Chapter 2: Linear Algebra User's Manual

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 2: Linear Algebra User's Manual Preprint typeset in JHEP style - HYPER VERSION Chapter 2: Linear Algebra User's Manual Gregory W. Moore Abstract: An overview of some of the finer points of linear algebra usually omitted in physics courses. April 27, 2018 -TOC- Contents 1. Introduction 5 2. Basic Definitions Of Algebraic Structures: Rings, Fields, Modules, Vec- tor Spaces, And Algebras 6 2.1 Rings 6 2.2 Fields 6 2.3 Modules 8 2.4 Vector Spaces 9 2.5 Algebras 9 3. Linear Transformations 13 4. Basis And Dimension 15 4.1 Linear Independence 15 4.2 Free Modules 16 4.3 Vector Spaces 16 4.4 Linear Operators And Matrices 19 4.5 Determinant And Trace 22 5. New Vector Spaces from Old Ones 23 5.1 Direct sum 23 5.2 Quotient Space 27 5.3 Tensor Product 28 5.4 Dual Space 32 6. Tensor spaces 35 6.1 Totally Symmetric And Antisymmetric Tensors 36 6.2 Algebraic structures associated with tensors 38 6.2.1 An Approach To Noncommutative Geometry 41 7. Kernel, Image, and Cokernel 42 7.1 The index of a linear operator 43 8. A Taste of Homological Algebra 44 8.1 The Euler-Poincar´eprinciple 45 8.2 Chain maps and chain homotopies 46 8.3 Exact sequences of complexes 46 8.4 Left- and right-exactness 47 { 1 { 9. Relations Between Real, Complex, And Quaternionic Vector Spaces 47 9.1 Complex structure on a real vector space 47 9.2 Real Structure On A Complex Vector Space 50 9.2.1 Complex Conjugate Of A Complex Vector Space 52 9.2.2 Complexification 53 9.3 The Quaternions 55 9.4 Quaternionic Structure On A Real Vector Space 64 9.5 Quaternionic Structure On Complex Vector Space 65 9.5.1 Complex Structure On Quaternionic Vector Space 65 9.5.2 Summary 66 9.6 Spaces Of Real, Complex, Quaternionic Structures 66 10. Some Canonical Forms For a Matrix Under Conjugation 70 10.1 What is a canonical form? 70 10.2 Rank 70 10.3 Eigenvalues and Eigenvectors 71 10.4 Jordan Canonical Form 74 10.4.1 Proof of the Jordan canonical form theorem 79 10.5 The stabilizer of a Jordan canonical form 80 10.5.1 Simultaneous diagonalization 82 11. Sesquilinear forms and (anti)-Hermitian forms 84 12. Inner product spaces, normed linear spaces, and bounded operators 86 12.1 Inner product spaces 86 12.2 Normed linear spaces 87 12.3 Bounded linear operators 88 12.4 Constructions with inner product spaces 89 13. Hilbert space 90 14. Banach space 93 15. Projection operators and orthogonal decomposition 94 16. Unitary, Hermitian, and normal operators 97 17. The spectral theorem: Finite Dimensions 100 17.1 Normal and Unitary matrices 102 17.2 Singular value decomposition and Schmidt decomposition 102 17.2.1 Bidiagonalization 102 17.2.2 Application: The Cabbibo-Kobayashi-Maskawa matrix, or, how bidi- agonalization can win you the Nobel Prize 103 17.2.3 Singular value decomposition 105 17.2.4 Schmidt decomposition 106 { 2 { 18. Operators on Hilbert space 107 18.1 Lies my teacher told me 107 18.1.1 Lie 1: The trace is cyclic: 107 18.1.2 Lie 2: Hermitian operators have real eigenvalues 107 18.1.3 Lie 3: Hermitian operators exponentiate to form one-parameter groups of unitary operators 108 18.2 Hellinger-Toeplitz theorem 108 18.3 Spectrum and resolvent 110 18.4 Spectral theorem for bounded self-adjoint operators 115 18.5 Defining the adjoint of an unbounded operator 120 18.6 Spectral Theorem for unbounded self-adjoint operators 122 18.7 Commuting self-adjoint operators 123 18.8 Stone's theorem 124 18.9 Traceclass operators 125 19. The Dirac-von Neumann axioms of quantum mechanics 128 20. Canonical Forms of Antisymmetric, Symmetric, and Orthogonal matri- ces 135 20.1 Pairings and bilinear forms 135 20.1.1 Perfect pairings 135 20.1.2 Vector spaces 136 20.1.3 Choosing a basis 137 20.2 Canonical forms for symmetric matrices 137 20.3 Orthogonal matrices: The real spectral theorem 140 20.4 Canonical forms for antisymmetric matrices 141 20.5 Automorphism Groups of Bilinear and Sesquilinear Forms 142 21. Other canonical forms: Upper triangular, polar, reduced echelon 144 21.1 General upper triangular decomposition 144 21.2 Gram-Schmidt procedure 144 21.2.1 Orthogonal polynomials 145 21.3 Polar decomposition 147 21.4 Reduced Echelon form 149 22. Families of Matrices 149 22.1 Families of projection operators: The theory of vector bundles 149 22.2 Codimension of the space of coinciding eigenvalues 153 22.2.1 Families of complex matrices: Codimension of coinciding character- istic values 154 22.2.2 Orbits 155 22.2.3 Local model near Ssing 156 22.2.4 Families of Hermitian operators 157 22.3 Canonical form of a family in a first order neighborhood 159 { 3 { 22.4 Families of operators and spectral covers 160 22.5 Families of matrices and differential equations 165 22.5.1 The WKB expansion 167 22.5.2 Monodromy representation and Hilbert's 21st problem 170 22.5.3 Stokes' phenomenon 170 23. Z2-graded, or super-, linear algebra 175 23.1 Super vector spaces 175 23.2 Linear transformations between supervector spaces 179 23.3 Superalgebras 181 23.4 Modules over superalgebras 187 23.5 Free modules and the super-General Linear Group 191 23.6 The Supertrace 193 23.7 The Berezinian of a linear transformation 194 23.8 Bilinear forms 198 23.9 Star-structures and super-Hilbert spaces 199 23.9.1 SuperUnitary Group 202 23.10Functions on superspace and supermanifolds 203 23.10.1Philosophical background 203 23.10.2The model superspace Rpjq 205 23.10.3Superdomains 206 23.10.4A few words about sheaves 207 23.10.5Definition of supermanifolds 209 23.10.6Supervector fields and super-differential forms 212 23.11Integration over a superdomain 215 23.12Gaussian Integrals 219 23.12.1Reminder on bosonic Gaussian integrals 219 23.12.2Gaussian integral on a fermionic point: Pfaffians 219 23.12.3Gaussian integral on Rpjq 224 23.12.4Supersymmetric Cancelations 225 23.13References 226 24. Determinant Lines, Pfaffian Lines, Berezinian Lines, and anomalies 227 24.1 The determinant and determinant line of a linear operator in finite dimensions227 24.2 Determinant line of a vector space and of a complex 229 24.3 Abstract defining properties of determinants 231 24.4 Pfaffian Line 231 24.5 Determinants and determinant lines in infinite dimensions 233 24.5.1 Determinants 233 24.5.2 Fredholom Operators 234 24.5.3 The determinant line for a family of Fredholm operators 235 24.5.4 The Quillen norm 236 24.5.5 References 237 { 4 { 24.6 Berezinian of a free module 237 24.7 Brief Comments on fermionic path integrals and anomalies 238 24.7.1 General Considerations 238 24.7.2 Determinant of the one-dimensional Dirac operator 239 24.7.3 A supersymmetric quantum mechanics 241 24.7.4 Real Fermions in one dimension coupled to an orthogonal gauge field 242 24.7.5 The global anomaly when M is not spin 243 24.7.6 References 244 25. Quadratic forms and lattices 244 25.1 Definition 245 25.2 Embedded Lattices 247 25.3 Some Invariants of Lattices 252 25.3.1 The characteristic vector 258 25.3.2 The Gauss-Milgram relation 258 25.4 Self-dual lattices 260 25.4.1 Some classification results 263 25.5 Embeddings of lattices: The Nikulin theorem 267 25.6 References 267 26. Positive definite Quadratic forms 267 27. Quivers and their representations 267 1. Introduction Linear algebra is of course very important in many areas of physics. Among them: 1. Tensor analysis - used in classical mechanics and general relativity. 2. The very formulation of quantum mechanics is based on linear algebra: The states in a physical system are described by \rays" in a projective Hilbert space, and physical observables are identified with Hermitian linear operators on Hilbert space. 3. The realization of symmetry in quantum mechanics is through representation theory of groups which relies heavily on linear algebra. For this reason linear algebra is often taught in physics courses. The problem is that it is often mis-taught. Therefore we are going to make a quick review of basic notions stressing some points not usually emphasized in physics courses. We also want to review the basic canonical forms into which various types matrices can be put. These are very useful when discussing various aspects of matrix groups. { 5 { For more information useful references are Herstein, Jacobsen, Lang, Eisenbud, Com- mutative Algebra Springer GTM 150, Atiyah and MacDonald, Introduction to Commutative Algebra. For an excellent terse summary of homological algebra consult S.I. Gelfand and Yu. I. Manin, Homological Algebra. We will only touch briefly on some aspects of functional analysis - which is crucial to quantum mechanics. The standard reference for physicists is: Reed and Simon, Methods of Modern Mathematical Physics, especially, vol. I. 2. Basic Definitions Of Algebraic Structures: Rings, Fields, Modules, Vec- tor Spaces, And Algebras 2.1 Rings In the previous chapter we talked about groups. We now overlay some extra structure on an abelian group R, with operation + and identity 0, to define what is called a ring. The new structure is a second binary operation (a; b) ! a · b 2 R on elements a; b 2 R. We demand that this operation be associative, a · (b · c) = (a · b) · c, and that it is compatible with the pre-existing additive group law. To be precise, the two operations + and · are compatible in the sense that there is a distributive law: a · (b + c) = a · b + a · c (2.1) (a + b) · c = a · c + b · c (2.2) Remarks 1.
Recommended publications
  • Complete Objects in Categories
    Complete objects in categories James Richard Andrew Gray February 22, 2021 Abstract We introduce the notions of proto-complete, complete, complete˚ and strong-complete objects in pointed categories. We show under mild condi- tions on a pointed exact protomodular category that every proto-complete (respectively complete) object is the product of an abelian proto-complete (respectively complete) object and a strong-complete object. This to- gether with the observation that the trivial group is the only abelian complete group recovers a theorem of Baer classifying complete groups. In addition we generalize several theorems about groups (subgroups) with trivial center (respectively, centralizer), and provide a categorical explana- tion behind why the derivation algebra of a perfect Lie algebra with trivial center and the automorphism group of a non-abelian (characteristically) simple group are strong-complete. 1 Introduction Recall that Carmichael [19] called a group G complete if it has trivial cen- ter and each automorphism is inner. For each group G there is a canonical homomorphism cG from G to AutpGq, the automorphism group of G. This ho- momorphism assigns to each g in G the inner automorphism which sends each x in G to gxg´1. It can be readily seen that a group G is complete if and only if cG is an isomorphism. Baer [1] showed that a group G is complete if and only if every normal monomorphism with domain G is a split monomorphism. We call an object in a pointed category complete if it satisfies this latter condi- arXiv:2102.09834v1 [math.CT] 19 Feb 2021 tion.
    [Show full text]
  • The Integral Geometry of Line Complexes and a Theorem of Gelfand-Graev Astérisque, Tome S131 (1985), P
    Astérisque VICTOR GUILLEMIN The integral geometry of line complexes and a theorem of Gelfand-Graev Astérisque, tome S131 (1985), p. 135-149 <http://www.numdam.org/item?id=AST_1985__S131__135_0> © Société mathématique de France, 1985, tous droits réservés. L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l’accord avec les conditions générales d’uti- lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Société Mathématique de France Astérisque, hors série, 1985, p. 135-149 THE INTEGRAL GEOMETRY OF LINE COMPLEXES AND A THEOREM OF GELFAND-GRAEV BY Victor GUILLEMIN 1. Introduction Let P = CP3 be the complex three-dimensional projective space and let G = CG(2,4) be the Grassmannian of complex two-dimensional subspaces of C4. To each point p E G corresponds a complex line lp in P. Given a smooth function, /, on P we will show in § 2 how to define properly the line integral, (1.1) f(\)d\ d\. = f(p). d A complex hypersurface, 5, in G is called admissible if there exists no smooth function, /, which is not identically zero but for which the line integrals, (1,1) are zero for all p G 5. In other words if S is admissible, then, in principle, / can be determined by its integrals over the lines, Zp, p G 5. In the 60's GELFAND and GRAEV settled the problem of characterizing which subvarieties, 5, of G have this property.
    [Show full text]
  • An Introduction to Operad Theory
    AN INTRODUCTION TO OPERAD THEORY SAIMA SAMCHUCK-SCHNARCH Abstract. We give an introduction to category theory and operad theory aimed at the undergraduate level. We first explore operads in the category of sets, and then generalize to other familiar categories. Finally, we develop tools to construct operads via generators and relations, and provide several examples of operads in various categories. Throughout, we highlight the ways in which operads can be seen to encode the properties of algebraic structures across different categories. Contents 1. Introduction1 2. Preliminary Definitions2 2.1. Algebraic Structures2 2.2. Category Theory4 3. Operads in the Category of Sets 12 3.1. Basic Definitions 13 3.2. Tree Diagram Visualizations 14 3.3. Morphisms and Algebras over Operads of Sets 17 4. General Operads 22 4.1. Basic Definitions 22 4.2. Morphisms and Algebras over General Operads 27 5. Operads via Generators and Relations 33 5.1. Quotient Operads and Free Operads 33 5.2. More Examples of Operads 38 5.3. Coloured Operads 43 References 44 1. Introduction Sets equipped with operations are ubiquitous in mathematics, and many familiar operati- ons share key properties. For instance, the addition of real numbers, composition of functions, and concatenation of strings are all associative operations with an identity element. In other words, all three are examples of monoids. Rather than working with particular examples of sets and operations directly, it is often more convenient to abstract out their common pro- perties and work with algebraic structures instead. For instance, one can prove that in any monoid, arbitrarily long products x1x2 ··· xn have an unambiguous value, and thus brackets 2010 Mathematics Subject Classification.
    [Show full text]
  • On Supermatrix Operator Semigroups 1. Introduction
    Quasigroups and Related Systems 7 (2000), 71 − 88 On supermatrix operator semigroups Steven Duplij Abstract One-parameter semigroups of antitriangle idempotent su- permatrices and corresponding superoperator semigroups are introduced and investigated. It is shown that t-linear idempo- tent superoperators and exponential superoperators are mutu- ally dual in some sense, and the rst give additional to expo- nential dierent solution to the initial Cauchy problem. The corresponding functional equation and analog of resolvent are found for them. Dierential and functional equations for idem- potent (super)operators are derived for their general t power- type dependence. 1. Introduction Operator semigroups [1] play an important role in mathematical physics [2, 3, 4] viewed as a general theory of evolution systems [5, 6, 7]. Its development covers many new elds [8, 9, 10, 11], but one of vital for modern theoretical physics directions supersymmetry and related mathematical structures was not considered before in application to operator semigroup theory. The main dierence between previous considerations is the fact that among building blocks (e.g. elements of corresponding matrices) there exist noninvertible objects (divisors 2000 Mathematics Subject Classication: 25A50, 81Q60, 81T60 Keywords: Cauchy problem, idempotence, semigroup, supermatrix, superspace 72 S. Duplij of zero and nilpotents) which by themselves can form another semi- group. Therefore, we have to take that into account and investigate it properly, which can be called a semigroup × semigroup method. Here we study continuous supermatrix representations of idempo- tent operator semigroups rstly introduced in [12, 13] for bands. Usu- ally matrix semigroups are dened over a eld K [14] (on some non- supersymmetric generalizations of K-representations see [15, 16]).
    [Show full text]
  • Majorana Spinors
    MAJORANA SPINORS JOSE´ FIGUEROA-O'FARRILL Contents 1. Complex, real and quaternionic representations 2 2. Some basis-dependent formulae 5 3. Clifford algebras and their spinors 6 4. Complex Clifford algebras and the Majorana condition 10 5. Examples 13 One dimension 13 Two dimensions 13 Three dimensions 14 Four dimensions 14 Six dimensions 15 Ten dimensions 16 Eleven dimensions 16 Twelve dimensions 16 ...and back! 16 Summary 19 References 19 These notes arose as an attempt to conceptualise the `symplectic Majorana{Weyl condition' in 5+1 dimensions; but have turned into a general discussion of spinors. Spinors play a crucial role in supersymmetry. Part of their versatility is that they come in many guises: `Dirac', `Majorana', `Weyl', `Majorana{Weyl', `symplectic Majorana', `symplectic Majorana{Weyl', and their `pseudo' counterparts. The tra- ditional physics approach to this topic is a mixed bag of tricks using disparate aspects of representation theory of finite groups. In these notes we will attempt to provide a uniform treatment based on the classification of Clifford algebras, a work dating back to the early 60s and all but ignored by the theoretical physics com- munity. Recent developments in superstring theory have made us re-examine the conditions for the existence of different kinds of spinors in spacetimes of arbitrary signature, and we believe that a discussion of this more uniform approach is timely and could be useful to the student meeting this topic for the first time or to the practitioner who has difficulty remembering the answer to questions like \when do symplectic Majorana{Weyl spinors exist?" The notes are organised as follows.
    [Show full text]
  • Research.Pdf (1003.Kb)
    PERSISTENT HOMOLOGY: CATEGORICAL STRUCTURAL THEOREM AND STABILITY THROUGH REPRESENTATIONS OF QUIVERS A Dissertation presented to the Faculty of the Graduate School, University of Missouri, Columbia In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy by KILLIAN MEEHAN Dr. Calin Chindris, Dissertation Supervisor Dr. Jan Segert, Dissertation Supervisor MAY 2018 The undersigned, appointed by the Dean of the Graduate School, have examined the dissertation entitled PERSISTENT HOMOLOGY: CATEGORICAL STRUCTURAL THEOREM AND STABILITY THROUGH REPRESENTATIONS OF QUIVERS presented by Killian Meehan, a candidate for the degree of Doctor of Philosophy of Mathematics, and hereby certify that in their opinion it is worthy of acceptance. Associate Professor Calin Chindris Associate Professor Jan Segert Assistant Professor David C. Meyer Associate Professor Mihail Popescu ACKNOWLEDGEMENTS To my thesis advisors, Calin Chindris and Jan Segert, for your guidance, humor, and candid conversations. David Meyer, for our emphatic sharing of ideas, as well as the savage question- ing of even the most minute assumptions. Working together has been an absolute blast. Jacob Clark, Brett Collins, Melissa Emory, and Andrei Pavlichenko for conver- sations both professional and ridiculous. My time here was all the more fun with your friendships and our collective absurdity. Adam Koszela and Stephen Herman for proving that the best balm for a tired mind is to spend hours discussing science, fiction, and intersection of the two. My brothers, for always reminding me that imagination and creativity are the loci of a fulfilling life. My parents, for teaching me that the best ideas are never found in an intellec- tual vacuum. My grandparents, for asking me the questions that led me to where I am.
    [Show full text]
  • Cohomological Approach to the Graded Berezinian
    J. Noncommut. Geom. 9 (2015), 543–565 Journal of Noncommutative Geometry DOI 10.4171/JNCG/200 © European Mathematical Society Cohomological approach to the graded Berezinian Tiffany Covolo n Abstract. We develop the theory of linear algebra over a .Z2/ -commutative algebra (n N), which includes the well-known super linear algebra as a special case (n 1). Examples of2 such graded-commutative algebras are the Clifford algebras, in particularD the quaternion algebra H. Following a cohomological approach, we introduce analogues of the notions of trace and determinant. Our construction reduces in the classical commutative case to the coordinate-free description of the determinant by means of the action of invertible matrices on the top exterior power, and in the supercommutative case it coincides with the well-known cohomological interpretation of the Berezinian. Mathematics Subject Classification (2010). 16W50, 17A70, 11R52, 15A15, 15A66, 16E40. Keywords. Graded linear algebra, graded trace and Berezinian, quaternions, Clifford algebra. 1. Introduction Remarkable series of algebras, such as the algebra of quaternions and, more generally, Clifford algebras turn out to be graded-commutative. Originated in [1] and [2], this idea was developed in [10] and [11]. The grading group in this case is n 1 .Z2/ C , where n is the number of generators, and the graded-commutativity reads as a;b ab . 1/hQ Qiba (1.1) D n 1 where a; b .Z2/ C denote the degrees of the respective homogeneous elements Q Q 2 n 1 n 1 a and b, and ; .Z2/ C .Z2/ C Z2 is the standard scalar product of binary .n 1/h-vectorsi W (see Section 2).
    [Show full text]
  • Arxiv:1906.03655V2 [Math.AT] 1 Jul 2020
    RATIONAL HOMOTOPY EQUIVALENCES AND SINGULAR CHAINS MANUEL RIVERA, FELIX WIERSTRA, MAHMOUD ZEINALIAN Abstract. Bousfield and Kan’s Q-completion and fiberwise Q-completion of spaces lead to two different approaches to the rational homotopy theory of non-simply connected spaces. In the first approach, a map is a weak equivalence if it induces an isomorphism on rational homology. In the second, a map of path-connected pointed spaces is a weak equivalence if it induces an isomorphism between fun- damental groups and higher rationalized homotopy groups; we call these maps π1-rational homotopy equivalences. In this paper, we compare these two notions and show that π1-rational homotopy equivalences correspond to maps that induce Ω-quasi-isomorphisms on the rational singular chains, i.e. maps that induce a quasi-isomorphism after applying the cobar functor to the dg coassociative coalge- bra of rational singular chains. This implies that both notions of rational homotopy equivalence can be deduced from the rational singular chains by using different alge- braic notions of weak equivalences: quasi-isomorphism and Ω-quasi-isomorphisms. We further show that, in the second approach, there are no dg coalgebra models of the chains that are both strictly cocommutative and coassociative. 1. Introduction One of the questions that gave birth to rational homotopy theory is the commuta- tive cochains problem which, given a commutative ring k, asks whether there exists a commutative differential graded (dg) associative k-algebra functorially associated to any topological space that is weakly equivalent to the dg associative algebra of singu- lar k-cochains on the space with the cup product [S77], [Q69].
    [Show full text]
  • 1. Introduction There Is a Deep Connection Between Algebras and the Categories of Their Modules
    Pr´e-Publica¸c~oesdo Departamento de Matem´atica Universidade de Coimbra Preprint Number 09{15 SEMI-PERFECT CATEGORY-GRADED ALGEBRAS IVAN YUDIN Abstract: We introduce the notion of algebras graded over a small category and give a criterion for such algebras to be semi-perfect. AMS Subject Classification (2000): 18E15,16W50. 1. Introduction There is a deep connection between algebras and the categories of their modules. The interplay between their properties contributes to both the structure theory of algebras and the theory of abelian categories. It is often the case that the study of the category of modules over a par- ticular algebra can lead to the use of other abelian categories, which are non-equivalent to module categories over any algebra. One of such exam- ples is the category of modules over a C-graded algebra, where C is a small category. Such categories appear in the joint work of the author and A. P. Santana [18] on homological properties of Schur algebras. Algebras graded over a small category generalise the widely known group graded algebras (see [16, 12, 8, 15, 14]), the recently introduced groupoid graded algebras (see [10, 11, 9]), and Z-algebras, used in the theory of operads (see [17]). One of the important properties of some abelian categories, that consider- ably simplifies the study of their homological properties, is the existence of projective covers for finitely generated objects. Such categories were called semi-perfect in [7]. We give in this article the characterisation of C-graded algebras whose categories of modules are semi-perfect.
    [Show full text]
  • UNITARY REPRESENTATIONS of REAL REDUCTIVE GROUPS By
    UNITARY REPRESENTATIONS OF REAL REDUCTIVE GROUPS by Jeffrey D. Adams, Marc van Leeuwen, Peter E. Trapa & David A. Vogan, Jr. Abstract. | We present an algorithm for computing the irreducible unitary repre- sentations of a real reductive group G. The Langlands classification, as formulated by Knapp and Zuckerman, exhibits any representation with an invariant Hermitian form as a deformation of a unitary representation from the Plancherel formula. The behav- ior of these deformations was in part determined in the Kazhdan-Lusztig analysis of irreducible characters; more complete information comes from the Beilinson-Bernstein proof of the Jantzen conjectures. Our algorithm traces the signature of the form through this deformation, counting changes at reducibility points. An important tool is Weyl's \unitary trick:" replacing the classical invariant Hermitian form (where Lie(G) acts by skew-adjoint operators) by a new one (where a compact form of Lie(G) acts by skew-adjoint operators). R´esum´e (Repr´esentations unitaires des groupes de Lie r´eductifs) Nous pr´esentons un algorithme pour le calcul des repr´esentations unitaires irr´eductiblesd'un groupe de Lie r´eductifr´eel G. La classification de Langlands, dans sa formulation par Knapp et Zuckerman, pr´esente toute repr´esentation hermitienne comme ´etant la d´eformation d'une repr´esentation unitaire intervenant dans la formule de Plancherel. Le comportement de ces d´eformationsest en partie d´etermin´e par l'analyse de Kazhdan-Lusztig des caract`eresirr´eductibles;une information plus compl`eteprovient de la preuve par Beilinson-Bernstein des conjectures de Jantzen. Notre algorithme trace `atravers cette d´eformationles changements de la signature de la forme qui peuvent intervenir aux points de r´eductibilit´e.
    [Show full text]
  • CR Singular Immersions of Complex Projective Spaces
    Beitr¨agezur Algebra und Geometrie Contributions to Algebra and Geometry Volume 43 (2002), No. 2, 451-477. CR Singular Immersions of Complex Projective Spaces Adam Coffman∗ Department of Mathematical Sciences Indiana University Purdue University Fort Wayne Fort Wayne, IN 46805-1499 e-mail: Coff[email protected] Abstract. Quadratically parametrized smooth maps from one complex projective space to another are constructed as projections of the Segre map of the complexifi- cation. A classification theorem relates equivalence classes of projections to congru- ence classes of matrix pencils. Maps from the 2-sphere to the complex projective plane, which generalize stereographic projection, and immersions of the complex projective plane in four and five complex dimensions, are considered in detail. Of particular interest are the CR singular points in the image. MSC 2000: 14E05, 14P05, 15A22, 32S20, 32V40 1. Introduction It was shown by [23] that the complex projective plane CP 2 can be embedded in R7. An example of such an embedding, where R7 is considered as a subspace of C4, and CP 2 has complex homogeneous coordinates [z1 : z2 : z3], was given by the following parametric map: 1 2 2 [z1 : z2 : z3] 7→ 2 2 2 (z2z¯3, z3z¯1, z1z¯2, |z1| − |z2| ). |z1| + |z2| + |z3| Another parametric map of a similar form embeds the complex projective line CP 1 in R3 ⊆ C2: 1 2 2 [z0 : z1] 7→ 2 2 (2¯z0z1, |z1| − |z0| ). |z0| + |z1| ∗The author’s research was supported in part by a 1999 IPFW Summer Faculty Research Grant. 0138-4821/93 $ 2.50 c 2002 Heldermann Verlag 452 Adam Coffman: CR Singular Immersions of Complex Projective Spaces This may look more familiar when restricted to an affine neighborhood, [z0 : z1] = (1, z) = (1, x + iy), so the set of complex numbers is mapped to the unit sphere: 2x 2y |z|2 − 1 z 7→ ( , , ), 1 + |z|2 1 + |z|2 1 + |z|2 and the “point at infinity”, [0 : 1], is mapped to the point (0, 0, 1) ∈ R3.
    [Show full text]
  • Chapter IX. Tensors and Multilinear Forms
    Notes c F.P. Greenleaf and S. Marques 2006-2016 LAII-s16-quadforms.tex version 4/25/2016 Chapter IX. Tensors and Multilinear Forms. IX.1. Basic Definitions and Examples. 1.1. Definition. A bilinear form is a map B : V V C that is linear in each entry when the other entry is held fixed, so that × → B(αx, y) = αB(x, y)= B(x, αy) B(x + x ,y) = B(x ,y)+ B(x ,y) for all α F, x V, y V 1 2 1 2 ∈ k ∈ k ∈ B(x, y1 + y2) = B(x, y1)+ B(x, y2) (This of course forces B(x, y)=0 if either input is zero.) We say B is symmetric if B(x, y)= B(y, x), for all x, y and antisymmetric if B(x, y)= B(y, x). Similarly a multilinear form (aka a k-linear form , or a tensor− of rank k) is a map B : V V F that is linear in each entry when the other entries are held fixed. ×···×(0,k) → We write V = V ∗ . V ∗ for the set of k-linear forms. The reason we use V ∗ here rather than V , and⊗ the⊗ rationale for the “tensor product” notation, will gradually become clear. The set V ∗ V ∗ of bilinear forms on V becomes a vector space over F if we define ⊗ 1. Zero element: B(x, y) = 0 for all x, y V ; ∈ 2. Scalar multiple: (αB)(x, y)= αB(x, y), for α F and x, y V ; ∈ ∈ 3. Addition: (B + B )(x, y)= B (x, y)+ B (x, y), for x, y V .
    [Show full text]