A Phase I/II Trial of Belinostat in Combination with Cisplatin, Doxorubicin, and Cyclophosphamide in Thymic Epithelial Tumors: a Clinical and Translational Study

Total Page:16

File Type:pdf, Size:1020Kb

A Phase I/II Trial of Belinostat in Combination with Cisplatin, Doxorubicin, and Cyclophosphamide in Thymic Epithelial Tumors: a Clinical and Translational Study Published OnlineFirst September 4, 2014; DOI: 10.1158/1078-0432.CCR-14-0968 Clinical Cancer Cancer Therapy: Clinical Research A Phase I/II Trial of Belinostat in Combination with Cisplatin, Doxorubicin, and Cyclophosphamide in Thymic Epithelial Tumors: A Clinical and Translational Study Anish Thomas1, Arun Rajan1, Eva Szabo2, Yusuke Tomita1, Corey A. Carter3, Barbara Scepura1, Ariel Lopez-Chavez1, Min-Jung Lee1, Christophe E. Redon4, Ari Frosch1, Cody J. Peer1, Yuanbin Chen1, Richard Piekarz5, Seth M. Steinberg6, Jane B. Trepel1, William D. Figg1, David S. Schrump7, and Giuseppe Giaccone1 Abstract Purpose: This phase I/II study sought to determine the safety and maximum tolerated dose (MTD) of a novel schedule of belinostat, a histone deacetylase inhibitor (HDAC) administered before and in combi- nation with cisplatin (P), doxorubicin (A), and cyclophosphamide (C) in thymic epithelial tumors (TET). Antitumor activity, pharmacokinetics, and biomarkers of response were also assessed. Experimental Design: Patients with advanced, unresectable TET received increasing doses of belinostat as a continuous intravenous infusion over 48 hours with chemotherapy in 3-week cycles. In phase II, belinostat at the MTD was used. Results: Twenty-six patients were enrolled (thymoma, 12; thymic carcinoma, 14). Dose-limiting toxicities at 2,000 mg/m2 belinostat were grade 3 nausea and diarrhea and grade 4 neutropenia and thrombocytopenia, respectively, in two patients. Twenty-four patients were treated at the MTD of 1,000 mg/m2 with chemo- therapy (P, 50 mg/m2 on day 2; A, 25 mg/m2 on days 2 and 3; C, 500 mg/m2 on day 3). Objective response rates in thymoma and thymic carcinoma were 64% (95% confidence interval, 30.8%-89.1%) and 21% (4.7%–50.8%), respectively. Modulation of pharmacodynamic markers of HDAC inhibition and declines in þ regulatory T cell (Treg) and exhausted CD8 T-cell populations were observed. Decline in Tregs was associated þ þ with response (P ¼ 0.0041) and progression-free survival (P ¼ 0.021). Declines in TIM3 CD8 T cells were larger in responders than nonresponders (P ¼ 0.049). Conclusion: This study identified the MTD of belinostat in combination with PAC and indicates that the þ þ combination is active and feasible in TETs. Immunomodulatory effects on Tregs and TIM3 CD8 T cells warrant further study. Clin Cancer Res; 20(21); 5392–402. Ó2014 AACR. Introduction United States (1). Depending on morphology and atypia Thymic epithelial tumors (TET) are rare malignancies of the neoplastic epithelial cells and their relative pro- with an incidence of 0.13 per 100,000 person-years in the portion compared with lymphocytes, the World Health Organization (WHO) classification groups TETs into a continuum of tumors with increasing degrees of aggres- 1Medical Oncology Branch, National Cancer Institute, NIH, Bethesda, siveness:typesA,AB,B1,B2,B3,andC,thelatteralso Maryland. 2Division of Cancer Prevention, National Cancer Institute, NIH, Bethesda, Maryland. 3Department of Hematology and Oncology, Walter referred to as thymic carcinoma (2). The WHO classifi- Reed National Military Medical Center, Bethesda, Maryland. 4Laboratory of cation and the Masaoka staging system (3), which takes Molecular Pharmacology, National Cancer Institute, NIH, Bethesda, Mary- into account the integrity of the thymic capsule, degree of land. 5Cancer Therapy Evaluation Program, National Cancer Institute, NIH, Bethesda, Maryland. 6Biostatistics and Data Management Section, local tumor invasion, and presence of distant metastases National Cancer Institute, NIH, Bethesda, Maryland. 7Thoracic Surgery are useful predictors of the biologic behavior and prog- Section, Thoracic and Gastrointestinal Oncology Branch, National Cancer nosis of TETs. Type A thymoma has an excellent overall Institute, NIH, Bethesda, Maryland. survival (OS) rate of more than 95% at 10 years, whereas Note: Supplementary data for this article are available at Clinical Cancer the 5-year survival for types B2, B3, and thymic carcinoma Research Online (http://clincancerres.aacrjournals.org/). are 75%, 70%, and 48%, respectively (4). Thymic carci- Corresponding Author: Giuseppe Giaccone, Lombardi Cancer Center, Georgetown University, Research Building Room W503, 3970 Reservoir nomas account for less than 1% of TETs and display a Road NW, Washington, DC 20057. Phone: 202-687-7072; Fax: 202-687- more aggressive phenotype with higher likelihood of 0313; E-mail: [email protected] distant metastases than thymomas (5). doi: 10.1158/1078-0432.CCR-14-0968 Chemotherapy is used in patients with unresectable Ó2014 American Association for Cancer Research. or recurrent disease. Several regimens have been used, but 5392 Clin Cancer Res; 20(21) November 1, 2014 Downloaded from clincancerres.aacrjournals.org on September 24, 2021. © 2014 American Association for Cancer Research. Published OnlineFirst September 4, 2014; DOI: 10.1158/1078-0432.CCR-14-0968 Belinostat plus Chemotherapy for Thymic Epithelial Tumors had stable disease (SD), but no responses were seen in Translational Relevance patients with thymic carcinoma. Median times to progres- Belinostat is a histone deacetylase (HDAC) inhibitor sion and OS were 5.8 and 19.1 months, respectively, in the that inhibits both HDAC class I and II enzymes in overall population. nanomolar concentrations in vitro. Belinostat’s antitu- Belinostat has been shown to potentiate the antitumor mor activity is documented in previously treated patients activity of platinum-containing agents in vitro (12). Poten- with thymoma with minimal toxicity. In preclinical tiation of chemotherapy by HDAC inhibition is likely studies, belinostat potentiated antitumor activity of plat- secondary to altered gene expression patterns allowing inum-containing chemotherapy. In this phase I/II trial, increased chemotherapy sensitivity (13). Chromatin decon- belinostat was administered as a continuous intravenous densation could also facilitate increased access to DNA- infusion before and in combination with cisplatin, damaging agents and target drug-tolerant subpopulations doxorubicin, and cyclophosphamide (PAC) treatment which evolve via an altered chromatin state in response to in patients with advanced or recurrent thymic epithelial stressful exposures such as chemotherapy (14). tumors (TET). This trial identified the maximum toler- Here, we report results of a phase I/II study of belinostat ated dose (MTD) of belinostat in combination with PAC in combination with PAC in the first-line treatment of and demonstrated that the combination is active and advanced or recurrent TETs. We also evaluated the phar- feasible in TETs. Modulation of pharmacodynamic mar- macokinetics of belinostat when administered with chemo- kers of HDAC inhibition and declines in regulatory T cell þ therapy and pharmacodynamic effects in peripheral blood. (Treg) and exhausted CD8 T-cell populations were þ observed with belinostat. Declines in Tregs and TIM3 þ CD8 T cells were associated with responses. The immu- Materials and Methods nomodulatory effects of this novel schedule of belinostat Patients administration need further evaluation. Eligible patients were those more than 18 years of age with histologically confirmed advanced (Masaoka stage III or IV) TETs who had not received prior systemic therapy for advanced disease with Eastern Cooperative Oncology a combination of cisplatin, doxorubicin, and cyclophos- Group (ECOG) performance status score 0 or 1, life expec- phamide (PAC) is one of the most commonly used regi- tancy more than 3 months, and adequate organ function. mens (5, 6). In a phase II trial of 30 patients among Patients at increased cardiac risk were excluded, including whom only one patient had thymic carcinoma, this those with unstable angina, myocardial infarction within combination resulted in an objective response rate (ORR) the previous 12 months, baseline prolongation of QT/QTc of 50% (7). The median duration of response (DOR) and interval as demonstrated by repeated QTc interval > 500 ms OS were 12 and 38 months, respectively. Largely due to and long QT syndrome. Other exclusion criteria included: the rarity of the disease, there are no randomized control resectable disease, untreated brain metastases, radiotherapy trials comparing chemotherapies (5). or chemotherapy within 3 weeks before study drug admin- Acetylation and deacetylation of histones, the protein istration, or positive serology for HIV. component of the nucleosome core particle, play an impor- The study was approved by the National Cancer Institute tant role in the regulation of gene expression. The inhibition Institutional Review Board. The study was overseen by a of histone deacetylase (HDAC) enzymes by HDAC inhibi- Safety Monitoring Committee. All patients provided written tors (HDACi) shifts the dynamic equilibrium between the informed consent to participate in the study before under- deacetylation activity of HDACs, which has been associated going any study-related procedures. This trial was registered with gene silencing, and the acetylation activity of histone with ClinicalTrials.gov with the identifier NCT01100944. acetyltransferases (HAT), which has been associated with chromatin decondensation and gene expression. In partic- Study design ular, HDACi have been reported to induce the expression of Patients received 250 or 500 mg/m2 of belinostat via genes suppressing the malignant phenotype and have dem- 4 consecutive 12-hour continuous intravenous infusions onstrated promising anticancer activity against a variety of (CIVI)
Recommended publications
  • Vorinostat—An Overview Aditya Kumar Bubna
    E-IJD RESIDENTS' PAGE Vorinostat—An Overview Aditya Kumar Bubna Abstract From the Consultant Vorinostat is a new drug used in the management of cutaneous T cell lymphoma when the Dermatologist, Kedar Hospital, disease persists, gets worse or comes back during or after treatment with other medicines. It is Chennai, Tamil Nadu, India an efficacious and well tolerated drug and has been considered a novel drug in the treatment of this condition. Currently apart from cutaneous T cell lymphoma the role of Vorinostat for Address for correspondence: other types of cancers is being investigated both as mono-therapy and combination therapy. Dr. Aditya Kumar Bubna, Kedar Hospital, Mugalivakkam Key Words: Cutaneous T cell lymphoma, histone deacytelase inhibitor, Vorinostat Main Road, Porur, Chennai - 600 125, Tamil Nadu, India. E-mail: [email protected] What was known? • Vorinostat is a histone deacetylase inhibitor. • It is an FDA approved drug for the treatment of cutaneous T cell lymphoma. Introduction of Vorinostat is approximately 9. Vorinostat is slightly Vorinostat is a histone deacetylase (HDAC) inhibitor, soluble in water, alcohol, isopropanol and acetone and is structurally belonging to the hydroxymate group. Other completely soluble in dimethyl sulfoxide. drugs in this group include Givinostat, Abexinostat, Mechanism of action Panobinostat, Belinostat and Trichostatin A. These Vorinostat is a broad inhibitor of HDAC activity and inhibits are an emergency class of drugs with potential anti- class I and class II HDAC enzymes.[2,3] However, Vorinostat neoplastic activity. These drugs were developed with the does not inhibit HDACs belonging to class III. Based on realization that apart from genetic mutation, alteration crystallographic studies, it has been seen that Vorinostat of HDAC enzymes affected the phenotypic and genotypic binds to the zinc atom of the catalytic site of the HDAC expression in cells, which in turn lead to disturbed enzyme with the phenyl ring of Vorinostat projecting out of homeostasis and neoplastic growth.
    [Show full text]
  • Peripheral T-Cell Lymphomas
    Critical Reviews in Oncology/Hematology 99 (2016) 214–227 CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Contents lists available at ScienceDirect Critical Reviews in Oncology/Hematology jo urnal homepage: www.elsevier.com/locate/critrevonc Panoptic clinical review of the current and future treatment of relapsed/refractory T-cell lymphomas: Peripheral T-cell lymphomas a,∗ b c c d Pier Luigi Zinzani , Vijayveer Bonthapally , Dirk Huebner , Richard Lutes , Andy Chi , e,f Stefano Pileri a Institute of Hematology ‘L. e A. Seràgnoli’, Policlinico Sant’Orsola-Malpighi, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy b 1 Global Outcomes and Epidemiology Research (GOER), Millennium Pharmaceuticals Inc., 40 Lansdowne Street, Cambridge, MA 02139, USA c 1 Oncology Clinical Research, Millennium Pharmaceuticals Inc., 35 Lansdowne Street, Cambridge, MA 02139, USA d 1 Department of Biostatistics, Millennium Pharmaceuticals Inc., 40 Lansdowne Street, Cambridge, MA 02139, USA e Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University School of Medicine, Via Massarenti 8, 40138 Bologna, Italy f Unit of Hematopathology, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy Contents 1. Introduction . 214 2. Methodology. .215 3. Treatment of relapsed/refractory PTCL . 215 3.1. Conventional chemotherapy in relapsed/refractory PTCL. .215 3.2. Approved therapies in relapsed/refractory PTCL . 216 3.3. Investigational and off-label therapies in relapsed/refractory PTCL . 222 4. Concluding remarks . 224 Conflict of interest . 224 Funding . 224 Acknowledgments. .224 References . 224 Biography . 227 a r t i c l e i n f o a b s t r a c t Article history: Peripheral T-cell lymphomas (PTCLs) tend to be aggressive and chemorefractory, with about 70% of Received 29 June 2015 patients developing relapsed/refractory disease.
    [Show full text]
  • Metabolic Carbonyl Reduction of Anthracyclines — Role in Cardiotoxicity and Cancer Resistance
    Invest New Drugs DOI 10.1007/s10637-017-0443-2 REVIEW Metabolic carbonyl reduction of anthracyclines — role in cardiotoxicity and cancer resistance. Reducing enzymes as putative targets for novel cardioprotective and chemosensitizing agents Kamil Piska1 & Paulina Koczurkiewicz1 & Adam Bucki 2 & Katarzyna Wójcik-Pszczoła1 & Marcin Kołaczkowski2 & Elżbieta Pękala1 Received: 23 November 2016 /Accepted: 17 February 2017 # The Author(s) 2017. This article is published with open access at Springerlink.com Summary Anthracycline antibiotics (ANT), such as doxoru- monoHER, curcumin, (−)-epigallocatechin gallate, resvera- bicin or daunorubicin, are a class of anticancer drugs that are trol, berberine or pixantrone, and their modulating effect on widely used in oncology. Although highly effective in cancer the activity of ANT is characterized and discussed as potential therapy, their usefulness is greatly limited by their mechanism of action for novel therapeutics in cancer cardiotoxicity. Possible mechanisms of ANT cardiotoxicity treatment. include their conversion to secondary alcohol metabolites (i.e. doxorubicinol, daunorubicinol) catalyzed by carbonyl re- Keywords Anthracyclines . Cardiotoxicity . Resistance . ductases (CBR) and aldo-keto reductases (AKR). These me- Pharmacokinetics . Drug metabolism . Anticancer agents tabolites are suspected to be more cardiotoxic than their parent compounds. Moreover, overexpression of ANT-reducing en- zymes (CBR and AKR) are found in many ANT-resistant Introduction cancers. The secondary metabolites show decreased cytotoxic properties and are more susceptible to ABC-mediated efflux Anthracyclines (ANT) are a class of cell-cycle non-specific than their parent compounds; thus, metabolite formation is anticancer antibiotics that were first isolated from the considered one of the mechanisms of cancer resistance. Streptomyces genus in the early 1960s.
    [Show full text]
  • Management of Lung Cancer-Associated Malignant Pericardial Effusion with Intrapericardial Administration of Carboplatin: a Retrospective Study
    Management of Lung Cancer-Associated Malignant Pericardial Effusion With Intrapericardial Administration of Carboplatin: A Retrospective Study Hisao Imai ( [email protected] ) Gunma Prefectural Cancer Center Kyoichi Kaira Comprehensive Cancer Center, International Medical Center, Saitama Medical University Ken Masubuchi Gunma Prefectural Cancer Center Koichi Minato Gunma Prefectural Cancer Center Research Article Keywords: Acute pericarditis, Catheter drainage, Intrapericardial carboplatin, Lung cancer, Malignant pericardial effusion Posted Date: May 28th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-558833/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/8 Abstract Purpose: It has been reported that 5.1-7.0% of acute pericarditis is carcinomatous pericarditis. Malignant pericardial effusion (MPE) can progress to cardiac tamponade, which is a life-threatening condition. The effectiveness and feasibility of intrapericardial instillation of carboplatin (CBDCA; 150 mg/body) have never been evaluated in patients with lung cancer, which is the most common cause of MPE. Therefore, we evaluated the effectiveness and feasibility of intrapericardial administration of CBDCA following catheter drainage in patients with lung cancer-associated MPE. Methods: In this retrospective study, 21 patients with symptomatic lung cancer-associated MPE, who were administered intrapericardial CBDCA (150 mg/body) at Gunma Prefectural Cancer Center between January 2005 and March 2018, were included. The patients’ characteristics, response to treatment, and toxicity incidence were evaluated. Results: Thirty days after the intrapericardial administration of CBDCA, MPE was controlled in 66.7% of the cases. The median survival period from the day of administration until death or last follow-up was 71 days (range: 10–2435 days).
    [Show full text]
  • Belinostat (Beleodaq®)
    Belinostat (Beleodaq®) Belinostat (Beleodaq®) Pronounced: be-lin-oh-stat Classification: Histone Deacetylase Inhibitor About Belinostat (Beleodaq®) Belinostat is in a class of anti-cancer therapies called histone deacetylase (HDAC) inhibitors. Histone deacetylation is a biochemical process that is thought to play a role in promoting tumor growth. It does this by silencing some tumor suppressor genes, as well as other genes that are responsible for cell cycle progression, cell proliferation, programmed cell death (apoptosis), and differentiation (transformation of young cells into specialized cells). Therefore, blocking histone deacetylation may allow the body to block tumor growth and prevent progression. How to Take Belinostat Belinostat is given by intravenous (IV, into a vein) infusion. The dose and how often you receive this medication is based on your weight and will be decided by your provider. Your dose may be reduced if you are having severe side effects. Possible Side Effects of Belinostat There are a number of things you can do to manage the side effects of belinostat. Talk to your care team about these recommendations. They can help you decide what will work best for you. These are some of the most common or important side effects: Nausea and/or Vomiting Talk to your oncology care team so they can prescribe medications to help you manage nausea and vomiting. In addition, dietary changes may help. Avoid things that may worsen the symptoms, such as heavy or greasy/fatty, spicy or acidic foods (lemons, tomatoes, oranges). Try saltines, or ginger ale to lessen symptoms. Call your oncology care team if you are unable to keep fluids down for more than 12 hours or if you feel lightheaded or dizzy at any time.
    [Show full text]
  • Histone Deacetylase Inhibitors
    ANTICANCER RESEARCH 36 : 5019-5024 (2016) doi:10.21873/anticanres.11070 Review Histone Deacetylase Inhibitors: A Novel Therapeutic Weapon Αgainst Medullary Thyroid Cancer? CHRISTOS DAMASKOS 1,2* , SERENA VALSAMI 3* , ELEFTHERIOS SPARTALIS 2, EFSTATHIOS A. ANTONIOU 1, PERIKLIS TOMOS 4, STEFANOS KARAMAROUDIS 5, THEOFANO ZOUMPOU 5, VASILIOS PERGIALIOTIS 2, KONSTANTINOS STERGIOS 2,6 , CONSTANTINOS MICHAELIDES 7, KONSTANTINOS KONTZOGLOU 1, DESPINA PERREA 2, NIKOLAOS NIKITEAS 2 and DIMITRIOS DIMITROULIS 1 1Second Department of Propedeutic Surgery, “Laiko” General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece; 2Laboratory of Experimental Surgery and Surgical Research N.S. Christeas, Medical School, National and Kapodistrian University of Athens, Athens, Greece; 3Blood Transfusion Department, Aretaieion Hospital, Medical School, National and Kapodistrian Athens University, Athens, Greece; 4Department of Thoracic Surgery, “Attikon” General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece; 5Medical School, National and Kapodistrian University of Athens, Athens, Greece; 6Colorectal Department, General Surgery, The Princess Alexandra Hospital NHS Trust, Harlow, U.K.; 71st Department of Pathology, School of Medicine, University of Athens, Athens, Greece Abstract. Background/ Aim : Medullary thyroid cancer (MTC) is and histone deacetylase (HDAC) seems to play a potential role highly malignant, metastatic and recurrent, remaining generally to gene transcription. On the
    [Show full text]
  • Pharmaceutical Appendix to the Tariff Schedule 2
    Harmonized Tariff Schedule of the United States (2006) – Supplement 1 (Rev. 1) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2006) – Supplement 1 (Rev. 1) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABACAVIR 136470-78-5 ACEXAMIC ACID 57-08-9 ABAFUNGIN 129639-79-8 ACICLOVIR 59277-89-3 ABAMECTIN 65195-55-3 ACIFRAN 72420-38-3 ABANOQUIL 90402-40-7 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABCIXIMAB 143653-53-6 ACITEMATE 101197-99-3 ABECARNIL 111841-85-1 ACITRETIN 55079-83-9 ABIRATERONE 154229-19-3 ACIVICIN 42228-92-2 ABITESARTAN 137882-98-5 ACLANTATE 39633-62-0 ABLUKAST 96566-25-5 ACLARUBICIN 57576-44-0 ABUNIDAZOLE 91017-58-2 ACLATONIUM NAPADISILATE 55077-30-0 ACADESINE 2627-69-2 ACODAZOLE 79152-85-5 ACAMPROSATE 77337-76-9 ACONIAZIDE 13410-86-1 ACAPRAZINE 55485-20-6 ACOXATRINE 748-44-7 ACARBOSE 56180-94-0 ACREOZAST 123548-56-1 ACEBROCHOL 514-50-1 ACRIDOREX 47487-22-9 ACEBURIC
    [Show full text]
  • 151109EN ASH Abstract
    Onxeo Reports Initial Results of Phase 1 Trial Evaluating Belinostat in Combination with CHOP in Peripheral T-cell Lymphoma (PTCL) Full results to be reported in Oral Presentation at 2015 ASH (American Society of Hematology) Annual Meeting Data demonstrate 89% objective response rate, 72% complete response rate, and good safety profile of belinostat in combination with CHOP Study supports the interest of belinostat in combination with CHOP as first-line treatment for PTCL Paris (France), Copenhagen (Denmark), November 9, 2015 – Onxeo S.A. (Euronext Paris, NASDAQ Copenhagen: ONXEO), an innovative company specializing in the development of orphan oncology drugs, announced the initial results from its Phase 1 trial of belinostat, its potent, pan-HDAC (histone deacetylase) inhibitor, in combination with CHOP chemotherapy regimen as first-line treatment in patients with peripheral T-cell lymphoma (PTCL). The Bel-CHOP combination has demonstrated to be well-tolerated with all components of belinostat and CHOP given at their approved therapeutic doses. Furthermore, the efficacy data indicate that the combination is a promising new regimen in PTCL that Onxeo together with its partner Spectrum Pharmaceuticals will further evaluate in a Phase 3 randomized trial, planned to begin in 2016. The abstract has been accepted for oral presentation at the 57th American Society of Hematology (ASH) Annual Meeting & Exposition, being held December 5-8 in Orlando, FL, USA. The open-label, randomized, two-part trial enrolled a total of 23 patients, of which 11 were enrolled in the dose-escalation Part A to determine the study’s primary endpoint, the maximum tolerated dose (MTD), followed by 12 patients treated in Part B at this dose level.
    [Show full text]
  • Medical Drug Benefit Clinical Criteria Updates
    Medicaid Managed Care Provider Bulletin April 2021 Medical drug benefit Clinical Criteria updates On August 16, 2019, November 15, 2019, December 18, 2019, February 21, 2020, March 26, 2020, May 15, 2020, June 18, 2020, August 21, 2020, September 24, 2020, and November 20, 2020, the Pharmacy and Therapeutics (P&T) Committee approved the following Clinical Criteria applicable to the medical drug benefit for Healthy Blue. These policies were developed, revised or reviewed to support clinical coding edits. Visit Clinical Criteria to search for specific policies. If you have questions or would like additional information, use this email. Please see the explanation/definition for each category of Clinical Criteria below: • New: newly published criteria • Revised: addition or removal of medical necessity requirements, new document number • Updates marked with an asterisk (*): criteria may be perceived as more restrictive Please note: The Clinical Criteria listed below applies only to the medical drug benefits contained within the member’s medical policy. This does not apply to pharmacy services. Effective date Document number Clinical Criteria title New or revised 06/07/2021 ING-CC-0154* Givlaari (givosiran) New 06/07/2021 ING-CC-0155* Ethyol (amifostine) New 06/07/2021 ING-CC-0156* Reblozyl (luspatercept) New 06/07/2021 ING-CC-0157* Padcev (enfortumab vedotin) New 06/07/2021 ING-CC-0158* Enhertu (fam-trastuzumab deruxtecan-nxki) New 06/07/2021 ING-CC-0159* Scenesse (afamelanotide) New 06/07/2021 ING-CC-0161* Sarclisa (isatuximab-irfc) New
    [Show full text]
  • Beleodaq® (Belinostat)
    Beleodaq® (belinostat) (Intravenous) -E- Document Number: MODA-0381 Last Review Date: 04/06/2021 Date of Origin: 07/01/2019 Dates Reviewed: 07/2019, 10/2019, 01/2020, 04/2020, 07/2020, 10/2020, 04/2021 I. Length of Authorization Coverage will be provided for 6 months and may be renewed. II. Dosing Limits A. Quantity Limit (max daily dose) [NDC Unit]: − Beleodaq 500 mg powder for injection: 25 vials per 21 days B. Max Units (per dose and over time) [HCPCS Unit]: • All indications: 1,250 billable units every 21 days III. Initial Approval Criteria 1 Coverage is provided in the following conditions: • Patient is at least 18 years of age; AND Universal Criteria 1,2 • Used as a single agent; AND T-Cell Lymphomas 1,2,4 • Peripheral T-Cell Lymphoma (PTCL) † Ф 3,6,7,10 (Including: Angioimmunoblastic T-cell lymphoma ‡; Peripheral T-cell lymphoma not otherwise specified ‡; Anaplastic large cell lymphoma (ALK-negative only) ‡) o Used as subsequent therapy for relapsed or refractory disease Proprietary & Confidential © 2021 Magellan Health, Inc. Preferred therapies and recommendations are determined by review of clinical evidence. NCCN category of recommendation is taken into account as a component of this review. Regimens deemed equally efficacious (i.e., those having the same NCCN categorization) are considered to be therapeutically equivalent. † FDA-labeled indication(s); ‡ Compendia Recommended Indication(s); Ф Orphan Drug IV. Renewal Criteria 1,4,5 Coverage can be renewed based upon the following criteria: • Patient continues to meet universal and other indication-specific relevant criteria such as concomitant therapy requirements (not including prerequisite therapy), performance status, etc.
    [Show full text]
  • Phase I Pharmacokinetic Study of Belinostat for Solid Tumors and Lymphomas in Patients with Varying Degrees of Hepatic Dysfunction
    CTEP #8846 Clinical Center #11-C-0060 Phase I Pharmacokinetic Study of Belinostat for Solid Tumors and Lymphomas in Patients with Varying Degrees of Hepatic Dysfunction Abbreviated Title: PhI Belinostat ODWG Coordinating Center: Developmental Therapeutics Clinic (DTC) National Cancer Institute 10 Center Drive, 12N226 Bethesda, MD 20892 Principal Investigator: Naoko Takebe, MD, PhDA-E, DTC Bldg 31 Room 3A44 Bethesda, MD 20892 Phone: (240) 781-3398; Fax: (240) 541-4515 [email protected] NIH Co-Investigators: James H. Doroshow, MDA-E, DCTD Alice P. Chen, MDA-E, DCTD Howard Streicher, MDA-E, CTEP/DCTD Geraldine O’Sullivan Coyne, MDA-E, DCTD Non-NCI Co-investigators Lamin Juwara, CRNPA,B,E, Leidos Biomed/FNLCR Participating Centers: NCI Organ Dysfunction Working Group (ODWG): Albert Einstein College of Medicine University of California Davis Cancer Center Emory University University of Southern California/Norris Karmanos Cancer Institute Comprehensive Cancer Center City of Hope Comprehensive Cancer Center Referral Contact: Nancy Moore, RNA,B,E Bldg 10/RM 8D53 National Cancer Institute Phone: (240) 760-6045; Fax: (301) 451-5625 [email protected] Roles: Aobtains information by intervening or interacting with living individuals for research purposes; Bobtains identifiable private information about living individuals; Cobtains the voluntary informed consent of individuals to be subjects; Dmakes decisions about subject eligibility; Estudies, interprets, or analyzes identifiable private information or data/specimens for research purposes 1 CTEP #8846 Clinical Center #11-C-0060 CoH Pharmacy Contact: Timothy Synold, Pharm D FWA#: 00000692 (626) 256-4673 x 62110 Fax: (626) 471-9376 PI: Vincent Chung, MD, FACP [email protected] (626) 471-9200 Fax: (626) 301-8233 Cecilia Lau, Clinical Pharmacist [email protected] (626) 256-4673 x 64165 Fax: (626) 301-5237 PI: Edward Newman, Ph.D.
    [Show full text]
  • Belinostat and Combo Therapies in T Cell Lymphoma
    Belinostat and Combo Therapies in T cell Lymphoma Francine Foss MD Yale University School of Medicine New Haven, CT USA Belinostat Development • Belinostat is a hydroxamic based pan Class I ,2 , and IV HDAC inhibitor. Multi-targeted cellular effects • Tumor suppressor genes H • reactivation of p21 WAF & p19 ARF => cell cycle arrest • DNA damage & repair O • increased DNA acetylation => chromatin unfolding => increased N access to DNA (synergy DNA targeted drugs, e.g. platinums, anthracyclines, trabectedin) S OH • impact on repair mechanisms, e.g. ERCC1, RAD51, XPF => N decreased expression due to double strand breaks and inter-strand O C H N O S O cross-links (synergy DNA targeted drugs, e.g. platinums) 15 14 2 4 • Drug-targets (expression change) H M.W. 318.35 • thymidylate synthase (fluoropyrimidnes, antifolates) • EGFR (EGFR TKI’s/Mab’s) • aurora kinases A and B (Aurora inhib., vinca alkaloids) • topoisomerase II (anthracyclines, etoposide) Selectivity of clinically advanced HDACi • α-tubulin (via HDAC6) Belinostat Vorinostat • increased acetylation => stability (synergy taxanes) rhHDAC (Class) EC50 (nM) EC50 (nM) • hsp90 (via HDAC6) • increased acetylation => promotes polyubiquitylation of misfolded 1 (I) 41 68 client proteins (e.g Her-2, AKT, c-Raf, Bcr-Abl, mutant FLT-3) 2 (I) 125 164 leading to proteasomal degradation (synergy bortezomib) • Immunological effects 3 (I) 30 48 • modulate activated T-cell responses (inhibit IL-2 release; induce 4 (I) 115 101 apoptosis) and induce MHC class I-related chain A and B (MICA/B) expression on tumor cells and activated T-cells 6 (II) 82 90 • Anti-angiogenic effects • knockdown of HDAC6 causes down-regulation of VEGFR1/2 7 (II) 67 104 8 (I) 216 1524 9 (II) 128 107 1.
    [Show full text]