Proof: Suppose α1, α2 2 π1(G). Define α : [0; 1] × [0; 1] ! G by α(t1; t2) = α1(t1) · α2(t2). Then along the bottom edge followed by the right edge we have the composition α1 ◦ α2, where ◦ is the product of loops in the fundamental group, while along the left edge followed by the top edge we get α2 ◦ α1.