Effect of Crystallinity on the Properties of Polycaprolactone Nanoparticles Containing the Dual FLAP/Mpegs-1 Inhibitor BRP-187
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nanomaterials How to Analyze Nanomaterials Using Powder Diffraction and the Powder Diffraction File™
Nanomaterials How to analyze nanomaterials using powder diffraction and the Powder Diffraction File™ Cerium Oxide CeO2 PDF 00-064-0737 7,000 6,000 5,000 4,000 Intensity 3,000 2,000 1,000 20 30 40 50 60 70 80 90 100 110 120 Nanomaterials Table of Contents Materials with new and incredible properties are being produced around the world by controlled design at the atomic and molecular level. These nanomaterials are typically About the Powder Diffraction File ......... 1 produced in the 1-100 nm size scale, and with this small size they have tremendous About Powder Diffraction ...................... 1 surface area and corresponding relative percent levels of surface atoms. Both the size and available (reactive) surface area can contribute to unique physical properties, Analysis Tools for Nanomaterials .......... 1 such as optical transparency, high dissolution rate, and enormous strength. Crystallite Size and Particle Size ������������ 2 In this Technical Bulletin, we are primarily focused on the use of structural simulations XRPD Pattern for NaCI – An Example .... 2 in order to examine the approximate crystallite size and molecular orientation in nanomaterials. The emphasis will be on X-ray analysis of nanomaterials. However, Total Pattern Analysis and the �������������� 3 Powder Diffraction File electrons and neutrons can have similar wavelengths as X-rays, and all of the X-ray methods described have analogs with neutron and electron diffraction. The use of Pair Distribution Function Analysis ........ 3 simulations allows one to study any nanomaterials that have a known atomic and Amorphous Materials ............................ 4 molecular structure or one can use a characteristic and reproducible experimental diffraction pattern. -
A Dislocation Mechanism for Cryogenic Relaxations in Crystalline Polymers
Polymer Journal, Vol. 3, No. 3, pp 378-388 (1972) A Dislocation Mechanism for Cryogenic Relaxations in Crystalline Polymers Anne HILTNER and Eric BAER Division of Macromolecular Science, Case Western Reserve University, Cleveland, Ohio 44106, U.S.A. (Received September 28, 1971) ABSTRACT: The experimental properties of the 00 -relaxation observed in polyethylene, poly(oxymethylene), and poly(ethylene terephthalate) at about 50°K are reviewed. A mechanism is proposed involving the thermally activated redistribution of kinks along a discontinuous dislocation under an applied stress. The activation energy and relaxa tion intensity are discussed with reference to specific chain conformations in the dislo cation. It is suggested that the kinked dislocations arise from external stresses transferred to the crystalline or ordered regions of the polymer possibly via tie molecules. These stresses are greatest in deformed material or material annealed under constraint and accounts for the increase in peak height observed in these specimens. KEY WORDS Cryogenics/ Dislocation/ Polyethylene/ Poly(ethylene terephthalate) / Poly(oxymethylene) / a-Relaxation / Kink / Confor mation / Secondary relaxations above 77°K have been in the temperature range 4.2 to 77°K have been observed in many crystalline polymers and the reported by a number of authors. Previous effects of orientation and crystallinity on the workers however have been primarily concerned relaxation spectrum have been studied by vari with polymers containing side groups, and re ous investigators. Their results are reviewed laxations observed below 100°K were attributed in the excellent monograph by McCrum, Wil to motions of the pendent group.2- 7 This as liams, and Read.1 The possibility that linear, signment has been substantiated for the a-peak crystalline polymers might show relaxation pro in polystyrene (PS) by correlation of mechanical, cesses below 77°K has received less attention. -
Preparation and Modeling of Three‐Layered PCL/PLGA/PCL Fibrous
www.nature.com/scientificreports OPEN Preparation and modeling of three‐ layered PCL/PLGA/PCL fbrous scafolds for prolonged drug release Miljan Milosevic1,2,7, Dusica B. Stojanovic 3,7, Vladimir Simic1, Mirjana Grkovic3, Milos Bjelovic4, Petar S. Uskokovic3 & Milos Kojic1,5,6* The authors present the preparation procedure and a computational model of a three‐layered fbrous scafold for prolonged drug release. The scafold, produced by emulsion/sequential electrospinning, consists of a poly(d,l-lactic-co-glycolic acid) (PLGA) fber layer sandwiched between two poly(ε- caprolactone) (PCL) layers. Experimental results of drug release rates from the scafold are compared with the results of the recently introduced computational fnite element (FE) models for difusive drug release from nanofbers to the three-dimensional (3D) surrounding medium. Two diferent FE models are used: (1) a 3D discretized continuum and fbers represented by a simple radial one-dimensional (1D) fnite elements, and (2) a 3D continuum discretized by composite smeared fnite elements (CSFEs) containing the fber smeared and surrounding domains. Both models include the efects of polymer degradation and hydrophobicity (as partitioning) of the drug at the fber/surrounding interface. The CSFE model includes a volumetric fraction of fbers and diameter distribution, and is additionally enhanced by using correction function to improve the accuracy of the model. The computational results are validated on Rhodamine B (fuorescent drug l) and other hydrophilic drugs. Agreement with experimental results proves that numerical models can serve as efcient tools for drug release to the surrounding porous medium or biological tissue. It is demonstrated that the introduced three-layered scafold delays the drug release process and can be used for the time-controlled release of drugs in postoperative therapy. -
Structure and Morphology
Structure and Morphology • Into what types of overall shapes or conformations can polymer chains arrange themselves? • How do polymer chains interact with one another. • Into what types of forms or morphologies do the chains organize • What is the relationship of conformation and morphology to polymer microstructure. • What is the relationship of conformation and morphology to macroscopic properties. States of Temperature Matter Gas Condensation Usually consider; Evaporation • Solids • Liquids Liquid • Gases Crystallization Glass Transition Melting Solid Solid (Crystalline) (Glass) Polymers Temperature No Gaseous State More complex behaviour Viscoelastic liquid Glass Crystallization Transition Melting Semicrystalline Solid Glassy Solid States of Matter Small Molecules GasGas “1st-Order” Transitions Gas LiquidLiquid Cool Volume Liquid SolidSolid Solid ((Crystalline)Crystalline) Tc Temperature The Glassy State Observed Behavior depends on: •Structure •Cooling Rate •Crystallization Kinetics Cool Volume Gas Liquid Glassy or Melt GlassSolid Transition Liquid Glass Crystalline Solid Temperature Crystal Tg Tc Crystallizable materials can form metastable glasses. What about polymers like atactic polystyrene that cannot crystallize? Polymer Structure The Issues • Bonding & the Forces between Chains • Conformations • Ordered • Disordered • Stacking or Arrangement of Chains in Crystalline Domains • Morphology of Polymer Crystals Bonding and Intermolecular Interactions What are the forces between chains that provide cohesion in the solid state? What -
Effect of Oxygen Plasma Etching on Pore Size-Controlled 3D
Dental Materials Journal 2018; 37(4): 599–610 Effect of oxygen plasma etching on pore size-controlled 3D polycaprolactone scaffolds for enhancing the early new bone formation in rabbit calvaria Min-Suk KOOK1, Hee-Sang ROH2 and Byung-Hoon KIM2 1 Department of Oral and Maxillofacial Surgery, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea 2 Department of Dental Materials, School of Dentistry, Chosun University, Gwangju 61452, Republic of Korea Corresponding author, Byung-Hoon KIM; E-mail: [email protected] This study was to investigate the effects of O2 plasma-etching of the 3D polycaprolactone (PCL) scaffold surface on preosteoblast cell proliferation and differentiation, and early new bone formation. The PCL scaffolds were fabricated by 3D printing technique. After O2 plasma treatment, surface characterizations were examined by scanning electron microscopy, atomic force microscopy, and contact angle. MTT assay was used to determine cell proliferation. To investigate the early new bone formation, rabbits were sacrificed at 2 weeks for histological analyses. As the O2 plasma etching time is increased, roughness and hydrophilicity of the PCL scaffold surface increased. The cell proliferation and differentiation on plasma-etched samples was significantly increased than on untreated samples. At 2 weeks, early new bone formation in O2 plasma-etched PCL scaffolds was the higher than that of untreated scaffolds. The O2 plasma-etched PCL scaffolds showed increased preosteoblast differentiation as well as increased new bone formation. Keywords: 3D printing, Polycaprolactone, Oxygen plasma etching, Scaffolds, New bone formation known as solid freeform fabrication (SFF) technology. INTRODUCTION Among the SFF techniques, the fused deposition The need for repair of bone defects has been increasing modeling (FDM) method does not require any solvent because of tumor ablative surgery, congenital defects, and offers great ease and flexibility in material handling fractures, oral and maxillofacial treatment, osteoporosis and processing. -
Environmental Degradability of Polycaprolactone Under Natural Conditions
E3S Web of Conferences 10, 00048 (2016) DOI: 10.1051/e3sconf/20161000048 SEED 2016 Environmental degradability of polycaprolactone under natural conditions Katarzyna Krasowskaa, Aleksandra Heimowska and Magda Morawska Gdynia Maritime University, Department of Chemistry and Industrial Commodity Science, Morska 81-87 str.,Gdynia, Poland Abstract. The aim of this work was an estimation of susceptibility of biodegradable poly(-caprolactone) (PCL) to environmental degradation in different natural environments. The commercial poly(-caprolactone) film, the trade name “CAPA 680”, was degraded in the compost, pond, open and harbour area of the Baltic Sea. Characteristic parameters of all natural environments were monitored during the incubation of polymer samples and their influence on degradation of PCL was discussed. Susceptibility of PCL to degradation in natural environments was evaluated based on changes of weight, crystallinity and polymer surface morphology. The rate of environmental degradation of PCL depended on the incubation place, environmental conditions and decreased in order: compost>harbour area of the Baltic Sea>open area of the Baltic Sea>pond. 1 Introduction materials and fragmentation. Most polymers are too large to pass through cellular membranes, so they must In recent decades world consumption of polymers has be depolymerized to smaller molecules before they can increased exponentially. Polymers are used in many be adsorbed and degraded within microbial cells. areas, especially in the packaging, agriculture, medicine The monomers, dimers and oligomers of a polymer's etc. In the process of consuming products humans repeating units are much easily degraded generate plastic waste, which are responsible and mineralized, because they can be assimilated through for the problem of environmental pollution. -
Tribological Investigation of the Effects of Particle Size, Loading
Available online at www.sciencedirect.com Wear 264 (2008) 632–637 Tribological investigation of the effects of particle size, loading and crystallinity on poly(ethylene) terephthalate nanocomposites Praveen Bhimaraj a, David Burris b, W. Gregory Sawyer b, C. Gregory Toney b, Richard W. Siegel a, Linda S. Schadler a,∗ a Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA b Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA Received 1 June 2006; received in revised form 15 May 2007; accepted 30 May 2007 Available online 23 July 2007 Abstract The friction and wear properties of poly(ethylene) terephthalate (PET) filled with alumina nanoparticles were studied. The test matrix varied particle size, loading and crystallinity to study the coupled effects on the tribological properties of PET-based nanocomposites. The nanocomposite samples were tested in dry sliding against a steel counterface. The wear rate ranged from 2 × 10−6 to 53 × 10−6 mm3/Nm and the friction coefficient ranged from 0.21 to 0.41. Crystallinity was found to be a function of the processing conditions as well as the particle size and loading, while tribological properties were affected by crystallinity, filler size and loading. Wear rate and friction coefficient were lowest at optimal loadings that ranged from 0.1 to 10 depending on the crystallinity and particle size. Wear rate decreased monotonically with decreasing particle size and decreasing crystallinity at any loading in the range tested. © 2007 Published by Elsevier B.V. Keywords: Nanoparticle; Wear; Friction; Nanocomposite; Crystallinity; PET 1. Introduction Our prior work [10] showed that the addition of 38 nm alu- mina nanoparticles to PET resulted in an optimum filler content Polymeric nanocomposites continue to show unique tribolog- of about 2 wt.% which provided a 50% reduction in wear rate and ical behaviors, with previous studies showing that the addition a 10% reduction in coefficient of friction. -
Comparison of Polycaprolactone and Starch/Polycaprolactone Blends As Carbon Source for Biological Denitrification
Int. J. Environ. Sci. Technol. (2015) 12:1235–1242 DOI 10.1007/s13762-013-0481-z ORIGINAL PAPER Comparison of polycaprolactone and starch/polycaprolactone blends as carbon source for biological denitrification Z. Q. Shen • J. Hu • J. L. Wang • Y. X. Zhou Received: 8 August 2013 / Revised: 29 October 2013 / Accepted: 24 November 2013 / Published online: 14 January 2014 Ó Islamic Azad University (IAU) 2014 Abstract The cross-linked starch/polycaprolactone Introduction (SPCL10) and starch/polycaprolactone (SPCL12) blends were prepared, characterized and used as carbon source and Nitrate pollution is an important environmental problem in biofilm support for biological nitrate removal. The results most area of China, and the situation was getting worse and showed that SPCL10 and SPCL12 had similar performance worse (SEPA SEPA 2007). Among various methods on water absorption (about 21 %) and leaching capacity. available for nitrate removal, heterotrophic denitrification FTIR spectra confirmed the cross-linking reaction between seems to be the most promising process. In this process, starch and PCL. SEM displayed a thermoplastic nature of nitrate was reduced to nitrogen gas usually according to the - - SPCL10 and SPCL12. These blends could serve as solid following sequence: NO3 ? NO2 ? NO ? N2O ? carbon source and biofilm support for biological denitrifi- N2. Commonly, heterotrophic denitrifying bacteria use cation, and the acclimation time of microbial biofilm on the methanol, ethanol, acetic acid or glucose as carbon source surfaces of SPCL10, SPCL12 and PCL were about 2 days, when organic carbon-limited water or wastewater was 2 days and 16 days, respectively. The average denitrifica- treated; however, there is a risk of overdosing and requires tion rates were 0.0216, 0.0154 and 0.0071 mg NO3-N/(g h) a sophisticated and costly process control. -
Research on Crystal Growth and Defect Characterization at the National Bureau of Standards During the Period July to December 1962
National Bureau of Standards Library, N.W. Bldg NOV 2 6 1963 luuccd ^lote 174 RESEARCH ON CRYSTAL GROWTH AND DEFECT CHARACTERIZATION AT THE NATIONAL BUREAU OF STANDARDS DURING THE PERIOD JULY TO DECEMBER 1962 U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARDS Functions and Activities The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the develop- ment and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supple- ments the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover. Publications The results -
Preliminary Study of Characterization of Nanoparticles from Coconut Shell As Filler Agent in Composites Materials
MAYFEB Journal of Materials Science Vol 1 (2016) - Pages 1-9 Preliminary Study of Characterization of Nanoparticles from Coconut Shell as Filler Agent in Composites Materials A.Sulaeman, Faculty of Mathematics and Natural Sciences , Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia, Email: [email protected] Rudi Dungani, School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia, Email: [email protected] Md. Nazrul Islam, School of Life Science, Khulna University, Khulna - 9208, Bangladesh, Email: [email protected] H.P.S. Abdul Khalil, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia, Email: [email protected] Ihak Sumaradi, School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia, Email: [email protected] Dede Hermawan, Faculty of Forestry, Bogor Agricultural University, Dramaga-Bogor, Indonesia, Email: [email protected] Anne Hadiyane, School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia, Email: [email protected] Abstract- Agricultural wastes which include shell of coconut dry fruits (CS) can be used to prepare filler in polymer composite for commercial use. The raw CS was converted into nanoparticle in 4 steps, namely, grinding, refining, sieving and high energy ball mill. The CSNs was extracted by n-hexane for oil removal process. The presence of the oil was studied by Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray analysis (EDX) to identify the existence of the oil within the nanoparticle. The decomposition temperature of the nanoparticle was studied by thermal gravimetric analysis (TGA). -
Melting Point Depression in Biodegradable Polyesters
Melting Point Depression in Biodegradable Polyesters by Shona Murphy A thesis submitted to The University of Birmingham for the degree of MASTER OF RESEARCH School of Engineering Metallurgy and Materials The University of Birmingham University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Synopsis Investigation into the crystallisation kinetics and melting point depression of poly(L-lactide- co-meso-lactide) with approximately 3.3% D-lactide content (PLA 3051D) was undertaken. The rate of crystallisation was too slow for a crystallisation exotherm to be detected by the DSC, therefore hot-stage microscopy was used as an alternative method to characterise the crystallisation behaviour. Light intensity with time during isothermal crystallisation of a thin polymer film (<15µm) was measured. The results were normalised in order to calculate crystallisation half-life (t0.5). From half-life calculations, the optimal crystallisation temperature was found to be 118°C. By replacing the light dependant resistor with a digital camera, the diameter growths of individual spherulites could be measured minute-by-minute. Using the results obtained through hot-stage microscopy, re-processing of PLA could be carried out to restore the original crystallinity at Tmax 118°C. -
Investigation of Polyvinyl Chloride and Thermoplastic Polyurethane Waste Blend Miscibility
ISSN 1392–1320 MATERIALS SCIENCE (MEDŽIAGOTYRA). Vol. 19, No. 4. 2013 Investigation of Polyvinyl Chloride and Thermoplastic Polyurethane Waste Blend Miscibility 1 1 ∗ 1 Agnė LAUKAITIENĖ , Virginija JANKAUSKAITĖ , Kristina ŽUKIENĖ , 1 2 2 Valdas NORVYDAS , Serik MUNASSIPOV , Urynbassar JANAKHMETOV 1 Faculty of Design and Technologies, Kaunas University of Technology, Studentu str. 56, Kaunas LT-51424, Lithuania 2 Institute of Technology and Information Systems, Taraz State University, Tolei bi str. 60, 080000 Taraz, Kazakhstan http://dx.doi.org/10.5755/j01.ms.19.4.3145 Received 21 December 2012; accepted 15 May 2013 In this study the miscibility of polyvinyl chloride (PVC) and poly-ε-caprolactone based thermoplastic polyurethanes (TPU) waste blends were investigated by dilute solution viscometry. The miscibility criteria α, Δb, ΔB, and Δ[η] were used to assess the degree of miscibility of polymers in tetrahydrofuran solution. Also, to assess the miscibility and microstructure of PVC/TPU blends obtained by solution casting have been characterized by X-ray diffraction. The tensile strength and deformability properties varying on the blend composition were determined. It was found that PVC and TPU are partially miscible, their blend is amorphous and show two-phase structure. TPU changes the mechanical behaviour of PVC the blends. Increase of TPU content causes PVC elongation at break increase and tensile strength decreases. Keywords: polyvinyl chloride, thermoplastic polyurethane, miscibility, dilute solution viscometry, mechanical properties. ∗ 1. INTRODUCTION application can be found in almost all industrial branches [16, 15]. A high performance engineering polymer might Polymer blending is a practical method for the be produced by blending of PVC with thermoplastic development of new polymeric materials [1, 2].