<<

TransparentTransparent glassglass -- ceramicsceramics Edgar D. Zanotto

Vitreous Materials Lab

Federal University of São Carlos, Brazil

www.lamav.ufscar.br

Presented at the IMI-NFG US-Japan Winter School , Jan 14, 2008 and Reproduced by the International Materials Institute for for use by the glass research community; Available at: www.lehigh.edu/imi Vitreous Materials Lab – www.lamav.ufscar.br OUTLINE

„ Introduction to glass- „ Brief literature review on TGC „ Potential applications of TGC „ Conditions for transparency „ Mature TGC – nanocrystals „ New TGC: Properties ‰ Sintered aluminate GC Opt & Mech ‰ IR transmitting CG Opt & Mech ‰ Ce: YAG GC for lighting Opt ‰ Laser crystallized GC Opt ‰ PTR GC Opt & Mech ‰ LGHC GC Opt & Mech „ Surprise.... „ Conclusions

Vitreous Materials Lab – www.lamav.ufscar.br Glass- synthesis

„ Entropy vs. T plot „ Heat-treatment plot

Vitreous Materials Lab – www.lamav.ufscar.br INTRODUCTION null porosity

controlled designed volume microstructures: crystallization size & shape & GLASS-CERAMICS uniform grain size, % crystallinity, high thermal and etc. chemical stability

tougher than reproducible optical transparency properties interesting electrical properties

Vitreous Materials Lab – www.lamav.ufscar.br INTRODUCTION

Applications of transparent glass-ceramics

Cooking ware Thermo-mechanical Fire resistant plates Security windows Telescope mirrors…

saturable absorber media; illumination devices using IR; heat-resistant materials that absorb UV, that reflect infrared and are transparent to visible light; Optical that absorb UV and fluoresce in red/IR; (potential) second harmonics generating; substrates for LCD devices; optical amplifiers for up-conver; substrates for arrayed waveguide grating (AWG); radiation sources of lamps; Laser pumps; Laser media; Materials for precision photolithography; ring laser gyroscopes; solar collectors; printed optical circuits; etc.

Vitreous Materials Lab – www.lamav.ufscar.br The inventor of GLASS-CERAMICS

S.D. Stookey discovering GC in the middle 1950s

Vitreous Materials Lab – www.lamav.ufscar.br LITERATURE REVIEW- PIONEERS OF TGC

STOOKEY,S.D. V Int. Congress on Glass, pp. V/1-8 1959

BORRELLI, N.F. ELECTRO-OPTIC EFFECT IN TRANSPARENT NIOBATE GLASS-CERAMIC SYSTEMS Journal of Applied Physics, 38 (11): 4243 1967

BEALL, G.H.; DUKE, D.A. TRANSPARENT GLASS-CERAMICS Journal of Materials Science, 4 (4): 340 1969

Recent articles in the next slide

Vitreous Materials Lab – www.lamav.ufscar.br LITERATURE REVIEW (TGC title ) Corning „ YEAR 112 ISI papers Schott „ 1967 1 Derwent II „ 1969 2 Nippon „ 1978 3 ~90 patents „ 1982 3 Others „ 1984 2 „ 1985 2 25 „ 1986 5 „ 1987 3 „ 1988 2 20 „ 1993 2 „ 1994 2 „ 1995 4 15 „ 1996 5 „ 1998 8 10 „ 1999 5 „ 2000 7 30 years „ 2001 9 5 „ 2002 11 „ 2003 5 „ 2004 20 0 „ 2005 5 1960 1980 2000 2020 „ 2006 5

Vitreous Materials Lab – www.lamav.ufscar.br Crystalline phases in TGC

„ Β−quartz ss „ Β-eucriptite „ Mullite Most TGC have „ Spinel „ Willemite „ Ghanite nanosize & „ Forsterite „ β-BBO small crystallized „ LiNbO3 „ NaNbO 3 volume fraction „ PbF2 „ LaF3 „ ZnO (~ 50% or less) „ Etc.

Vitreous Materials Lab – www.lamav.ufscar.br THEORY

atomic absorption (β) Light attenuation + surface reflection (R) scattering (S)

Incident scattered light Reflection losses (%) light Io Transmitted 12 light 10 reflected light reflected light 8

fluorescence R 6 4 2 2 I = Io (1− R) exp(−(β + S)x) 0 2 1 1.2 1.4 1.6 1.8 2 ⎛ n −1⎞ R = ⎜ ⎟ n ⎝ n +1⎠

Vitreous Materials Lab – www.lamav.ufscar.br Conditions for transparency

Transparent glass-ceramics

size << wavelength of light

Basic requirements low birefringence

nnglass ≅≅ nncrystal

Vitreous Materials Lab – www.lamav.ufscar.br Examples of commercially mature TGC

Vitreous Materials Lab – www.lamav.ufscar.br Corning’s VISION

Vitreous Materials Lab – www.lamav.ufscar.br VLT 8.2 m Zerodur mirror on its way to Paranal Observatory, Chile, Dec. 97/ Schott

Vitreous Materials Lab – www.lamav.ufscar.br ROBAX –Schott NEOCERAM – NIPPON KERAGLASS- Corning/ St. Gobain CERAN- Schott

„ .

Vitreous Materials Lab – www.lamav.ufscar.br NEW TRANSPARENT GC (yet on the development stage)

Vitreous Materials Lab – www.lamav.ufscar.br Bulk glasses and ultrahard nanoceramics based on alumina and rare-earth oxides by A. Rosenflanz et al. Nature 430, 761 - 764 (August 2004).

Nd Eu Er

IR transparent

2 mm tick

50-90% Al2O3

a, b: no dopants; c 5wt% Nd2O3; d 5wt% Eu2O3; e 5wt% Er2O3. All except b were hot-pressed at 905 °C at 34 MPa for 360 s.

Material b was hot-pressed for 1,200 s inducing partial crystallization, giving the opalescent appearance.

Vitreous Materials Lab – www.lamav.ufscar.br High alumina glasses and GC

Ultra hard Hardness against Al2O3 . content. High-alumina glasses and glass- ceramics surpass other oxides : BeO, MgO, Y2O3, ZrO2, TiO2, Y3Al5O12, Corning 9606 and 9608 GC, and are comparable to pure a- Al2O3 and b-Si3N4.

These compositions were crystallized directly from the melt during slow cooling.

Vitreous Materials Lab – www.lamav.ufscar.br IR transmitting chalco-sulfide glass- ceramics

Ge-Sb-S-Cs-Cl glass with CsCl crystals

X. Zhang et. al. , J. Non- crystalline 337 (2004) 130 Lab. glasses and ceramics, University of Rennes, France

Vitreous Materials Lab – www.lamav.ufscar.br Typical microstructure of IR glass-ceramics

100nm CsCl crystals

Zhang et. al.

Vitreous Materials Lab – www.lamav.ufscar.br IR transmission versus crystallinity

100 100 90

) 90 sample A 80 0 hour % 80 3 H ( 70 7 H 70 60 23 H 60 50 31 H 50 40 73 H 40 30 Transmission (%) Transmission 144 H 30 20 246 H 20 sample B 10 Transmission 10 sample A sample B 0 0 0.51.01.52.02.53.0 0123456789101112 Wavelength (µm) Wavelength (µm)

Zhang et. al.

Vitreous Materials Lab – www.lamav.ufscar.br Night vision

Vitreous MaterialsJacques Lab – Lucas www.lamav.ufscar.br Resistance to fracture propagation

10 µm 10 µm

GC Glass

Zhang et. al.

Vitreous Materials Lab – www.lamav.ufscar.br Glass-Ceramic for State Lighting - White LED

Ce:YAG-GC

Setsuhisa Tanabe Kyoto University, Kyoto, Japan

Shunsuke Fujita, Akihiko Sakamoto, Shigeru Yamamoto Nippon Electric Glass, Otsu, Japan

Presented at the ACerS meeting, Baltimore, April 2005

Vitreous Materials Lab – www.lamav.ufscar.br Solid-State Lighting (future)

Promise of LEDs for illumination Efficiency Life Incadescent Light Bulb 16 lm / W 1000h Fluorescent Lamp 80 lm / W 10,000h Today’s white LED 60 lm / W 20,000h Future white LED 200 lm / W 100,000h

Efficiently bright, broad spectrum, long-lifetime…

S. Tanabe et al.

Vitreous Materials Lab – www.lamav.ufscar.br YAG-GC from glass- microstructure

As-made Cerammed 7000 6000 XRD ps 5000 YAG 4000 / c y 3000

2000 intensit 1000 1cm 0 SEM 10 20 30 40 50 60 2θ / °

YAG 60% 20μm Crystalinity (wt%) S. Tanabe et al.

Vitreous Materials Lab – www.lamav.ufscar.br ModerateModerate transmissiontransmission ofof blueblue WhiteWhite lightlight YellowYellow fluorescencefluorescence TransmissionTransmission.. EmissionEmission (540nm)(540nm)

TransmissionTransmission tt == 0.5mm0.5mm Ce:YAGCe:YAG G.C. G.C.

ExcitationExcitation (460nm)(460nm) EmissionEmission a) b) intensity / arb. unit 10mm 10mm 380 480 580 680 780 a) Ce:YAG GC wavel ength / nm b) White light emission from Ce:YAG G.C. Vitreous Materials Lab – www.lamav.ufscar.br Laser crystallization in Nagaoka

Takayuki Komatsu & collaborators (Benino, Ihara, Fujiwara, et al.)

Department of Chemistry Nagaoka University of Technology Japan

Example: Appl. Phys. Lett., 82 (2003) 892, 83 (2003) 2796.

Vitreous Materials Lab – www.lamav.ufscar.br LaserLaser crystallizationcrystallization inin glassglass Nagaoka Rare-earth (Samarium) atom heat processing

1. CW Nd:YAG laser irradiation to Sm2O3 or Dy2O3 containing glasses 2. Absorption and non-radiative relaxation Irradiated region is heated Crystallization

Writing of nonlinear optical/ferroelectric crystal dots and lines ○ Sm2O3-BaO-B2O3 → β-BaB2O4 ○ Sm2O3-Bi2O3-B2O3 → SmxBi1-xBO3 ○ Sm2O3-MoO3-B2O3 → β’-Sm2(MoO4)3 ○ Sm2O3-K2O-P2O5 → KSm(PO3)4 20,000 J/cm2

Sm2O3-Bi2O3-B2O3 glass SmxBi1-xBO3 crystal Power: 0.66W Scanning speed: 10μm/s Polarization optical microscope Vitreous Materials Lab – www.lamav.ufscar.br 0.9 W

10Sm2O3.35Bi2O3.55B2O3 glass Komatsu Tg=474oC, Tx=574oC 0.8 W

SmxBi1-xBO3 crystal 0.66 W Temp. >> Tx

0.6 W Temp. < Tx Refractive index change 50μm Refractive index change

J. Am. Ceram. Soc. 88 (2005) 989 Vitreous Materials Lab – www.lamav.ufscar.br Laser crystallization in São Carlos

C. A. C. Feitosa, L. J. Q. Maia, A. L. Martinez, A. C. Hernandes, Valmor R. Mastelaro,

IFQSC, University of São Paulo, São Carlos, Brazil

Vitreous Materials Lab – www.lamav.ufscar.br 40BaO - 45B2O3 -15 TiO2 (BBT) Microstructures from two crystallization processes

BBT glass after irradiation with CO2 laser (λ= 10.6 μm) 4 min, 40 W/cm2. = 10,000 J/cm2 o o Glass at 300 C (Tg = 580 C)

BBT GC in resistive furnace at 620oC.

Mastelaro et. al. Vitreous Materials Lab – www.lamav.ufscar.br Surface crystallization of BBT glass

Vidros 4% e 15%

* BaTi(BO ) # (006) 3 2 # β-BBO

* (003) * (009) * (006)

# (104) 15% de TiO 2 20 μm # (006) Intensidade (u.a.) Intensidade

4% de TiO2

10 20 30 40 50 60 2 θ Graus

It is possible to produce policrystalline lines. 5 μm 200 μm Details; crystals within the line and diffraction pattern Mastelaro et. al. Vitreous Materials Lab – www.lamav.ufscar.br SHG in partially crystallized BBT glass

Mastelaro et. al.

Laser beam Nd:YAG (λ = 1064 nm)

Second harmonic generation

Vitreous Materials Lab – www.lamav.ufscar.br PTR Glasses Oxy fluor bromide glasses

S.D. Stookey et al. (1954) – Corning, USA L.B. Glebov et al. (1990) - Vavilov SOI, Russia + Creol/ UCF, USA

„ Composition

„ Major: SiO2, Na2O, ZnO, Al2O3

„ Minor: K2O, F, Br

„ Dopants (~200 ppm): Ag, Ce, Sb, Sn

„ Impurities ( < 2 ppm): transition metals

Vitreous Materials Lab – www.lamav.ufscar.br 4+ hν Ce PTR glass is a F-Br sodium-zinc-aluminum- Ce3+ e- silicate glass doped with Ag, Ce, Sn and Sb

Current technology at UCF/CREOL - optical quality PTR glasses with aperture up toVitreous 50 mm. Materials Lab – www.lamav.ufscar.br 4+ hν Ce Mechanism of photo-thermo-crystallization Ce3+ e-

Ce4+ Valence change Photoionization Valence change kT kT hν 3+ Ce - + 0 e Ag Ag Ag0 Ag0

kT kT Ag0 Ag0 Ag0 Ag0 Ag0 UV Electron Latent Ag0 Ag0 excitation Trapping Image Ag0 Ag0

kT kT Silver atoms Growth of Silver kT diffusion nanocrystal

Na+ Silver - - + nucleation F F Na kT center - + - + F Na F Na

Na+ 3D image (hologram) of object is transformed Ag0 Ag0 - F kT + 0 0 - kT to the phase pattern (refractive index variations) Na Ag Ag F Na+ caused by selective NaF crystal Sodium - + - F Na F fluoride distribution in accordance with the UV crystal intensity distribution in glass interior. Vitreous Materials Lab – www.lamav.ufscar.br PTRG (only the active ions are shown) Proposed mechanism of photo induced „ . crystallization

Vitreous Materials Lab – www.lamav.ufscar.br 4+ University of Central Florida hν Ce Ce3+ School of Optics - CREOL Laboratory of Photo-Induced Processes e-

Absorption spectrum of photo-thermo-refractive glass

2 HF

-1 1.5 COIL 2.7 μm Nd, Yb, Er 1 1-1.6 μm

Absorption, cm 0.5 DF 3.6-4.2 μm 0 0 1000 2000 3000 4000 Wavelength, nm

No detectable absorption in the range of 1 μm Absorption of hydroxylVitreous in the Materials range of Lab 4 μ –m www.lamav.ufscar.br PTR glasses

S.D. Stookey et. al.

Corning’s Fotalite Creol’s PTRG Hologram Leon Glebov et. al.

Vitreous Materials Lab – www.lamav.ufscar.br LARGE GRAIN, HIGHLY CRYSTALLINE, HIGHLY TRANSPARENT GC T. Berthier, V.M. Fokin, E.D. Zanotto LaMav- Federal University São Carlos, Brazil

Thiana Vlad Fokin Berthier

Vitreous Materials Lab – www.lamav.ufscar.br STRATEGY

Simultaneous compositional variation

of solid solution crystals and glassy matrix

decreases Δn

New type of transparent glass-ceramic small or large grain size high crystallized volume fraction

Vitreous Materials Lab – www.lamav.ufscar.br OPTICAL PROPERTIES

Crystal morphology Transmission Grain size Spectra Degree of crystallinity OM 200 nm – 1100 nm

Transmittance measured for different sample thicknesses

Estimated parameters (P and P ): 1 2 2 P1 = (1-R) I = P1 exp()− P2 x I0 P2 = (β+S)

Vitreous Materials Lab – www.lamav.ufscar.br MICROSTRUCTURES

The crystals are solid solutions: TA4+2xAE4-x[GF6O18] (0 ≤ x ≤ 1)

Their morphology can vary from T = trace element A = alkali J, spherical to V8, cubic AE = alkaline earth GF = Si, P, B

Vitreous Materials Lab – www.lamav.ufscar.br TRANSMITTANCE Morphology Distinct crystal shapes Different transmittances

V8, cubic 5-6 μm J, spherical 7-8 μm

crystal/crystal Interfaces are quite different for spherical and cubic crystals

Best transmittance Cubic crystals

Vitreous Materials Lab – www.lamav.ufscar.br TRANSMITTANCE Grain size glass J, spherical crystals, ~42% crystallized

I(λ) dependence

Crystal size

Affects P2 * Same crystalline fraction Importance of thermal history

Vitreous Materials Lab – www.lamav.ufscar.br TRANSMITTANCE Degree of crystallinity glass V8, cubic crystals (3-5 μm)

Glass V8 & T6, maximum transmission for ~ 95- 97% OM crystallinity

Vitreous Materials Lab – www.lamav.ufscar.br The beasts! Transparency of 4 mm thick specimens

Glass GC 97% crystallinity 50% crystallinity

Vitreous Materials Lab – www.lamav.ufscar.br DISCUSSION

1.64

18 1.62 crystals glassy matrix

16 crystal 1.60 14 , at% A C n

1 12 1.58 2 glass phase 10 0,0 0,2 0,4α 0,6 0,8 1,0 1.56

1.54 alkali content in 5 101520253035 crystals Alkali oxide, wt% 30% > glassy matrix EDS measurements

Vitreous Materials Lab – www.lamav.ufscar.br DISCUSSION

Simultaneous variations of the glass-matrix and s/s-crystal compositions High crytallized during crystallization fraction

refractive indexes reduced of crystal and glass crystal / glass verge interface

Main reasons for improved transparency in these new TGC

Vitreous Materials Lab – www.lamav.ufscar.br „Mechanical behaviour of HCHTGC

‰A new, specially designed, method of impact testing!

Vitreous Materials Lab – www.lamav.ufscar.br Impact testing of glass Courtesy of Leo Siiman, Creol/ UCF

Vitreous Materials Lab – www.lamav.ufscar.br „Don’t try this experiment in your lab!

Vitreous Materials Lab – www.lamav.ufscar.br Kic versus volume fraction crystallized

Anstis 1 Average grain size ⎛ E ⎞ 2 F K IC = 0.016 ⎜ ⎟ from 3 to 6 um ⎝ H ⎠ 3 c 2

Kic Anstis Kic Niihara kic Anstis (Thiana) 1.5 Kic Niihara (Thiana)

c ) 1/2 1.0 Nihara

1 2 Kic (MPa. m − − ⎛l ⎞ 2⎛ H⎞ 5⎛H a⎞ E kic=0,035⎜ ⎟ ⎜ φ⎟ ⎜ ⎟ glass 0.5 Ecr ~105 ⎜ ⎟ ⎜ ⎟ 71 GPa ⎝a⎠ ⎝E ⎠ ⎝ φ ⎠

0 20406080100 φ~3, Fr. cristalizada (%) a,l,c [um]

Vitreous Materials Lab – www.lamav.ufscar.br „Why do the transparency and impact strength drop significantly for > 97% crystallinity?

Vitreous Materials Lab – www.lamav.ufscar.br SPONTANEOUS CRACKING for > 97% crystallinity! accelerated 300X

„ .

Vitreous Materials Lab – www.lamav.ufscar.br CONCLUSIONS - highly transparent in the visible ~ 90% for 1mm New -nmto μm grain size type of TGC - up to 97% crystallized volume fraction - chemical durability OK - good mechanical properties, which can probably be much improved by ion- exchange. - can be drawn into fibers - luminescence ? doping with Cr and RE ions should be tested...

Vitreous Materials Lab – www.lamav.ufscar.br On the origem of misterious biomorphs and geoglyphs in Nazca, Peru, 200 B.C.

.

Vitreous Materials Lab – www.lamav.ufscar.br Sm2O3-Bi2O3-B2O3 glass SmxBi1-xBO3 crystal

SHG

Crystals

Courtesy of T. Komatsu

Bird in Nazca, Peru Vitreous Materials Lab – www.lamav.ufscar.br300300 μμmm VITREOUS MATERIALS LAB, UFSCar, São Carlos BRAZIL

Thank you!

Vitreous Materials Lab – www.lamav.ufscar.br