The Classical Groups and Domains 1. the Disk, Upper Half-Plane, SL 2(R

Total Page:16

File Type:pdf, Size:1020Kb

The Classical Groups and Domains 1. the Disk, Upper Half-Plane, SL 2(R (June 8, 2018) The Classical Groups and Domains Paul Garrett [email protected] http:=/www.math.umn.edu/egarrett/ The complex unit disk D = fz 2 C : jzj < 1g has four families of generalizations to bounded open subsets in Cn with groups acting transitively upon them. Such domains, defined more precisely below, are bounded symmetric domains. First, we recall some standard facts about the unit disk, the upper half-plane, the ambient complex projective line, and corresponding groups acting by linear fractional (M¨obius)transformations. Happily, many of the higher- dimensional bounded symmetric domains behave in a manner that is a simple extension of this simplest case. 1. The disk, upper half-plane, SL2(R), and U(1; 1) 2. Classical groups over C and over R 3. The four families of self-adjoint cones 4. The four families of classical domains 5. Harish-Chandra's and Borel's realization of domains 1. The disk, upper half-plane, SL2(R), and U(1; 1) The group a b GL ( ) = f : a; b; c; d 2 ; ad − bc 6= 0g 2 C c d C acts on the extended complex plane C [ 1 by linear fractional transformations a b az + b (z) = c d cz + d with the traditional natural convention about arithmetic with 1. But we can be more precise, in a form helpful for higher-dimensional cases: introduce homogeneous coordinates for the complex projective line P1, by defining P1 to be a set of cosets u 1 = f : not both u; v are 0g= × = 2 − f0g = × P v C C C where C× acts by scalar multiplication. That is, P1 is the set of equivalence classes of non-zero 2-by-1 vectors under the equivalence relation u u0 u u0 ∼ if and only if = c · for some non-zero c 2 × v v0 v v0 C In other words, P1 is the quotient of C2 − f0g by the action of C×. The complex line C1 is imbedded in this model of P1 by z z ! 1 The point at infinity 1 is now easily and precisely described as 1 1 = 0 1 Paul Garrett: The Classical Groups and Domains (June 8, 2018) 2 Certainly the matrix multiplication action of GL2(C) on C stabilizes non-zero vectors, and commutes 1 with scalar multiplication, so GL2(C) has a natural action on P . This action, linear in the homogeneous coordinates, becomes the usual linear fractional action in the usual complex coordinates: a b a b z az + b (az + b)=(cz + d) (z) = = = c d c d 1 cz + d 1 when cz + d 6= 0, since we can multiply through by (cz + d)−1 to normalize the lower entry back to 1, unless it is 0, in which case we've mapped to 1. 1 2 1 2 The action of GL2(C) is transitive on P , since it is transitive on C − f0g, and P is the image of C − f0g. The condition defining the open unit disk D = fz 2 C : jzj < 1g ⊂ C can be rewritten as ∗ z −1 0 z D = fz 2 : > 0g C 1 0 1 1 where T ∗ is conjugate transpose of a matrix T . The standard unitary group U(1; 1) of signature (1; 1) is −1 0 −1 0 U(1; 1) = fg 2 GL ( ): g∗ g = g 2 C 0 1 0 1 We can easily prove that U(1; 1) stabilizes the disk D, as follows. For z 2 D and a b g = 2 U(1; 1) c d compute ∗ ∗ g(z) −1 0 g(z) 1 az + b −1 0 az + b 1 1 − jg(z)j2 = = · · 1 0 1 1 (cz + d)∗ cz + d 0 1 cz + d (cz + d) ∗ ∗ 1 z −1 0 z 1 z −1 0 z = · g∗ g = · jcz + dj2 1 0 1 1 jcz + dj2 1 0 1 1 since g is in the unitary group. Then 1 1 − jg(z)j2 = (1 − jzj2) > 0 jcz + dj2 In fact, to be sure that cz + d 6= 0 in this situation, we should have really computed (by the same method) that jcz + dj2 · (1 − jg(z)j2) = 1 − jzj2 Since 1 − jzj2 > 0 and jcz + dj ≥ 0, necessarily jcz + dj > 0 and 1 − jg(z)j2 > 0. The complex upper half-plane is H = fz 2 C : Imz > 0g In the spirit of giving matrix expressions for defining inequalities, ∗ 1 z 0 −1 z Imz = · 2i 1 1 0 1 2 Paul Garrett: The Classical Groups and Domains (June 8, 2018) This suggests taking 0 −1 0 −1 G = fg 2 GL ( ): g∗ g = g 2 C 1 0 1 0 Just as in the discussion of the disk, for z 2 H and a b g = 2 G c d compute ∗ ∗ g(z) 0 −1 g(z) 1 az + b 0 −1 az + b 1 2i · Img(z) = = · · 1 1 0 1 (cz + d)∗ cz + d 1 0 cz + d (cz + d) ∗ ∗ 1 z 0 −1 z 1 z 0 −1 z = · g∗ g = · jcz + dj2 1 1 0 1 jcz + dj2 1 1 0 1 since g is in G. Then 1 Img(z) = Imz > 0 jcz + dj2 To be sure that cz + d 6= 0, compute in the same way that jcz + dj2 · Img(z) = Imz Since Imz > 0 and jcz + dj ≥ 0, necessarily jcz + dj > 0 and Img(z) > 0. Since the center t 0 Z = f : t 2 g 0 t C 1 of GL2(C) acts trivially on C ⊂ P , one might expect some simplification of matters by restricting our attention to the action of SL2(C) = fg 2 GL2(C) : det g = 1g since under the quotient map GL2(C) ! GL2(C)=Z the subgroup SL2(C) maps surjectively to the whole quotient GL2(C)=Z. The special but well-known formula −1 a b d −b = ad−bc ad−bc c d −c a ad−bc ad−bc for the inverse of a two-by-two matrix implies that 0 −1 0 −1 SL ( ) = fg 2 GL ( ): g> g = g 2 C 2 C 1 0 1 0 Thus, the subgroup in SL2(C) stabilizing the upper half-plane is 0 −1 0 −1 0 −1 0 −1 G0 = fg 2 GL ( ): g> g = and g∗ g = g 2 C 1 0 1 0 1 0 1 0 In particular, for such g we have g> = g∗, so the entries of g are real. Thus, we have shown that fg 2 SL2(C): g · H = Hg = SL2(R) = fg 2 GL2(R) : det g = 1g This is the group usually prescribed to act on the upper half-plane. Again, arbitrary complex scalar matrices act trivially on P1, so it is reasonable that we get a clearer determination of this stabilizing group by restricting attention to SL2(C). 3 Paul Garrett: The Classical Groups and Domains (June 8, 2018) The Cayley map c : D ! H is the holomorphic isomorphism given by the linear fractional transformation 1 1 i c = p · 2 SL2(C) 2 i 1 If we use −1 0 −1 0 SU(1; 1) = fg 2 SL ( ): g∗ g = g 2 C 0 1 0 1 instead of U(1; 1) as the group stabilizing the disk D, then it is easy to check that −1 c · SL2(R) · c = SU(1; 1) Thus, the disk and the upper half-plane are the same thing apart from coordinates. On the upper half-plane, the subgroup 1 b a 0 f · g ⊂ SL ( ) 0 1 0 a−1 2 R acts by affine transformations 1 b a 0 · (z) = a2z + b 0 1 0 a−1 In particular, this shows that SL2(R) is transitive on H. On the other hand, in the action of SU(1; 1) on the disk D, the subgroup µ 0 f : jµj = 1g 0 µ−1 acts by affine transformations µ 0 (z) = µ2 · z 0 µ−1 This is the subgroup of SU(1; 1) fixing the point 0 2 D. When the latter subgroup is conjugated by the Cayley element c to obtain the corresponding subgroup of SL2(R) fixing c(0) = i 2 H, consisting of elements −1 −1 ! µ 0 µ+µ µ−µ cos θ sin θ c · · c−1 = 2 2i = 0 µ−1 µ−µ−1 µ+µ−1 − sin θ cos θ − 2i 2 for θ 2 R such that µ = eiθ. The special unitary group is −1 0 −1 0 α β SU(1; 1) = fg 2 SL ( ): g∗ g = g = f : jaj2 − jbj2 = 1g 2 C 0 1 0 1 β¯ α¯ The Cayley element c conjugates SL2(R) and SU(1; 1) back and forth. Since SL2(R) acts transitively on the upper half-plane, SU(1; 1) acts transitively on the disk. Also, this can be seen directly by verifying that for jzj < 1 the matrix 1 1 z · p1 − jzj2 z¯ 1 lies in SU(1; 1) and maps 0 to z. The isotropy group in SL2(R) of the point i 2 H is the special orthogonal group cos θ − sin θ SO(2) = fg 2 SL ( ): g>g = 1 g = f : θ 2 g 2 R 2 sin θ cos θ R 4 Paul Garrett: The Classical Groups and Domains (June 8, 2018) The natural map SL2(R)=SO(2) −! H given by g · SO(2) −! g(i) is readily verified to be a diffeomorphism. The disk is an instance of Harish-Chandra's realization of quotients analogous to SL2(R)=SO(2) as bounded subsets of spaces Cn.
Recommended publications
  • INTEGER POINTS and THEIR ORTHOGONAL LATTICES 2 to Remove the Congruence Condition
    INTEGER POINTS ON SPHERES AND THEIR ORTHOGONAL LATTICES MENNY AKA, MANFRED EINSIEDLER, AND URI SHAPIRA (WITH AN APPENDIX BY RUIXIANG ZHANG) Abstract. Linnik proved in the late 1950’s the equidistribution of in- teger points on large spheres under a congruence condition. The congru- ence condition was lifted in 1988 by Duke (building on a break-through by Iwaniec) using completely different techniques. We conjecture that this equidistribution result also extends to the pairs consisting of a vector on the sphere and the shape of the lattice in its orthogonal complement. We use a joining result for higher rank diagonalizable actions to obtain this conjecture under an additional congruence condition. 1. Introduction A theorem of Legendre, whose complete proof was given by Gauss in [Gau86], asserts that an integer D can be written as a sum of three squares if and only if D is not of the form 4m(8k + 7) for some m, k N. Let D = D N : D 0, 4, 7 mod8 and Z3 be the set of primitive∈ vectors { ∈ 6≡ } prim in Z3. Legendre’s Theorem also implies that the set 2 def 3 2 S (D) = v Zprim : v 2 = D n ∈ k k o is non-empty if and only if D D. This important result has been refined in many ways. We are interested∈ in the refinement known as Linnik’s problem. Let S2 def= x R3 : x = 1 . For a subset S of rational odd primes we ∈ k k2 set 2 D(S)= D D : for all p S, D mod p F× .
    [Show full text]
  • Representation Theory and Quantum Mechanics Tutorial a Little Lie Theory
    Representation theory and quantum mechanics tutorial A little Lie theory Justin Campbell July 6, 2017 1 Groups 1.1 The colloquial usage of the words \symmetry" and \symmetrical" is imprecise: we say, for example, that a regular pentagon is symmetrical, but what does that mean? In the mathematical parlance, a symmetry (or more technically automorphism) of the pentagon is a (distance- and angle-preserving) transformation which leaves it unchanged. It has ten such symmetries: 2π 4π 6π 8π rotations through 0, 5 , 5 , 5 , and 5 radians, as well as reflection over any of the five lines passing through a vertex and the center of the pentagon. These ten symmetries form a set D5, called the dihedral group of order 10. Any two elements of D5 can be composed to obtain a third. This operation of composition has some important formal properties, summarized as follows. Definition 1.1.1. A group is a set G together with an operation G × G ! G; denoted by (x; y) 7! xy, satisfying: (i) there exists e 2 G, called the identity, such that ex = xe = g for all x 2 G, (ii) any x 2 G has an inverse x−1 2 G satisfying xx−1 = x−1x = e, (iii) for any x; y; z 2 G the associativity law (xy)z = x(yz) holds. To any mathematical (geometric, algebraic, etc.) object one can attach its automorphism group consisting of structure-preserving invertible maps from the object to itself. For example, the automorphism group of a regular pentagon is the dihedral group D5.
    [Show full text]
  • Field Theory 1. Introduction to Quantum Field Theory (A Primer for a Basic Education)
    Field Theory 1. Introduction to Quantum Field Theory (A Primer for a Basic Education) Roberto Soldati February 23, 2019 Contents 0.1 Prologue ............................ 4 1 Basics in Group Theory 8 1.1 Groups and Group Representations . 8 1.1.1 Definitions ....................... 8 1.1.2 Theorems ........................ 12 1.1.3 Direct Products of Group Representations . 14 1.2 Continuous Groups and Lie Groups . 16 1.2.1 The Continuous Groups . 16 1.2.2 The Lie Groups .................... 18 1.2.3 An Example : the Rotations Group . 19 1.2.4 The Infinitesimal Operators . 21 1.2.5 Lie Algebra ....................... 23 1.2.6 The Exponential Representation . 24 1.2.7 The Special Unitary Groups . 27 1.3 The Non-Homogeneous Lorentz Group . 34 1.3.1 The Lorentz Group . 34 1.3.2 Semi-Simple Groups . 43 1.3.3 The Poincar´eGroup . 49 2 The Action Functional 57 2.1 The Classical Relativistic Wave Fields . 57 2.1.1 Field Variations .................... 58 2.1.2 The Scalar and Vector Fields . 62 2.1.3 The Spinor Fields ................... 65 2.2 The Action Principle ................... 76 2.3 The N¨otherTheorem ................... 79 2.3.1 Problems ........................ 87 1 3 The Scalar Field 94 3.1 General Features ...................... 94 3.2 Normal Modes Expansion . 101 3.3 Klein-Gordon Quantum Field . 106 3.4 The Fock Space .......................112 3.4.1 The Many-Particle States . 112 3.4.2 The Lorentz Covariance Properties . 116 3.5 Special Distributions . 129 3.5.1 Euclidean Formulation . 133 3.6 Problems ............................137 4 The Spinor Field 151 4.1 The Dirac Equation .
    [Show full text]
  • Homotopy Theory and Circle Actions on Symplectic Manifolds
    HOMOTOPY AND GEOMETRY BANACH CENTER PUBLICATIONS, VOLUME 45 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 1998 HOMOTOPY THEORY AND CIRCLE ACTIONS ON SYMPLECTIC MANIFOLDS JOHNOPREA Department of Mathematics, Cleveland State University Cleveland, Ohio 44115, U.S.A. E-mail: [email protected] Introduction. Traditionally, soft techniques of algebraic topology have found much use in the world of hard geometry. In recent years, in particular, the subject of symplectic topology (see [McS]) has arisen from important and interesting connections between sym- plectic geometry and algebraic topology. In this paper, we will consider one application of homotopical methods to symplectic geometry. Namely, we shall discuss some aspects of the homotopy theory of circle actions on symplectic manifolds. Because this paper is meant to be accessible to both geometers and topologists, we shall try to review relevant ideas in homotopy theory and symplectic geometry as we go along. We also present some new results (e.g. see Theorem 2.12 and x5) which extend the methods reviewed earlier. This paper then serves two roles: as an exposition and survey of the homotopical ap- proach to symplectic circle actions and as a first step to extending the approach beyond the symplectic world. 1. Review of symplectic geometry. A manifold M 2n is symplectic if it possesses a nondegenerate 2-form ! which is closed (i.e. d! = 0). The nondegeneracy condition is equivalent to saying that !n is a true volume form (i.e. nonzero at each point) on M. Furthermore, the nondegeneracy of ! sets up an isomorphism between 1-forms and vector fields on M by assigning to a vector field X the 1-form iX ! = !(X; −).
    [Show full text]
  • The General Linear Group
    18.704 Gabe Cunningham 2/18/05 [email protected] The General Linear Group Definition: Let F be a field. Then the general linear group GLn(F ) is the group of invert- ible n × n matrices with entries in F under matrix multiplication. It is easy to see that GLn(F ) is, in fact, a group: matrix multiplication is associative; the identity element is In, the n × n matrix with 1’s along the main diagonal and 0’s everywhere else; and the matrices are invertible by choice. It’s not immediately clear whether GLn(F ) has infinitely many elements when F does. However, such is the case. Let a ∈ F , a 6= 0. −1 Then a · In is an invertible n × n matrix with inverse a · In. In fact, the set of all such × matrices forms a subgroup of GLn(F ) that is isomorphic to F = F \{0}. It is clear that if F is a finite field, then GLn(F ) has only finitely many elements. An interesting question to ask is how many elements it has. Before addressing that question fully, let’s look at some examples. ∼ × Example 1: Let n = 1. Then GLn(Fq) = Fq , which has q − 1 elements. a b Example 2: Let n = 2; let M = ( c d ). Then for M to be invertible, it is necessary and sufficient that ad 6= bc. If a, b, c, and d are all nonzero, then we can fix a, b, and c arbitrarily, and d can be anything but a−1bc. This gives us (q − 1)3(q − 2) matrices.
    [Show full text]
  • Unitary Group - Wikipedia
    Unitary group - Wikipedia https://en.wikipedia.org/wiki/Unitary_group Unitary group In mathematics, the unitary group of degree n, denoted U( n), is the group of n × n unitary matrices, with the group operation of matrix multiplication. The unitary group is a subgroup of the general linear group GL( n, C). Hyperorthogonal group is an archaic name for the unitary group, especially over finite fields. For the group of unitary matrices with determinant 1, see Special unitary group. In the simple case n = 1, the group U(1) corresponds to the circle group, consisting of all complex numbers with absolute value 1 under multiplication. All the unitary groups contain copies of this group. The unitary group U( n) is a real Lie group of dimension n2. The Lie algebra of U( n) consists of n × n skew-Hermitian matrices, with the Lie bracket given by the commutator. The general unitary group (also called the group of unitary similitudes ) consists of all matrices A such that A∗A is a nonzero multiple of the identity matrix, and is just the product of the unitary group with the group of all positive multiples of the identity matrix. Contents Properties Topology Related groups 2-out-of-3 property Special unitary and projective unitary groups G-structure: almost Hermitian Generalizations Indefinite forms Finite fields Degree-2 separable algebras Algebraic groups Unitary group of a quadratic module Polynomial invariants Classifying space See also Notes References Properties Since the determinant of a unitary matrix is a complex number with norm 1, the determinant gives a group 1 of 7 2/23/2018, 10:13 AM Unitary group - Wikipedia https://en.wikipedia.org/wiki/Unitary_group homomorphism The kernel of this homomorphism is the set of unitary matrices with determinant 1.
    [Show full text]
  • Projective Coordinates and Compactification in Elliptic, Parabolic and Hyperbolic 2-D Geometry
    PROJECTIVE COORDINATES AND COMPACTIFICATION IN ELLIPTIC, PARABOLIC AND HYPERBOLIC 2-D GEOMETRY Debapriya Biswas Department of Mathematics, Indian Institute of Technology-Kharagpur, Kharagpur-721302, India. e-mail: d [email protected] Abstract. A result that the upper half plane is not preserved in the hyperbolic case, has implications in physics, geometry and analysis. We discuss in details the introduction of projective coordinates for the EPH cases. We also introduce appropriate compactification for all the three EPH cases, which results in a sphere in the elliptic case, a cylinder in the parabolic case and a crosscap in the hyperbolic case. Key words. EPH Cases, Projective Coordinates, Compactification, M¨obius transformation, Clifford algebra, Lie group. 2010(AMS) Mathematics Subject Classification: Primary 30G35, Secondary 22E46. 1. Introduction Geometry is an essential branch of Mathematics. It deals with the proper- ties of figures in a plane or in space [7]. Perhaps, the most influencial book of all time, is ‘Euclids Elements’, written in around 3000 BC [14]. Since Euclid, geometry usually meant the geometry of Euclidean space of two-dimensions (2-D, Plane geometry) and three-dimensions (3-D, Solid geometry). A close scrutiny of the basis for the traditional Euclidean geometry, had revealed the independence of the parallel axiom from the others and consequently, non- Euclidean geometry was born and in projective geometry, new “points” (i.e., points at infinity and points with complex number coordinates) were intro- duced [1, 3, 9, 26]. In the eighteenth century, under the influence of Steiner, Von Staudt, Chasles and others, projective geometry became one of the chief subjects of mathematical research [7].
    [Show full text]
  • Maximality of Hyperspecial Compact Subgroups Avoiding Bruhat–Tits Theory Tome 67, No 1 (2017), P
    R AN IE N R A U L E O S F D T E U L T I ’ I T N S ANNALES DE L’INSTITUT FOURIER Marco MACULAN Maximality of hyperspecial compact subgroups avoiding Bruhat–Tits theory Tome 67, no 1 (2017), p. 1-21. <http://aif.cedram.org/item?id=AIF_2017__67_1_1_0> © Association des Annales de l’institut Fourier, 2017, Certains droits réservés. Cet article est mis à disposition selon les termes de la licence CREATIVE COMMONS ATTRIBUTION – PAS DE MODIFICATION 3.0 FRANCE. http://creativecommons.org/licenses/by-nd/3.0/fr/ L’accès aux articles de la revue « Annales de l’institut Fourier » (http://aif.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://aif.cedram.org/legal/). cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ Ann. Inst. Fourier, Grenoble 67, 1 (2017) 1-21 MAXIMALITY OF HYPERSPECIAL COMPACT SUBGROUPS AVOIDING BRUHAT–TITS THEORY by Marco MACULAN Abstract. — Let k be a complete non-archimedean field (non trivially valued). Given a reductive k-group G, we prove that hyperspecial subgroups of G(k) (i.e. those arising from reductive models of G) are maximal among bounded subgroups. The originality resides in the argument: it is inspired by the case of GLn and avoids all considerations on the Bruhat–Tits building of G. Résumé. — Soit k un corps non-archimédien complet et non trivialement va- lué. Étant donné un k-groupe réductif G, nous démontrons que les sous-groupes hyperspéciaux de G(k) (c’est-à-dire ceux qui proviennent des modèles réductifs de G) sont maximaux parmi les sous-groupes bornés.
    [Show full text]
  • Orders on Computable Torsion-Free Abelian Groups
    Orders on Computable Torsion-Free Abelian Groups Asher M. Kach (Joint Work with Karen Lange and Reed Solomon) University of Chicago 12th Asian Logic Conference Victoria University of Wellington December 2011 Asher M. Kach (U of C) Orders on Computable TFAGs ALC 2011 1 / 24 Outline 1 Classical Algebra Background 2 Computing a Basis 3 Computing an Order With A Basis Without A Basis 4 Open Questions Asher M. Kach (U of C) Orders on Computable TFAGs ALC 2011 2 / 24 Torsion-Free Abelian Groups Remark Disclaimer: Hereout, the word group will always refer to a countable torsion-free abelian group. The words computable group will always refer to a (fixed) computable presentation. Definition A group G = (G : +; 0) is torsion-free if non-zero multiples of non-zero elements are non-zero, i.e., if (8x 2 G)(8n 2 !)[x 6= 0 ^ n 6= 0 =) nx 6= 0] : Asher M. Kach (U of C) Orders on Computable TFAGs ALC 2011 3 / 24 Rank Theorem A countable abelian group is torsion-free if and only if it is a subgroup ! of Q . Definition The rank of a countable torsion-free abelian group G is the least κ cardinal κ such that G is a subgroup of Q . Asher M. Kach (U of C) Orders on Computable TFAGs ALC 2011 4 / 24 Example The subgroup H of Q ⊕ Q (viewed as having generators b1 and b2) b1+b2 generated by b1, b2, and 2 b1+b2 So elements of H look like β1b1 + β2b2 + α 2 for β1; β2; α 2 Z.
    [Show full text]
  • Hyperbolic Geometry
    Hyperbolic Geometry David Gu Yau Mathematics Science Center Tsinghua University Computer Science Department Stony Brook University [email protected] September 12, 2020 David Gu (Stony Brook University) Computational Conformal Geometry September 12, 2020 1 / 65 Uniformization Figure: Closed surface uniformization. David Gu (Stony Brook University) Computational Conformal Geometry September 12, 2020 2 / 65 Hyperbolic Structure Fundamental Group Suppose (S; g) is a closed high genus surface g > 1. The fundamental group is π1(S; q), represented as −1 −1 −1 −1 π1(S; q) = a1; b1; a2; b2; ; ag ; bg a1b1a b ag bg a b : h ··· j 1 1 ··· g g i Universal Covering Space universal covering space of S is S~, the projection map is p : S~ S.A ! deck transformation is an automorphism of S~, ' : S~ S~, p ' = '. All the deck transformations form the Deck transformation! group◦ DeckS~. ' Deck(S~), choose a pointq ~ S~, andγ ~ S~ connectsq ~ and '(~q). The 2 2 ⊂ projection γ = p(~γ) is a loop on S, then we obtain an isomorphism: Deck(S~) π1(S; q);' [γ] ! 7! David Gu (Stony Brook University) Computational Conformal Geometry September 12, 2020 3 / 65 Hyperbolic Structure Uniformization The uniformization metric is ¯g = e2ug, such that the K¯ 1 everywhere. ≡ − 2 Then (S~; ¯g) can be isometrically embedded on the hyperbolic plane H . The On the hyperbolic plane, all the Deck transformations are isometric transformations, Deck(S~) becomes the so-called Fuchsian group, −1 −1 −1 −1 Fuchs(S) = α1; β1; α2; β2; ; αg ; βg α1β1α β αg βg α β : h ··· j 1 1 ··· g g i The Fuchsian group generators are global conformal invariants, and form the coordinates in Teichm¨ullerspace.
    [Show full text]
  • Be the Integral Symplectic Group and S(G) Be the Set of All Positive Integers Which Can Occur As the Order of an Element in G
    FINITE ORDER ELEMENTS IN THE INTEGRAL SYMPLECTIC GROUP KUMAR BALASUBRAMANIAN, M. RAM MURTY, AND KARAM DEO SHANKHADHAR Abstract For g 2 N, let G = Sp(2g; Z) be the integral symplectic group and S(g) be the set of all positive integers which can occur as the order of an element in G. In this paper, we show that S(g) is a bounded subset of R for all positive integers g. We also study the growth of the functions f(g) = jS(g)j, and h(g) = maxfm 2 N j m 2 S(g)g and show that they have at least exponential growth. 1. Introduction Given a group G and a positive integer m 2 N, it is natural to ask if there exists k 2 G such that o(k) = m, where o(k) denotes the order of the element k. In this paper, we make some observations about the collection of positive integers which can occur as orders of elements in G = Sp(2g; Z). Before we proceed further we set up some notations and briefly mention the questions studied in this paper. Let G = Sp(2g; Z) be the group of all 2g × 2g matrices with integral entries satisfying > A JA = J 0 I where A> is the transpose of the matrix A and J = g g . −Ig 0g α1 αk Throughout we write m = p1 : : : pk , where pi is a prime and αi > 0 for all i 2 f1; 2; : : : ; kg. We also assume that the primes pi are such that pi < pi+1 for 1 ≤ i < k.
    [Show full text]
  • The Riemann Mapping Theorem Christopher J. Bishop
    The Riemann Mapping Theorem Christopher J. Bishop C.J. Bishop, Mathematics Department, SUNY at Stony Brook, Stony Brook, NY 11794-3651 E-mail address: [email protected] 1991 Mathematics Subject Classification. Primary: 30C35, Secondary: 30C85, 30C62 Key words and phrases. numerical conformal mappings, Schwarz-Christoffel formula, hyperbolic 3-manifolds, Sullivan’s theorem, convex hulls, quasiconformal mappings, quasisymmetric mappings, medial axis, CRDT algorithm The author is partially supported by NSF Grant DMS 04-05578. Abstract. These are informal notes based on lectures I am giving in MAT 626 (Topics in Complex Analysis: the Riemann mapping theorem) during Fall 2008 at Stony Brook. We will start with brief introduction to conformal mapping focusing on the Schwarz-Christoffel formula and how to compute the unknown parameters. In later chapters we will fill in some of the details of results and proofs in geometric function theory and survey various numerical methods for computing conformal maps, including a method of my own using ideas from hyperbolic and computational geometry. Contents Chapter 1. Introduction to conformal mapping 1 1. Conformal and holomorphic maps 1 2. M¨obius transformations 16 3. The Schwarz-Christoffel Formula 20 4. Crowding 27 5. Power series of Schwarz-Christoffel maps 29 6. Harmonic measure and Brownian motion 39 7. The quasiconformal distance between polygons 48 8. Schwarz-Christoffel iterations and Davis’s method 56 Chapter 2. The Riemann mapping theorem 67 1. The hyperbolic metric 67 2. Schwarz’s lemma 69 3. The Poisson integral formula 71 4. A proof of Riemann’s theorem 73 5. Koebe’s method 74 6.
    [Show full text]