<<

Supplementary Table S1. Preclinical studies of combinations of and novel targeted agents being evaluated in clinical trials Class/agent Cell lines/xenograft models Combination activity and possible mechanism of action Reference HDAC inhibitors U266 and MM.1S cells, and Synergistic apoptosis/cytotoxicity; increased ROS generation resulting in Pei et al. (1) CD138+ patient bone marrow cells mitochondrial dysfunction, caspase-3, -8, and -9 activation, NF-κB inhibition, JNK activation, and p53 induction Jeko-1 and Granta-519 cells Markedly increased ROS generation and decreased NF-κB activity Heider et al. (2) Hodgkin’s lymphoma cell lines HD- Increased apoptosis; inhibition of Stat6, Akt, and ERK Georgakis et al. LM2, L-428, and KM-H2 (3) NSCLC: NCI-H157, NCI-H358, NCI- Induced apoptosis through generation of ROS Denlinger et al. H460, and NCI-A549 (4) Pancreatic cancer cells and Aggresome disruption, resulting in ER stress and synergistic apoptosis Nawrocki et al. orthotopic pancreatic cancer (5) xenograft model Hepatoma cells: HepG2 and Huh6 Synergistic apoptosis and increased expression of c-Jun, phosphor-c- Emanuele et al. Jun, and FasL, and production of Bcl-Xs (6) Murine SCID-hu xenograft Slight inhibition of tumor growth and reduction of paraprotein levels Campbell et al. LAGlambda-1 model (7) Osteoclasts, MM.1S, RPMI-8226, Synergistic inhibition of osteoclastogenesis; greater inhibition of MM cell Feng et al. (8) OPM2 cell lines and xenograft proliferation, increased apoptosis and cell death – greater caspase murine model cleavage; increased xenograft tumor inhibition HNSCC cell lines and bortezomib- NF-κB inhibition; increased antitumor activity Duan et al. (9) resistant UMSCC-11A xenografts

1 46021_1_supp_1_l0z6ns.doc

LBH589 RPMI8226, MM.1S and OPM1 cells Formation of abnormal bundles of hyperacetylated α-tubulin, plus Catley et al.

Panobinostat and CD138-selected patient cells; diminished aggresome size; induces apoptosis (10); KMS-12PE, KMS-18, LP-1, NCI Growney et al. H929, KMS-11, RPMI8226, OPM-2, (11)

and U266 and 1S-luciferase tumor mouse model Depsipeptide Human myeloid leukemia cell lines Activation of the mitochondrial apoptotic pathway; translocation of the Sutheesophon HL-60 and K562 proapoptotic Bax, cytochrome c release et al. (12) Kinase inhibitors - Flavopiridol Bcr/Abl human leukemia cells Promotes bortezomib-mediated downregulation and apoptosis. Dai et al. (13) Inhibits cyclin-dependent kinase 1, 2, 4, 6 and 7, downregulates cyclin D1 and VEGF MCL cell lines Z138 and NCEB-1 Activated caspase-dependent apoptotic pathways Kapanen et al. (14) PD0332991 5T33 MM cells Synergistic induction of G1 arrest, apoptosis and cell death Menu et al. (15) CDK 4, 6 inhibitor with combination of bortezomib and PD0332991. Non-significant improvement in survival in xenograft model Sorafenib Multiple tumor cell lines: A549, Induction of apoptosis through Akt and c-Jun NH2-terminal kinase Yu et al. (16) 786-O, HeLa, MDA-MB-231, K562, pathways Jurkat, MEC-2, U251, D37 Farnesyl transferase inhibitors MM.1S, MM.1R, RPMI8226 and Increased caspase-3, -8, and -9 cleavage and downregulation of p-Akt Kaufman et al. U266 cell lines and primary human (17)

2 46021_1_supp_1_l0z6ns.doc

tumor cells RPMI8226/S and U937 fibronectin- Activation of ER stress, overcoming CAM-DR Yanamandra et adhered cells al. (18) HNSCC: Tu212, 686LN & Sqcc/Y1 Sequence-dependent synergistic apoptosis; downregulation of p-Akt Klass et al. (19)

HSP90 chaperone inhibitors Tanespimycin Human MM cells: MM.1s Increased accumulation of ubiquinated proteins; increased cleavage of Mitsaides et al. and IPI-504 and xenograft models capsase-12; ER-stress-induced apoptosis (20) and Sydor et al. (21) Tanespimycin MCF-7 human breast tumor cell line Increased accumulation of aggregated ubiquinated proteins; ER-derived Mimnaugh et al. cystolic vacuolization (22) Tanespimycin Human leukemia K562 & MV4-11 Synergistically induced apoptosis; abrogated aggresome formation and Rao et al. (23) ER stress response Tanespimycin 9 lymphoma cell lines (Hodgkin NR Georgakis et al. lymphoma, anaplastic large cell (24) lymphoma, mantle cell lymphoma) Pan-Bcl-2 inhibitor Obatoclax MM: LP1 and L363 cells Possible induction of the proapoptotic Noxa Gomez-Bougie et al. (25) & Trudel et al. (26) MCL: UPN-1 and Jeko cell lines Abrogation of bortezomib-induced Mcl-1 upregulation and possible Pérez-Galán et and primary patient cells induction of the proapoptotic Noxa al. (27) DNA MM cell death Increased caspase-8 and -9, and Mcl-1 cleavage, plus Bax, Puma, and Kiziltepe et al.

3 46021_1_supp_1_l0z6ns.doc

methyltransferase Noxa upregulation (28) inhibitor 5- azacytidine Akt inhibitor Myeloma cell lines β-catenin and survivin inhibition Hideshima et al. perifosine (29) Hydroxychloroquine MM1.S and RPMI-8226 MM cell Bortezomib and hydroxychloroquine synergistic toxicity with combination Shen et al. autophagy inducer lines index <1; increased activated caspase 3 (30) CAM-DR, cell-adhesion-mediated drug resistance; CLL, chronic lymphocytic leukemia; ER, endoplasmic reticulum; HNSCC, Head and neck squamous cell carcinoma cell lines; HDAC, ; HSP, heat shock protein; MCL, mantle cell lymphoma; MM, ; NR, not reported/discussed; ROS, reactive oxygen species; NSCLC, non-small-cell ; VEGF, vascular endothelial growth factor.

4 46021_1_supp_1_l0z6ns.doc

Supplementary Table S2. Ongoing clinical trials program of bortezomib in combination with novel targeted agents Class/agent Study type Tumor types Regimen Key findings and comments Institution(s) Study number (clinicaltrials.gov) HDAC inhibitors Vorinostat Phase l dose Metastatic or A: Bortezomib iv d 1, 4, Stratum A MTD: bortezomib 1.3 escalation unresectable solid 8, 11; vorinostat po d 1– mg/m2; vorinostat 400 mg qd. University of tumors 14, QD q 21 d cycle Stratum A responses, PR in 2 Wisconsin B: Bortezomib iv d 1, 4, patients: sarcoma and NSCLC. NCT00227513 8, 11; vorinostat po d 1– Bortezomib administered after 14, BID q 21 d cycle vorinostat

Vorinostat Phase l dose Relapsed or Bortezomib iv, d 1, 4, 8, MTD: Bortezomib 1.3 mg/m2; escalation refractory multiple 11; vorinostat po d 4–11, vorinostat 400 mg. Evaluable University of myeloma BID q 21 day cycle patients=21; 2 VGPR, 9 PR, 10 SD. Maryland dexamethasone (20 mg) Responses in prior bortezomib- NCT00310024 after cycle 2 treated patients. Co-administration did not affect vorinostat Vorinostat Phase l dose Surgically resectable Bortezomib iv, d 1, 8, 15 Treatment of newly diagnosed escalation stage IB–IIIA non- q 28 d; vorinostat po d 1, patients prior to tumor resection University of Virginia small cell lung cancer 2, 3, 8, 9, 10, 15, 16, and

5 46021_1_supp_1_l0z6ns.doc

NCT00731952 17 QD q 21 d cycle Vorinostat Phase I dose Advanced multiple Bortezomib iv, d 1, 4, 8, MTD not reached at 400 mg escalation myeloma 11; vorinostat po d 1–14 vorinostat and 1.3 mg/m2 Multisite, BID or QD q 21 d cycle bortezomib: 33 evaluable pts; M.D. Anderson 12 PR, 6 MR and 18 SD. Cancer Center, lead Subset of 17 patients previously NCT00111813 treated with bortezomib received this regimen – 6 PR, 4 MR and 7 SD Vorinostat Phase II Progressive, Bortezomib iv, d 1, 4, 8, Primary endpoint of 6-month North Central Cancer recurrent 11; vorinostat po d 4–11, progression-free survival. Treatment Group glioblastoma QD q 21 d cycle. Patient subset undergoing surgery NCT00641706 Pre-surgery treatment will receive 2 days’ combination cohort evaluated therapy and resected tissue evaluated for pAKT, p27, Bax, histone acetylation, proteasome inhibition and microarray gene expression profile Vorinostat Phase II Mantle cell lymphoma Bortezomib iv, d 1, 4, 8, Three cohorts: Mantle cell Moffit Cancer Center and diffuse large B- 11; vorinostat po d 1–5, lymphoma with or without prior NCT00703664 cell lymphomas 8–12 QD q 21 d cycle bortezomib and diffuse large B-cell lymphomas without prior bortezomib. Analyzing nuclear RelA by

6 46021_1_supp_1_l0z6ns.doc

immunohistochemistry as predictor of response Vorinostat Phase ll Non-small cell lung Bortezomib iv 1.3 mg/m2, Third-line therapy trial with 3-month University of cancer d 1, 4, 8, 11; vorinostat progression-free survival as primary Wisconsin po 400 mg, d 4–11, QD q endpoint NCT00798720 21 d cycle Vorinostat Phase ll Relapsed/refractory Bortezomib iv 1.3 mg/m2, VANTAGE 095 trial; open label Multisite multiple myeloma d 1, 4, 8, 11; vorinostat phase II NCT00773838 po 400 mg, d 4–11, QD q (2 prior therapies) 21 d cycle; dexamethasone (20 mg) d 1, 2, 4, 5, 8, 9, 11, and 12 Vorinostat Phase lll Relapsed/refractory Bortezomib iv 1.3 mg/m2, VANTAGE 088: International, trial ~ Multisite multiple myeloma d 1, 4, 8, 11; vorinostat 33 month treatment duration. NCT00773747 po 400 mg, d 1–14, QD q (1–3 prior therapies) 21 d cycle Primary outcome: progression-free vs bortezomib + placebo survival

Belinostat Phase l dose Advanced solid Bortezomib iv 1.3 mg/m2, None reported escalation tumors or lymphomas d 1, 4, 8, 11; belinostat University of po d 1–5 q 21 d cycle Colorado

7 46021_1_supp_1_l0z6ns.doc

NCT00348985 Phase l dose Relapsed multiple Bortezomib iv, d 1, 4, 8, Dexamethasone could be started escalation myeloma 11; oral panobinostat d 1, after cycle 1 if no response. Accrual Hackensack 3, 5 thrice-weekly; of 14 heavily pretreated patients, 8 University Medical dexamethasone (20 mg) with prior bortezomib. MTD pending Center after cycle 1 after 2 dose escalation cohorts. 1 NCT00532389 CR, 1 VGPR and 3 PR (24) Romidepsin Phase l/ll Relapsed/refractory Bortezomib iv, 1.3 mg/m2 MTD romidepsin 10 mg/m2 Peter MacCallum multiple myeloma d 1, 4, 8, 11; romidepsin 18 pts evaluable; ORR 12/18 (67%) Cancer Centre, iv 8, 10, 12, 14 mg/m2, d (4 CR/nCR, 4 VGPR, 4 PR) and 5 Australia 1, 8, 15 q 28 d cycle MR (28%) (25). NCT00431990 dexamethasone po, 20 Maintenance bortezomib on d 1, 8 q mg d 1, 2, 4, 5, 8, 9, 11, 28 d schedule 12 Romidepsin Phase II Relapsed/refractory Bortezomib iv, 1.3 mg/m2 Two strata; bortezomib resistant and Multisite US multiple myeloma d 1,4,8,11; romidepsin, d bortezomib sensitive NCT00765102 with prior bortezomib 1, 8,15 q 28 d cycle Bortezomib administered prior to therapy romidepsin Kinase inhibitors Phase l dose Recurrent or Bortezomib iv, d 1, 4, 8, Bortezomib followed by alvocidib escalation refractory indolent B- 11; alvocidib iv, d 1, 4, 8, administration; 38 patients accrued; Virginia cell neoplasms 11 (1 h bolus) q 21 d 2 CR, 7 PR, 3 MR, 15 SD. 2 MR in 3 Commonwealth cycle or hybrid infusion patients with prior bortezomib.

8 46021_1_supp_1_l0z6ns.doc

University (30 min bolus, 4 h CD138+ cells assessed for NFκB NCT00082784 infusion) d 1, 8 q 21 d nuclear localization, pJNK, Mcl-1 cycle and XIAP PD 0332991 Phase I/II Relapsed/refractory Bortezomib iv d 8, 11, Dexamethasone, 20 mg also taken CDK4/6 Inhibitor Multi-site US multiple myeloma 15, 18 q 28 d (Schedule on d 8, 11, 15 and 18. NCT00555906 A) or q 21 d (Schedule B) Rb phosphorylation status to be PD 0332991 po d 1–21 assessed (Schedule A) or 1–12 (Schedule B) Sorafenib Phase l dose Advanced cancer: Bortezomib iv, d 1, 4, 8, MTD: 200 mg BID sorafenib, 1.0 escalation Group 1: Solid tumors 11; sorafenib po, d 1–21 mg/m2 bortezomib Mayo Clinic Group 2: Multiple BID q 21 d cycle NCT00303797 myeloma or chronic lymphocytic leukemia Sorafenib Phase l/ll Relapsed/refractory Bortezomib iv, d 1, 8, 15, Assessing weekly bortezomib Sarah Cannon multiple myeloma 22; sorafenib po 200 mg schedule Research Institute BID q 35 d cycle NCT00536575 Sunitinib Phase I dose Chemorefractory Bortezomib iv, d 1, 8, 15, Two stages, dose escalation of escalation advanced solid 22; sunitinib po, d 1–28 sunitinib with fixed dose bortezomib Emory University tumors qd q 42 d cycle and then vice-versa NCT00720148

9 46021_1_supp_1_l0z6ns.doc

Temsirolimus Phase l/ll Relapsed/refractory Bortezomib iv, d 1, 8, 15, None reported Dana-Farber Cancer multiple myeloma 22; temsirolimus iv d 1, Institute 8, 15, 22, 29 q 35 d cycle NCT00483262 Everolimus Phase I dose Relapsed/refractory Bortezomib iv, d 1, 4, 8, Baseline tumor expression of mTOR escalation mantle cell 11; everolimus po d 1–21 and NFκB-related proteins (i.e. Case Comprehensive lymphoma, other qd or qod q 21 d cycle pS6K, pAKT, and cREL) and Cancer Center indolent non- FOXP3 by immunohistochemistry NCT0067112 Hodgkin’s lymphoma

Erlotinib Phase ll Relapsed/refractory Bortezomib+erlotinib vs Randomized study terminated due University of metastatic non-small erlotinib to insufficient activity at a planned Tennessee cell lung cancer interim analysis NCT00283634 (one prior cytotoxic therapy) Cetuximab Phase l dose Advanced solid Bortezomib iv, d 1, 8; EGFR-expressing tumor necessary escalation tumors cetuximab iv d 1, 8,15 q for eligibility. University of 21 d cycle MTD not reached Minnesota NCT00622674 Dasatinib Phase I Relapsed/refractory Bortezomib iv 1.0 or 1.3 Three cohorts: Multisite, multiple myeloma mg/m2 d 1, 4, 8, 11; B: 1.0, D: 50 international dasatinib po, 50, 100, B: 1.3, D: 100

10 46021_1_supp_1_l0z6ns.doc

M.D. Anderson 140 mg d 1–21 qd q 21 d B: 1.3, D: 140. Cancer Center, lead cycle Dexamethasone: 20 mg qd with NCT00560352 cohorts 2 and 3 Perifosine Phase l/ll Relapsed/refractory Bortezomib iv, 1.3 mg/m2 Dexamethasone allowed for patients Dana-Farber Cancer multiple myeloma d 1, 4, 8, 11; perifosine with PD after cycle 1. Institute (patients with prior po, d 1–21 qhs q 21 d MTD: 50 mg perifosine and 1.3 NCT00401011 progression on cycle mg/m2 bortezomib. bortezomib Subset of 35 patients refractory to treatment) bortezomib – ORR 37% and CR 3% (51) Farnesyl transferase inhibitors Tipifarnib Phase l dose Advanced acute Bortezomib iv, d 1, 4, 8, MTD: tipifarnib 600 mg BID, escalation leukemias or chronic 11; tipifarnib po, d 1–14, bortezomib 1.3 mg/m2. H. Lee Moffitt Cancer myelogenous BID q 21 d cycle FTase inhibition and proteasome Center leukemia in blast inhibition assessed in PBMC. NCT00383474 phase NF-κB binding, p-AKT, Bax or Bim measured in leukemic blasts pre- and post-treatment Tipifarnib Phase I/II Newly diagnosed Bortezomib iv, d 1, 8, 15; MTD: tipifarnib 600 mg BID, University of Bologna acute myeloid tipifarnib po, 600 mg, d bortezomib 1.0 mg/m2. 22 evaluable NCT00510939 lymphoma ineligible 1–21, BID q 28 d cycle pts: 5 CR, 1 PR, 19 SD, 12 PD.

11 46021_1_supp_1_l0z6ns.doc

for cytotoxic Evaluating 2 gene expression (>18 algorithms (RASGRP1/APTX) for years) or in first tipifarnib sensitivity (59) relapse (>60 years) Tipifarnib Phase l dose Relapsed/refractory Bortezomib iv, 1.0mg/m2 16 evaluable patients, 2 MR, 5 SD. escalation multiple myeloma d 1, 4, 8, 11; tipifarnib po MTD pending. Effects on HDAC6 Emory University d 2–15, BID q 21 d cycle and aggresome formation to be assessed (61) HSP90 chaperone inhibitors Tanespimycin Phase l dose Advanced solid Bortezomib iv, d 1, 4, 8, None reported escalation tumors or lymphoma 11; tanespimycin iv d 1, Mayo Clinic 4, 8, 11 q 21 d cycle NCT000960005 Tanespimycin Phase l dose Relapsed/refractory Bortezomib iv, d 1, 4, 8, None reported escalation hematologic 11; tanespimycin iv d 1, Ohio State University malignancies 4, 8, 11 q 21 d cycle NCT00103272 Tanespimycin Phase lll Multiple myeloma Bortezomib iv, 1.3 mg/m2 Progression-free survival endpoint Multicenter after first relapse d 1, 4, 8, 11; powered to show a 2.75 months NCT00546780 tanespimycin iv 340 benefit with addition of tanespimycin TIME-1 trial mg/m2 d 1, 4, 8, 11 q 21 to bortezomib

12 46021_1_supp_1_l0z6ns.doc

d cycle Tanespimycin Phase ll/lll Relapsed/refractory Bortezomib iv, 1.3 mg/m2 Three arm trial comparing standard Multisite US multiple myeloma (at d 1, 4, 8, 11; bortezomib dose and three different NCT00514371 least 3 prior tanespimycin iv doses of tanespimycin TIME-2 trial therapies) q 21 d cycle AUY-922 Phase I/II Relapsed/refractory Bortezomib iv; Combination with and without Multisite, multiple myeloma (1 AUY-922 iv; dexamethasone will be assessed US/international prior therapy) dexamethasone and also the PK and NCT00708292 pharmacodynamics of combination Other Targets Pan-Bcl-2 family Phase l/ll Mantle cell Bortezomib iv, 1.0–1.3 None reported inhibitor obatoclax Multisite US lymphoma mg/m2; obatoclax iv 30– NCT00407303 60 mg (24 h infusion) q 21 d cycle Obatoclax Phase l/ll Relapsed/refractory Bortezomib iv, d 1, 4, 8, None reported Mayo Clinic multiple myeloma 11; obatoclax iv (3 h NCT00719901 infusion) d 1, 8, 15 q 21 d cycle Obatoclax Phase I dose Aggressive Bortezomib iv, d 1, 8, 15, Bortezomib follows obatoclax escalation relapsed/recurrent 22 cycle; obatoclax iv, (3 administration. California Cancer non-Hodgkin’s h infusion) d 1, 8, 15, 22 Immunohistochemistry analysis of Consortium lymphoma q 35 d cycle Bcl-2, p53, Noxa, and Puma NCT00538187 proteins DNA Phase I dose Relapsed/refractory Bortezomib iv, d 2, 5, 9, Evaluation of target gene

13 46021_1_supp_1_l0z6ns.doc

methyltransferase escalation acute myeloid 12; azacytidine iv, 75 methylation and expression, DNA inhibitor Ohio State University leukemia and mg/m2 d 1–7 q 21 d cycle methyltransferase 1 (DNMT1) azacytidine NCT00624936 myelodysplastic protein expression and global syndromes methylation Monoclonal Antibodies Elotuzumab Phase I/II Relapsed/refractory Bortezomib iv, d 1, 4, 8, Elotuzumab infusion follows (anti-CS1) Multisite US multiple myeloma 11; elotuzumab iv, 2.5, bortezomib administration NCT00726869 (1–3 prior therapies) 5.0, 10, 20 mg/kg d 1, 11 q 21 d cycle Mapatumumab Phase II Relapsed/refractory Bortezomib iv, 1.3 mg/m2 Three arm randomized study of (anti-TRAIL-R1) Multisite multiple myeloma d 1, 4, 8, 11; bortezomib monotherapy US/international mapatumumab iv, 10 comparator arm and combination NCT00315757 (<2 prior therapies) mg/kg, 20 mg/kg d 1, q with two doses of mapatumumab 21 d cycle CNTO-328 Phase II Relapsed/refractory Bortezomib iv, 1.3 mg/m2 Randomized, double blind, placebo (anti-IL6) Multisite multiple myeloma d 1, 4, 8, 11 q 21 d; controlled trial; CNTO-328 + US/international CNTO 328 iv, 6 mg/kg, d bortezomib vs placebo + bortezomib NCT00401843 1, 15, 29 q 42 d cycle; dexamethasone, 20 mg at disease progression

14 46021_1_supp_1_l0z6ns.doc

Bevacizumab Phase I dose Solid tumors, Bortezomib iv, Both agents will be dose escalated (anti-VEGF) escalation lymphoma, 0.7 mg/m2 d 1, 8; from the listed starting doses M.D. Anderson myeloma bevacizumab iv, Cancer Center 2.5 mg/kg iv d 1 q 21 d NCT00428545 cycle

Bevacizumab Phase II Recurrent glioma or Bortezomib iv 1.7 mg/m2 Primary endpoint: 6-month Duke University gliosarcoma d 1, 4, 8, 11, 22, 25, 29, progression-free survival. NCT00611325 32; bevacizumab iv 15 Two cohorts: patients using enzyme mg/kg d 1, 21 q 42 d inducing and non-enzyme inducing cycle anti-epileptic drugs Bevacizumab Phase I/II Advanced or A: Bortezomib iv, 1 or 1.3 Two arms assessing twice weekly or UCLA Cancer Center recurrent renal cell mg/m2 d 1, 4, 8, 11; weekly bortezomib schedules. NCT00184015 cancer bevacizumab 15 mg/kg, Phase II primary endpoint: response d 1 q 21 d cycle rate B: Bortezomib iv, 1.6 or 1.8 mg/m2 d 1, 8; bevacizumab 15 mg/kg d 1, q 21 d cycle Bevacizumab Phase II Relapsed/refractory Bortezomib + AMBER study: randomized, placebo Multisite US multiple myeloma bevacizumab vs controlled study. NCT00473590 bortezomib + placebo Primary endpoint: progression-free survival Rituximab Phase II Waldenstrom’s Bortezomib iv 1.6 mg/m2 Primary treatment of symptomatic

15 46021_1_supp_1_l0z6ns.doc

(anti-CD20) M.D. Anderson macroglobulinemia – d 1, 8, 15, 22; rituximab Waldenstrom’s macroglobulinemia, Cancer Center newly diagnosed iv 375 mg/m2 d 8, 22 q no prior therapy allowed; two cycles NCT00492050 35 d cycle of investigational regimen given. Effect on stem cells analyzed Rituximab Phase ll Relapsed/refractory Bortezomib iv,1.6 mg/m2 Rituximab naive or sensitive Gruppo Italiano indolent and mantle d 1, 8, 15, 22; rituximab patients Multiregional cell lymphoma iv 375 mg/m2 d 8, 22 q NCT00509379 35 d cycle Rituximab Phase II Relapsed/refractory Bortezomib iv, 1.3 mg/m2 Induction and maintenance phases Ohio State University mantle cell and d 1, 4, 8, 11; rituximab iv, evaluated NCT 00201877 follicular non- 375 mg/m2 d 1, 8 q 21 d Hodgkin’s lymphoma cycle Trastuzumab Phase I dose HER2 expressing Bortezomib iv, d 1,4,8, Any prior HER2 therapy not allowed (anti-HER2) escalation breast cancer 11; trastuzumab iv Jules Bordet Institute weekly or q 3 week NCT00199212 Abbreviations: AMBER , A randomized, blinded, placebo-controlled, Multicenter, phase ll study of Bevacizumab in combination with bortEzomib in patients with Relapsed or refractory multiple myeloma; CR, complete response; EGFR, epidermal growth factor receptor; FTase, farnesyltransferase; HDAC6, histone deacetylase 6; HER2, human epidermal growth factor receptor 2 ; HSP, heat-shock protein; JNK, c-Jun N-terminal kinase; Mcl-1, myeloid cell leukemia 1 protein; MR, minimal response; MTD, maximum tolerated dose; mTOR, mammalian target of rapamycin; nCR, near-complete response; NF-κB, nuclear factor kappa B; NSCLC, non-small cell lung cancer; ORR, objective response rate; PBMC, peripheral blood mononuclear cells; PD, progressive disease; pJNK, phosphorylated JNK; PK, pharmacokinetics; PR, partial response; pS6K, p70 S6 kinase; Rb, Retinoblastoma protein; SD, stable disease; TIME, Tanespimycin in Myeloma Evaluation; TRAIL, tumor necrosis

16 46021_1_supp_1_l0z6ns.doc

factor-related apoptosis inducing ligand; VEGF, vascular endothelial growth factor; VGPR, very good partial response; XIAP, X-linked inhibitor of apoptosis protein.

17 46021_1_supp_1_l0z6ns.doc

Supplementary Table S3. Other novel agents investigated in combination with bortezomib in preclinical studies Agent Cell lines/xenograft models Possible mechanism of action Reference HDAC inhibitors PCI-24781 NHL (Ramos, HF1, SUDHL4) and Combination caused synergistic apoptosis in NHL cell Bhalla et al. (31) HL (L428) cell lines lines (combination index <0.2) Tubacin MM.1S cells and patient bone Synergistically augments bortezomib-induced Hideshima et al.

marrow cells cytotoxicity by c-Jun NH2-terminal kinase/caspase (32) activation, plus combined proteasome and aggresome inhibition UCL67022 RPMI8226/S and U266 cell lines HDAC6 and aggresome inhibition Maharaj et al. (33) and primary patient cells Valproic acid U266 cells Increased G1 cell cycle arrest and caspase-3 Kim et al. (34) activation;, p21 and p27 up-regulated; reduced IL-6 secretion and expression of cyclin A, cyclin D1, cyclin E, CDK2, CDK4, and CDK6 KD7150 CD138+ primary MM cells Induction of apoptosis due to DNA damage and Feng et al. (35) mitochondrial signaling; increase of acetylation of histones and activation of caspase-3, -8 and -9; induced oxidative stress and oxidative DNA by upregulation of heme oxygenase-1 and H2A.X phosphorylation, respectively JNJ-26481585 MEC1 cell line and patient-derived Induces apoptosis; induces potent histone acetylation Bommert et al. (36) CLL cells and HSP70 upregulation and bcl-2 downregulation

18 46021_1_supp_1_l0z6ns.doc

Farnesyl transferase inhibitors Lonafarnib MM.1S, MM.1R, RPMI8226, and p-Akt downregulation plus increased caspase-3, -8, and David et al. (37) U266 cell lines and primary human -9 cleavage tumor cells Kinase inhibitors Pazopanib MM.1S Synergistic cytotoxicity (combination index <1) in MM- Podar et al. (38) VEGFR, PDGFR, endothelial cell co-culture assay c-Kit inhibitor P276-00 MM.1S Combination was synergistic (combination index <1) , Raje et al. (39) CDK inhibitor pRB, Cdk4, cyclinD1 downregulated

SCIO-469 MM cells and mouse xenograft p53 induction, Hsp27 downregulation, Bcl-XL and Mcl-1 Navas et al. (40) p38 MAPK inhibitor plasmacytoma model of MM downregulation BIRB 796 MM.1S Hsp27 downregulation; increased caspase-8, and -9 and Yasui et al. (41) p38 MAPK inhibitor PARP cleavage BIBF 1000 Non-Ras-mutated t(4;14)- and Increased activation of the extrinsic apoptotic pathway – Bisping et al. (42) PDGF,bFGF,VEGF t(14;16)-positive cell lines MAPK p44/42 and PI3K/Akt inhibition, caspase-3 and -8 inhibitor with/without dexamethasone (but not -9) and PARP activation LSN2322600 Myeloma cells Hsp27 downregulation Ishitsuka et al. (43) p38 MAPK inhibitor Enzastaurin WM cell lines BCWM.1 & WM-WSU Inhibition of Akt signaling, together with increased Moreau et al. PKCβ, PI3K caspase-3, -8, and -9 cleavage (44,45) inhibitor SF1126 MM.1R, OPM1, MM.1S myeloma Combination with cell killing >50% vs cell killing rate of David et al.

19 46021_1_supp_1_l0z6ns.doc

PI3K inhibitor cell lines individual agents of <20% (additive effect) (46) CAL-101 Eleven MM cell lines (INA-6 & LB). Synergistic cytotoxicity with bortezomib against MM cells Ikeda et al. PI3K δ inhibitor Primary myeloma cells from 24 (combination index = 0.64) (47) patients TAE226 NCI H929 MM cell line Combination with synergistic killing at sub-lethal Sharkey et al. FAK, IGF-1R concentration of bortezomib (synergism quotient = 1.5) (48) inhibitor Pan-Bcl-2 inhibitor HA14-1 Epstein-Barr virus-immortalized Increased caspase-3, -8, and -9 cleavage Srimatkandada et lymphoblastoid cell lines (Sweigh al. (49) cells) ABT-737 MM.1S cells Mcl-1 downregulation Chauhan et al. (50,51) Other agents & combinations IPI-504 RPMI-8226 xenograft Bortezomib-IPI-504 combination resulted in complete Sydor et al. HSP90 inhibitor and durable regression of RPMI-8226. (21) Eleven human MCL cell lines Bortezomib-IPI-504 had synergistic cytotoxicity against Roue et al. MCL with combination indexes between 0.53 and 1.094 (52) CDDO-Im MM.1S and MM.1R cells Reduced mitochondrial membrane potential, superoxide Chauhan et al. (53) Triterpenoid generation, cytochrome c/Smac release, and caspase-3, -8, and -9 cleavage Rapamycin RPMI and U266 cell lines, primary NF-κB and PI3K/Akt inhibition O’Sullivan et al. mTOR inhibitor CD138+ patient cells, stromal cells (54)

20 46021_1_supp_1_l0z6ns.doc

TRAIL MM.1S cells NF-κB inhibition Mitsaides et al. (55) TRAIL MCL B cells NF-κB Inhibition; synergy impaired by intracellular Roue et al. (56) accumulation of c-FLIP Fas ligand APO010 MM1S, MM1R, U266, RPMI-LR5, Increased caspase-3, -7, -8, and -9, Mcl-1, and BIM Ocio et al. (57) RPMI-Dox40, MM144, RPMI8226 cleavage; decreased BID cleavage and OPM-1 cell lines WP-1130 ‘Classic’ and blastoid-variant MCL Bcl-2 down-regulation, Bax upregulation, and NF-κB Pam et al. (58) Jak2 inhibitor cell lines inhibition K562, NB4, NB4-LR1, Raji, SU- Synergistic induction of apoptosis with combination of Yan et al. DHL-4 cell lines, primary CML cells bortezomib and arsenic at reduced doses (59) Ritonavir Myeloma cell lines U266, RPMI Synergistic decrease in cell proliferation after treatment Shibata et al. 8226, ARH-77 HIV-protease with combination (60) inhibitor CRx-501 Ten MM cell lines including MM.1S, Combination of the two agents resulted in 2-fold shift in Rickles et al.

Adenosine A2A EJM, ANBL-6, MM.1R, KSM-12PE, IC50 compared to single agent (61) receptor agonist MOLP-8 Salmeterol MM RPMI-8226 xenograft in SCID Combination with bortezomib showed 70% tumor Rickles et al. Β2 Adrenergic CB17 mice volume reduction in contrast to 34% for salmeterol or (62) receptor agonist vehicle alone Nutlin 3 MDA-MB-231 (breast), DU145 Sub-lethal concentrations of bortezomib and nutlin-3 had Ooi et al. Mdm2 –p53 (prostate), ARO/HT-29 (colon), synergistic apoptotic response in solid tumors; increased (63) inhibitor SW579, FRO, TT (thyroid) expression of p53, p21, Mdm2, Bax, Noxa, PUMA G6.31 Primary MM cells obtained from Combination caused significant inhibition of tumor Campbell et al.

21 46021_1_supp_1_l0z6ns.doc

VEGF antibody patient when bortezomib sensitive growth and reduction in paraprotein (64) or resistant AVE1642 CD45(neg) LP-1 MM cell line Selectively inhibits the growth of CD45(neg) myeloma Descamps et al. IGF-1R antibody cells; increases bortezomib-induced apoptosis, which (65) correlates with an increase of Noxa expression AML, acute myeloid leukemia; CAM-DR, cell-adhesion-mediated drug resistance; CLL, chronic lymphocytic leukaemia; ER, endoplasmic reticulum; HDAC, histone deacetylase; HIF1-α, hypoxia-inducible factor alpha; HSP, heat shock protein; IGF, insulin-like growth factor; MCL, mantle cell lymphoma; mTOR, mammalian target of rapamycin; MM, multiple myeloma; NR, not reported/discussed; ROS, reactive oxygen species; SCID, severe combined immunodeficiency; TRAIL, tumor necrosis factor-related apoptosis inducing ligand; UPR, unfolded protein response; VEGF, vascular endothelial growth factor; WM, Waldenström’s macroglobulinemia.

22 46021_1_supp_1_l0z6ns.doc

References Reference List

1. Pei XY, Dai Y, Grant S. Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the bortezomib and histone deacetylase inhibitors. Clin Cancer Res 2004;10:3839-52. 2. Heider U, Kaiser M, Zavrski L et al. Synergistic interaction of the histone deacetylase inhibitor SAHA with the proteasome inhibitor bortezomib in mantle cell lymphoma [abstract]. Blood 2006;108:710a-1a. 3. Georgakis GV, Yazbeck VY, Li Y, Younes A. The histone deacetylase inhibitor vorinostat (SAHA) induces apoptosis and cell cycle arrest in Hodgkin lymphoma (HL) cell lines by altering several survival signaling pathways and synergizes with , and bortezomib [abstract]. Blood 2006;108:639a. 4. Denlinger CE, Rundall BK, Jones DR. Proteasome inhibition sensitizes non-small cell lung cancer to histone deacetylase inhibitor- induced apoptosis through the generation of reactive oxygen species. J Thorac Cardiovasc Surg 2004;128:740-8. 5. Nawrocki ST, Carew JS, Pino MS et al. Aggresome disruption: a novel strategy to enhance bortezomib-induced apoptosis in pancreatic cancer cells. Cancer Res 2006;66:3773-81. 6. Emanuele S, Lauricella M, Carlisi D et al. SAHA induces apoptosis in hepatoma cells and synergistically interacts with the proteasome inhibitor Bortezomib. Apoptosis 2007;12:1327-38. 7. Campbell R, Sanchez E, Steinberg Jet al. In vivo effects of vorinostat in combination with bortezomib [abstract]. Haematologica 2007;92:151. 8. Feng R, Oton AB, Patrene K et al. Combination of the proteasome inhibitor bortezomib and a histone deacetylase inhibitor PXD101 results in synergistic inhibition of osteoclastogenesis and significantly stronger inhibition of multiple myeloma growth in vitro and in vivo [abstract]. Blood 2006;108:153a-4a. 9. Duan J, Friedman J, Nottingham L, Chen Z, Ara G, Van WC. Nuclear factor-kappaB p65 small interfering RNA or proteasome inhibitor bortezomib sensitizes head and neck squamous cell carcinomas to classic histone deacetylase inhibitors and novel histone deacetylase inhibitor PXD101. Mol Cancer Ther 2007;6:37-50. 10. Catley L, Weisberg E, Kiziltepe T et al. Aggresome induction by proteasome inhibitor bortezomib and alpha-tubulin hyperacetylation by tubulin deacetylase (TDAC) inhibitor LBH589 are synergistic in myeloma cells. Blood 2006;108:3441-9. 11. Growney JD, Atadja P, Shao W et al. Efficacy of panobinostat (LBH589) in multiple myeloma cell lines and in vivo mouse model: tumor-specific cytotoxicity and protection of bone integrity in multiple myeloma [abstract]. Blood 2007;110:Abstract 1510. 12. Sutheesophon K, Kobayashi Y, Takatoku MA et al. Histone deacetylase inhibitor depsipeptide (FK228) induces apoptosis in leukemic cells by facilitating mitochondrial translocation of Bax, which is enhanced by the proteasome inhibitor bortezomib. Acta Haematol 2006;115:78-90.

23 46021_1_supp_1_l0z6ns.doc

13. Dai Y, Rahmani M, Pei XY, Dent P, Grant S. Bortezomib and flavopiridol interact synergistically to induce apoptosis in chronic myeloid leukemia cells resistant to imatinib mesylate through both Bcr/Abl-dependent and -independent mechanisms. Blood 2004;104:509-18. 14. Kapanen A, Tucker C, Chikh G, Bally M, Klasa R. Cell based assays completed with the mantle cell lymphoma cell lines Z138 and NCEB-1 indicate that combinations of bortezomid and flavopiridol interact to achieve synergistic activity [abstract]. Blood 2005;106:678a. 15. Menu E, Garcia J, Huang X et al. A novel therapeutic combination using PD 0332991 and bortezomib: study in the 5T33MM myeloma model. Cancer Res 2008;68:5519-23. 16. Yu C, Friday BB, Lai JP et al. Cytotoxic synergy between the multikinase inhibitor sorafenib and the proteasome inhibitor bortezomib in vitro: induction of apoptosis through Akt and c-Jun NH2-terminal kinase pathways. Mol Cancer Ther 2006;5:2378-87. 17. Kaufman JL, David E, Torre C, Sinha R, Lonial S. Enhanced levels of apoptosis by combination of farnesyl transferase inhibition (tipifarnib) and proteasome inhibition (bortezomib) in myeloma cell lines and primary myeloma cells and its mechanistic effects on Akt and caspase pathways [abstract]. Blood 2005;106:451a. 18. Yanamandra N, Colaco NM, Parquet NA et al. Tipifarnib and bortezomib are synergistic and overcome cell adhesion-mediated drug resistance in multiple myeloma and acute myeloid leukemia. Clin Cancer Res 2006;12:591-9. 19. Klass CM, Chen G, Zhang X, Lonial S, Khuri FR, Shin DM. Antitumor effects of combined bortezomib and tipifarnib in head and neck squamous cell carcinoma (HNSCC) cells [abstract]. J Clin Oncol 2006;24:300s. 20. Mitsiades CS, Mitsiades NS, McMullan CJ et al. Antimyeloma activity of heat shock protein-90 inhibition. Blood 2006;107:1092-100. 21. Sydor JR, Normant E, Pien CS et al. Development of 17-allylamino-17-demethoxygeldanamycin hydroquinone hydrochloride (IPI- 504), an anti-cancer agent directed against Hsp90. Proc Natl Acad Sci U S A 2006;103:17408-13. 22. Mimnaugh EG, Xu W, Vos M et al. Simultaneous inhibition of hsp 90 and the proteasome promotes protein ubiquitination, causes endoplasmic reticulum-derived cytosolic vacuolization, and enhances antitumor activity. Mol Cancer Ther 2004;3:551-66. 23. Rao R, Fiskus W, Herger B, Atadja P, Bhalla K. Inhibition of histone deacetylase (HDAC) 6 and/or heat shock protein (HSP) 90: A strategy to abrogate multi-level protective responses to misfolded proteins induced by proteasome inhibitors in human leukemia cells [abstract]. Blood 2006;108:80a. 24. Georgakis GV, Li Y, Younes A. Preclinical evaluation of the HSP-90 inhibitor 17AAG in Hodgkin and non-Hodgkin lymphomas: Induction of apoptosis and potentiation of chemotherapy cytotoxicity [abstract]. J Clin Oncol 2005;23:577s. 25. Gomez-Bougie P, Maiga S, Pellat-Deceunynck C, Jouan S, Bataille R, Amiot M. The pan-Bcl-2 inhibitor GX15-O70 induces apoptosis in human myeloma cells by Noxa induction and strongly enhances , bortezomib or TRAIL-R1 antibody apoptotic effect [abstract]. Blood 2006;108:991a. 26. Trudel S, Li ZH, Rauw J, Tiedemann RE, Wen XY, Stewart AK. Preclinical studies of the pan-Bcl inhibitor obatoclax (GX015-070) in multiple myeloma. Blood 2007;109:5430-8. 27. Perez-Galan P, Roue G, Villamor N, Campo E, Colomer D. The BH3-mimetic GX15-070 synergizes with Bortezomib in Mantle Cell Lymphoma by enhancing Noxa-mediated activation of Bak. Blood 2007;109:4441-9.

24 46021_1_supp_1_l0z6ns.doc

28. Kiziltepe T, Hideshima T, Catley L et al. 5-Azacytidine, a DNA methyltransferase inhibitor, induces ATR-mediated DNA double- strand break responses, apoptosis, and synergistic cytotoxicity with doxorubicin and bortezomib against multiple myeloma cells. Mol Cancer Ther 2007;6:1718-27. 29. Hideshima T, Yasui H, Catley L et al. Akt inhibitor perifosine-induced cytotoxicity is associated with significant downregulation of survivin in human multiple myeloma (MM) cells [abstract]. Blood 2006;108:974a. 30. Shen JP, Divakarau S, Pnduru S, Vogl D, Amaravadi R, Bradner J. The rationale for combined proteasome and autophagy inhibition in multiple myeloma established using novel translational platforms [abstract]. Blood 2008;112:Abstract 2755. 31. Bhalla S, David K, Mauro L et al. Histone deacetylase inhibitor (HDACi) PCI-24781 and bortezomib result in synergistic apoptosis in Hodgkin lymphoma (HL) and non-Hodgkin's lymphoma (NHL) cell lines: investigation of cell death and NFKB-mediated pathways [abstract]. Blood 2007;110:Abstract 3589. 32. Hideshima T, Bradner JE, Wong J et al. Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc Natl Acad Sci U S A 2005;102:8567-72. 33. Maharaj L, Popat R, Chahwan A et al. The novel HDAC inhibitor UCL67022 is highly potent in multiple myeloma and non-Hodgkins lymphoma and is enhanced by bortezomib [abstract]. Blood 2006;108:735a. 34. Kim B, Ahn K, Kim I, Park S, Kim B, Yoon S. Effect of combined treatment of bortezomib and valproic acid on multiple myeloma cells [abstract]. J Clin Oncol 2007;25:705s. 35. Feng R, Ma H, Hassig A, Payne JE, Smith ND, Mapara MY. KD7150, a novel mercaptoketone-based HDAC inhibitor, exerts potent anti-multiple myeloma effects invitro and in vivo by induction of DNA damage and mitochondrial signaling. Blood 2007;110:Abstract 2519. 36. Bommert K, Knop S, Arts J, King P, Page M, Leo E. Novel, 2nd generation HDAC inhibitor JNJ-26481585 exhibits potent antitumor activity against chronic lymphocytic leukemia cells in-vitro and ex-vivo. Blood 2007;110:Abstract 4679. 37. David E, Sun SY, Waller EK, Chen J, Khuri FR, Lonial S. The combination of the Farnesyl transferase inhibitor (Lonafarnib) and the proteasome inhibitor (Bortezomib) induces synergistic apoptosis in human myeloma cells that is associated with down-regulation of p-AKT. Blood 2005;106:4322-9. 38. Podar K, Tonon G, Sattler M et al. The small-molecule VEGF receptor inhibitor pazopanib (GW786034B) targets both tumor and endothelial cells in multiple myeloma. Proc Natl Acad Sci U S A 2006;103:19478-83. 39. Raje N, Hideshima T, Mukherjee S et al. Preclinical activity of P276-00, a novel small-molecule cyclin-dependent kinase inhibitor in the therapy of multiple myeloma. Leukemia 2009;23:961-70. 40. Navas TA, Nguyen AN, Hideshima T et al. Inhibition of p38alpha MAPK enhances proteasome inhibitor-induced apoptosis of myeloma cells by modulating Hsp27, Bcl-X(L), Mcl-1 and p53 levels in vitro and inhibits tumor growth in vivo. Leukemia 2006;20:1017-27. 41. Yasui H, Hideshima T, Ikeda H et al. BIRB 796 enhances cytotoxicity triggered by bortezomib, heat shock protein (Hsp) 90 inhibitor, and dexamethasone via inhibition of p38 mitogen-activated protein kinase/Hsp27 pathway in multiple myeloma cell lines and inhibits paracrine tumour growth. Br J Haematol 2007;136:414-23.

25 46021_1_supp_1_l0z6ns.doc

42. Bisping G, Wenning D, Kropff MH et al. Enhanced anti-myeloma activity by combination of receptor tyrosine kinase (RTK) inhibition, proteasome inhibition, and dexamethasone: Therapeutic implications for t(4;14) and t(14;16) multiple myeloma (MM) subgroups [abstract]. Blood 2005;106:37a. 43. Ishitsuka K, Hideshima T, Neri P et al. p38MAPK inhibitor LSN2322600 modulates the bone marrow microenvironment and inhibits osteoclastogenesis in multiple myeloma [abstract]. Blood 2006;108:5042. 44. Moreau AS, Jia X, Ngo HT et al. Protein kinase C inhibitor enzastaurin induces in vitro and in vivo antitumor activity in Waldenstrom macroglobulinemia. Blood 2007;109:4964-72. 45. Moreau A-S, Jia X, O'Sullivan G et al. The selective protein kinase C inhibitor, enzastaurin, induces in vitro and in vivo antitumor activity in Waldenstroms macroglobulinemia [abstract]. Blood 2006;108:707a. 46. David E, Peng X, Barwick B, Kaufman J, Garlich J, Lonial S. SF1126, a novel PI3K inhibitor results in downstream inhibition of the PI3K axis and displays sequence specific synergy when combined with bortezomib in multiple myeloma cells [abstract]. Blood 2008;112:Abstract 5167. 47. Ikeda H, Hideshima T, Okawa Y, Vallet S, Pozzi S, Santo L. CAL-101, a specific inhibitor of the p110 isoform of phosphatidylinositide 3-kinase induces cytotoxicity in multiple myeloma (MM) [abstract]. Blood 2008;112:Abstract 2753. 48. Sharkey J, Yeh SL, Spencer A. The focal adhesion kinase (FAK) inhibitor TAE226 exhibits in vitro and in vivo activity against multiple myeloma [abstract]. Blood 2006;108:Abstract 844. 49. Srimatkandada P, Loomis R, Lacy J. Bortezomib (VelcadeTM) and the Bcl-2 inhibitor HA14-1 synergistically stimulate apoptosis in EBV-transformed lymphocytes: A potential approach to treatment of EBV-associated lymphoproliferative disorders [abstract]. Blood 2005;106:677a. 50. Chauhan D, Velankar M, Brahmandam M et al. A novel Bcl-2/Bcl-X(L)/Bcl-w inhibitor ABT-737 as therapy in multiple myeloma. Oncogene 2007;26:2374-80. 51. Chauhan D, Brahmandam M, Hideshima T et al. Bcl-2, Mcl-1 and p53 expression confer sensitivity to Bcl-2 inhibitor ABT-737 in multiple myeloma [abstract]. Blood 2006;108:991a. 52. Roue G, Perez-Galan P, Lopez-Guerra M, Villamor N, Campo E, Colomer D. The novel HSP90 inhibitor IPI-504 synergizes with bortezomib in mantle cell lymphoma cells by targeting both NF-kappaB signaling and unfolded protein response and leading to increased mitochondrial apoptosis [abstract]. Blood 2007;110:Abstract 1601. 53. Chauhan D, Li G, Podar K et al. The bortezomib/proteasome inhibitor PS-341 and triterpenoid CDDO-Im induce synergistic anti- multiple myeloma (MM) activity and overcome bortezomib resistance. Blood 2004;103:3158-66. 54. O'Sullivan G, Leleu X, Jia X et al. The combination of the mTOR inhibitor rapamycin and proteasome inhibitor bortezomib is synergistic in vitro in multiple myeloma [abstract]. Blood 2006;108:996a-7a. 55. Mitsiades CS, Treon SP, Mitsiades N et al. TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: therapeutic applications. Blood 2001;98:795-804. 56. Roue G, Perez-Galan P, Lopez-Guerra M, Villamor N, Campo E, Colomer D. Selective inhibition of IkappaB kinase sensitizes mantle cell lymphoma B cells to TRAIL by decreasing cellular FLIP level. J Immunol 2007;178:1923-30.

26 46021_1_supp_1_l0z6ns.doc

57. Ocio EM, Maiso P, Garayoa M, Dupuis M, Pandiella A, San Miguel JF. Effiacacy of APO010, a Fas-activating molecule, in multiple myeloma [abstract]. Haematologica 2007;92:0316. 58. Pham LV, Tamayo AT, Yoshimura LC et al. Bortezomib synergizes with a novel Jak2 inhibitor, WP-1130, to inhibit cell growth and induce apoptosis in classic and blastoid-variant mantle cell lymphoma [abstract]. Blood 2006;108:711a. 59. Yan H, Wang YC, Li D et al. Arsenic trioxide and proteasome inhibitor bortezomib synergistically induce apoptosis in leukemic cells: the role of protein kinase Cdelta. Leukemia 2007;21:1488-95. 60. Shibata R, Basserman F, Chandra P et al. Ritonavir sensitizes multiple myeloma cells to bortezomib-induced apoptosis [abstract]. Blood 2008;112:Abstract 5194. 61. Rickles RJ, Pierce L, Giordano T, Avery W, Farwell M, Crowe D. Preclinical evaluation of CRx-501, a potent selective A2A agonist as a novel drug candidate for the treatment of multiple myeloma [abstract]. Blood 2009;112:Abstract 252. 62. Rickles RJ, Pierce L, Giordano T, Tam WF, Avery W, Farwell M. Adenosine A2A and beta-2 adrenergic receptor agonism: novel selective and synergistic multiple myeloma targets discovered through systematic combination screening [abstract]. Blood 2008;112:Abstract 252. 63. Ooi M, Hayden P, McMillan DC, Negri J, Delmore J. Interactions of the Mdm2/p53 and proteasome pathways: implications for combination strategies to enhance the anti-myeloma activity of bortezomib [abstract]. Blood 2008;112:Abstract 2651. 64. Campbell R, Sanchez E, Steinberg J, Share M, Wang J, Li M. An anti-VEGF antibody, in combination with bortezomib, markedly inhibits tumor growth in SCID-hu models of human multiple myeloma [abstract]. Blood 2007;110:Abstract 4802. 65. Descamps G, Gomez-Bougie P, Venot C, Moreau P, Bataille R, Amiot M. A humanised anti-IGF-1R monoclonal antibody (AVE1642) enhances Bortezomib-induced apoptosis in myeloma cells lacking CD45. Br J Cancer 2009;100:366-9.

27 46021_1_supp_1_l0z6ns.doc