Quality of Piano Tones

Total Page:16

File Type:pdf, Size:1020Kb

Quality of Piano Tones THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA Volume 34 Number 6 JUNE. 1962 Quality of Piano Tones HARVEY FLETCIIER,E. DONNEL• BLACKHAM,AND RICIIARD STRATTON Brigham Young University, Provo, Utah (ReceivedNovember 27, 1961) A synthesizerwas constructedto producesimultaneously 100 pure toneswith meansfor controllingthe intensity and frequencyof each one of them. The piano toneswere analyzedby conventionalapparatus and methodsand the analysisset into the synthesizer.The analysiswas consideredcorrect only when a jury of eight listenerscould not tell which were real and which were synthetictones. Various kinds of synthetictones were presented to the jury for comparisonwith real tones.A numberof thesewere judged to have better quality than the real tones.According to thesetests synthesized piano-like tones were produced when the attack time was lessthan 0.01 sec.The decaycan be as long as 20 secfor the lower notes and be lessthan 1 secfor the very high ones.The best quality is producedwhen the partials decreasein level at the rate of 2 db per 100-cpsincrease in the frequencyof the partial. The partialsbelow middle C must be inharmonicin frequencyto be piano-like. INTRODUCTION synthesizer,and (4) the frequencychanger. To these HISpaper isa reportof our efforts tofind an ob- facilitieshave been added, a sonograph,an analyzer, a jectivedescription of the qualityof pianotones as single-tracktape recorder,a 5-track tape recorder,and understoodby musicians,and also to try to find syn- other apparatususually available in electronicresearch thetic toneswhich are consideredby them to be better laboratories.A block diagram of the arrangementis than real-piano tones. shownin Fig. 1. The usual statement found in text books is that the pitch of a tone is determinedby the frequencyof EQUIPMENT vibration,the loudnessby the intensityof the vibration, 1. Anechoic Chamber and the quality by the waveform.This picture is far too simplefor any of thesethree subjective aspects of a An anechoic chamber was constructed for use as a tone. Pitch and loudnesshave received very extensive listeningroom. It wasbuilt accordingto the architect's study. In this paper an attempt has been made to drawingsloaned to us by the Bell TelephoneLabora- throw some additional light upon the quality of a tories. Therefore, it is a copy of the one at those piano tone. laboratories. It is true that the quality dependsupon the wave- It consistsof a rectangularblock of cementwith in- form. But it alsodepends upon the pitch, the loudness, side dimensions of 40X30X30 ft. The block rests on the decayand attack time, the variationwith time of sand and gravel, and is completelyseparate from the the intensity of the partials, the impact noiseof the rest of the Eyring ScienceCenter building. The room hammer,the noiseof the dampingpedal, and alsothe was treated with 6-ft acousticalwedges on each side, characteristicending of the tone by the dampingfelt, thus reducingthe size 12 ft in each direction.A wire- etc. mesh floor was constructedby stretching steel wires In order to study the relative importance of these across the steel I-beams on the sides. These wires were variousfactors, the followinglaboratory equipment and separatedby 2 in., and there were two sets at right room facilities have been developed, namely, (1) anglesto each other. This resulted in meshes2 in. anechoicchamber, (2) loudspeakersystem, (3) tone square.The floor is 10 ft belowthe ceilingedge of the 749 Copyright ¸ 1962 by the AcousticalSociety of America. Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP: 128.187.97.22 On: Fri, 14 Mar 2014 23:21:17 750 FLETCHER, BLACKHAM, AND STRATTON FREQUENCYSHIFTER TONE SYNTHESIZER PowerSupply The requirementsplaced upon the power supply i•0I [00ank;oo, - CPS I consistedof (a) supplyingadequate power at the ap- [ R . propriatevoltages and (b) maintenanceof a low level of noiseand hum. The secondof the two requirementswas Ampl tier themost difficult to •atisfy,and was especially difficult 'I in this casebecause of the surgesof power involvedin the operation of the attack and decay amplifier. To obtain this low noiselevel, a 6-v dc battery wasused for TAPE I RECORDER#1 the attack and decay amplifier vacuum-tubegrid and filament supplies, and for the transistor oscillators' power requirements.The use of this simple battery M icrcphone eliminatesthe inherent problemsposed by alternating Input • • TAPE current supplies.To obtain the requiredplate voltage swiTCH ING RECORDER for the attack and decay amplifier, a General Radio pwr.amp I •• _•-• 2high-frequency high-voltage supply was used in conjunction with I I • unit specially designedfilters. These filters consistedof :•- I •1• middle- R-C filter sectionsand voltage regulator tubes;it pro- ;_ duced a constant voltage output with a noise or "ripple" level 80 db below the output signallevel. Audio-FrequencyOscillators A CLUSTER OF 7 1S" SPEAKERS Since100 oscillatorswere required it was necessaryto selecta designwhich was compactand which gave a Fzo. 1. Block diagram of equipment. stable oscillation. This was accomplishedby using transistorswith printed circuits. The circuit elements acousticalwedges and 8 ft abovethe lowerset of wedges. were mountedon a panel board 5 in. long and 1« in. It will supportconsiderable weight but has little or no wide. The inductanceelement can be varied by turning reflectionfor any of the soundsin the audible range. a key which can be insertedin a small hole throughthe Chairs were supportedon this wire floor at one end of face of the panel. In this way each oscillatorcan be the chamberfor the jury of listeners.The loudspeaker turned to any desiredfrequency within about 1-octave systemwas installedat the oppositeend. range.The 100 oscillatorscan be tuned to covera range from 50 to 15 000 cps.These 100 smallpanels supporting 2. Loudspeaker System the oscillatorswere stacked together into three large This consistsof a three-channelsystem, each channel panels. Two of these large panels are shown at the transmitting, respectively,the bands of frequency20 bottom half of Fig. 4. The other panelis on the opposite to 400 cps, 400 to 4000 cps, and 4000 to 16 000 cps. sideof the portable table carrying the synthesizer. The low-frequencychannel consists of sevenAltec 803 B driversmounted close together in a circulararrangement Attenuatorsand Preamplifiers as shownin Fig. 1, with a bafflewhich was 8 ft square. The output of each oscillatoris sent through an at- This baffle was mounted so it could turn about a hori- tenuator and then to its preamplifier.The 100 atten- zontal axis. At certain anglesfrom the vertical, a more uatorswere arranged in a compactform at the back of a uniform responsefor the very low frequencieswas black panel board. White knobs (100 of them) which obtained. wereprojecting thro•tgh the blackpanel board and As indicatedin Fig. l, the medium-rangeloudspeaker which were connectedto the sliding contact of the wasa sectional-typehorn, and the high-frequencyloud- attenuator could be moved up and down in vertical speaker was of a tweeter type. The responseof this slots to control the amount of attenuation introduced system is given in Fig. 2. into eachoscillating circuit. Each attenuator covereda rangeof 50 db. They wereconstructed so that the down- 3. Tone Synthesizer ward movement of the knob producedan attenuation The tone synthesizerused to producethe synthetic tones consistedof five major parts, namely, a power supply, audio-frequency oscillators, a white noise [ ! .J-- i [ , i i , I ' sourceand filter set, attenuatorsand preamplifiers,and ;30•050 70 100 200 •00 500 1,000 ::',000 •.,000 '10,000 20,000 an attack and decay amplifier. A block diagram is FREQUENCY shownin Fig. 3. FIG. 2. Relative responseof loudspeakersystem. Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP: 128.187.97.22 On: Fri, 14 Mar 2014 23:21:17 QUALITY OF PIANO TONES 751 I Sou: , ,. i HIGH VOLTAGE VOLTAG E ,, POWERSUPPLY F I LT ERS TACK& DECAY ' I WHILEN01SE DECAY FIG. 3. Block diagram for tone SUPPLYFILTERS AND synthesizer. 6.0 VOLT BAIIERY I I - AMPLIF IER I WHITENOISE OSCILLATORS CONTROL & PREAMPLIFIERS Swiich I' I" AUDIO 1Ameans of applying FREQUENCY attack and decay to OSCILLATORS some external source such as a continuous ATTENUATORS----•"PREAMPLIFIERStone tape recording. in db which was proportional to the distance it was by connectingthe battery voltage through a resistorand moved. A db scalewas engravedon the face of this capacitorseries circuit or shortingthrough the same panel.It is thus seenthat the relativepositions of these capacitorbut differentresistors. This functionis con- white knobsin vertical level give the relative levelsin trolled by a push-buttonswitch called the manual db of the current going from the oscillatorsto the controlswitch. The outputsignal will increasewhen the preamplifiersand showsgraphically the structureof the buttonis pushed,build up to its maximumvalue, and partials of the tone beingsynthesized. remainat that point until the buttonis released.Upon In the upper part of Fig. 4 this panel is shown.The release,the decaycircuit is in useand the decayingrate knobsin the picture are set to producethe synthetic is appliedto the signal.The rate of attackand decay is pianotone A"", the lowestnote on the piano. determinedby the adjustmentof the resistanceused in the R-C circuits.See Fig. 5. Attackand DecayAmplifier Anothercontrol used is the "dampingpedal" control
Recommended publications
  • Introduction to Audio Acoustics, Speakers and Audio Terminology
    White paper Introduction to audio Acoustics, speakers and audio terminology OCTOBER 2017 Table of contents 1. Introduction 3 2. Audio frequency 3 2.1 Audible frequencies 3 2.2 Sampling frequency 3 2.3 Frequency and wavelength 3 3. Acoustics and room dimensions 4 3.1 Echoes 4 3.2 The impact of room dimensions 4 3.3 Professional solutions for neutral room acoustics 4 4. Measures of sound 5 4.1 Human sound perception and phon 5 4.2 Watts 6 4.3 Decibels 6 4.4 Sound pressure level 7 5. Dynamic range, compression and loudness 7 6. Speakers 8 6.1 Polar response 8 6.2 Speaker sensitivity 9 6.3 Speaker types 9 6.3.1 The hi-fi speaker 9 6.3.2 The horn speaker 9 6.3.3 The background music speaker 10 6.4 Placement of speakers 10 6.4.1 The cluster placement 10 6.4.2 The wall placement 11 6.4.3 The ceiling placement 11 6.5 AXIS Site Designer 11 1. Introduction The audio quality that we can experience in a certain room is affected by a number of things, for example, the signal processing done on the audio, the quality of the speaker and its components, and the placement of the speaker. The properties of the room itself, such as reflection, absorption and diffusion, are also central. If you have ever been to a concert hall, you might have noticed that the ceiling and the walls had been adapted to optimize the audio experience. This document provides an overview of basic audio terminology and of the properties that affect the audio quality in a room.
    [Show full text]
  • A Pocket-Sized Introduction to Acoustics Keith Attenborough, Michiel Postema
    A pocket-sized introduction to acoustics Keith Attenborough, Michiel Postema To cite this version: Keith Attenborough, Michiel Postema. A pocket-sized introduction to acoustics. The Univerisity of Hull, 80 p., 2008, 978-90-812588-2-1. hal-03188302 HAL Id: hal-03188302 https://hal.archives-ouvertes.fr/hal-03188302 Submitted on 6 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A pocket-sized introduction to acoustics Prof. Dr. Keith Attenborough Dr. Michiel Postema Department of Engineering The University of Hull 2 ISBN 978-90-812588-2-1 °c 2008 K. Attenborough, M. Postema. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechan- ical, photocopying, recording or otherwise, without the prior written permission of the authors. Publisher: Michiel Postema, Bergschenhoek Printed in England by The University of Hull Typesetting system: LATEX 2" Contents 1 Acoustics and ultrasonics 5 2 Mass on a spring 7 3 Wave equation in fluid 9 4 Sound speed
    [Show full text]
  • Harmonic Analysis for Music Transcription and Characterization
    UNIVERSITA` DEGLI STUDI DI BRESCIA FACOLTA` DI INGEGNERIA Dipartimento di Ingegneria dell'Informazione DOTTORATO DI RICERCA IN INGEGNERIA DELLE TELECOMUNICAZIONI XXVII CICLO SSD: ING-INF/03 Harmonic Analysis for Music Transcription and Characterization Ph.D. Candidate: Ing. Alessio Degani .............................................. Ph.D. Supervisor: Prof. Pierangelo Migliorati .............................................. Ph.D. Coordinator: Prof. Riccardo Leonardi .............................................. ANNO ACCADEMICO 2013/2014 to my family Sommario L'oggetto di questa tesi `elo studio dei vari metodi per la stima dell'informazione tonale in un brano musicale digitale. Il lavoro si colloca nel settore scientifico de- nomitato Music Information Retrieval, il quale studia le innumerevoli tematiche che riguardano l'estrazione di informazioni di alto livello attraverso l'analisi del segnale audio. Nello specifico, in questa dissertazione andremo ad analizzare quelle procedure atte ad estrarre l'informazione tonale e armonica a diversi lev- elli di astrazione. Come prima cosa verr`apresentato un metodo per stimare la presenza e la precisa localizzazione frequenziale delle componenti sinusoidali stazionarie a breve termine, ovvero le componenti fondamentali che indentificano note e accordi, quindi l'informazione tonale/armonica. Successivamente verr`aesposta un'analisi esaustiva dei metodi di stima della frequenza di riferimento (usata per accordare gli strumenti musicali) basati sui picchi spettrali. Di solito la frequenza di riferimento `econsiderata standard e associata al valore di 440 Hz, ma non sempre `ecos`ı. Vedremo quindi che per migliorare le prestazioni dei vari metodi che si affidano ad una stima del contenuto armonico e melodico per determinati scopi, `efondamentale avere una stima coerente e robusta della freqeunza di riferimento. In seguito, verr`apresentato un sistema innovativo per per misurare la rile- vanza di una data componente frequenziale sinusoidale in un ambiente polifonico.
    [Show full text]
  • A History of Audio Effects
    applied sciences Review A History of Audio Effects Thomas Wilmering 1,∗ , David Moffat 2 , Alessia Milo 1 and Mark B. Sandler 1 1 Centre for Digital Music, Queen Mary University of London, London E1 4NS, UK; [email protected] (A.M.); [email protected] (M.B.S.) 2 Interdisciplinary Centre for Computer Music Research, University of Plymouth, Plymouth PL4 8AA, UK; [email protected] * Correspondence: [email protected] Received: 16 December 2019; Accepted: 13 January 2020; Published: 22 January 2020 Abstract: Audio effects are an essential tool that the field of music production relies upon. The ability to intentionally manipulate and modify a piece of sound has opened up considerable opportunities for music making. The evolution of technology has often driven new audio tools and effects, from early architectural acoustics through electromechanical and electronic devices to the digitisation of music production studios. Throughout time, music has constantly borrowed ideas and technological advancements from all other fields and contributed back to the innovative technology. This is defined as transsectorial innovation and fundamentally underpins the technological developments of audio effects. The development and evolution of audio effect technology is discussed, highlighting major technical breakthroughs and the impact of available audio effects. Keywords: audio effects; history; transsectorial innovation; technology; audio processing; music production 1. Introduction In this article, we describe the history of audio effects with regards to musical composition (music performance and production). We define audio effects as the controlled transformation of a sound typically based on some control parameters. As such, the term sound transformation can be considered synonymous with audio effect.
    [Show full text]
  • Absolute Calibration of Pressure and Particle Velocity Microphones A
    UIUC Physics 193POM/406POM Acoustical Physics of Music/Musical Instruments Absolute Calibration of Pressure and Particle Velocity Microphones A. Absolute Calibration of Pressure Microphones 22 The Sound Pressure Level (SPL): SPL LPrmsrms10log10 p p 0 0log 10 p p 0 ( dB ) 5 where p0 reference sound over-pressure amplitude = 2.0×10 rms Pascals = 20 rms Pa = the {average} threshold of human hearing (at f = 1 KHz). Useful conversion factor(s): p = 1.0 rms Pascal SPL = 94.0 dB (in a free-air sound field) 2 n.b. 1.0 rms Pascal = 1.0 rms Pa = 1.0 rms N/m . We can determine (i.e. measure) the absolute sensitivity of a pressure microphone e.g. in a free-air sound field – such as the great wide-open or in an anechoic room{at an industry-standard reference frequency f = 1 KHz} side-by-side with a {NIST-absolutely calibrated} SPL Meter a distance of a few meters away from a sound source – e.g. a loudspeaker. We turn up the volume of the sound source until the SPL Meter e.g. reads a steady SPL of 94.0 dB (quite loud!) which corresponds to a p = 1.0 rms Pascal acoustic over-pressure amplitude. We then measure the rms AC voltage amplitude of the output of the pressure microphone Vpmic- (in rms Volts) e.g. using a Fluke 77 DMM on RMS AC volts. Thus, the absolute sensitivity of the pressure microphone is: Spmic-- V Pa,@ f 1 KHz , SPL 94 dB V pmic rmsVolts 1.0 rms Pa n.b.
    [Show full text]
  • Professional Sound Lineup Catalog
    Professional Sound “Large sports venues, spacious religious facilities, boutique restaurants... TOA’s expertise and engineering competency offers you the optimal solution for your project.” TOA Professional Sound Speakers "Sound, not equipment": TOA has held to this concept in its more than 80 years of crafting sound environments for spaces of all kinds. TOA is an experienced player in the professional sound Amplifiers Power sector, Voice Evac in particular—a sector where nothing less than the best in sound quality will do. How sound is rendered is everything. A sound system brings to sporting events that feeling of being immersed in the moment and action, infuses concerts with that uplifting sense of togetherness Mixer Power Amplifiers Power Mixer and, in a place or worship, creates an embracing atmosphere where every word is brought home to those gathered there, enhancing the devotional experience. A sound system can also set the relaxed, carefree tone a commercial setting requires, encouraging conversation with and between guests and customers. Mixers / DSP Mixers Whether for smaller venues like cafes and restaurants, for halls, places of worship, or stadiums for the tens of thousands, leave it to TOA to craft just the right soundspace. Wireless Microphone Microphone Wireless Systems CONTENTS Speakers .............................................................................03 Wired Microphones Wired Power Amplifiers ................................................................33 Mixer Power Amplifiers ......................................................35
    [Show full text]
  • Construction Noise and Vibration Impact on Sensitive Premises
    Proceedings of ACOUSTICS 2009 23-25 November 2009, Adelaide, Australia Construction noise and vibration impact on sensitive premises Cedric Roberts Engineering and Technology Division, Department of Transport and Main Roads, Brisbane, Queensland, Australia ABSTRACT Construction noise and vibration must be considered an essential part of the development of any transportation facility. Road and tunnel construction is often conducted in close proximity to residential and commercial premises and should be pre- dicted, controlled and monitored in order to avoid excessive noise and vibration impacts. Construction noise and vibration can threaten a project's schedule if not adequately analysed and if the concerns of the community are not addressed and in- corporated. AIRBORNE NOISE transportation facility. Road and tunnel construction is often conducted in close proximity to residential and commercial Construction over the length of a project can take place 24 premises and associated noise and vibration should be pre- hours a day and for major projects, in excess of 2 to 3 years. dicted, controlled and monitored in order to avoid excessive Construction equipment can operate in very close proximity noise and vibration impacts. Construction noise and vibration to residential and commercial (and even industrial) premises. can threaten a project's schedule if not adequately analysed Many items of equipment can be found operating at any time and if the concerns of the community are not addressed and throughout a project. Equipment types range from mobile incorporated. cranes, pile drivers, jackhammers, dump trucks, concrete pumps and trucks, backhoes, loaders, dozers, rock-breakers, In general a project's schedule can be maintained by balanc- rock drills, pile boring machines, excavators, concrete and ing the type, time of day and duration of construction activi- chain saws, and gas and pneumatically powered hand tools.
    [Show full text]
  • Basic Audio Terminology
    Audio Terminology Basics © 2012 Bosch Security Systems Table of Contents Introduction 3 A-I 5 J-R 10 S-Z 13 Wrap-up 15 © 2012 Bosch Security Systems 2 Introduction Audio Terminology Are you getting ready to buy a new amp? Is your band booking some bigger venues and in need of new loudspeakers? Are you just starting out and have no idea what equipment you need? As you look up equipment details, a lot of the terminology can be pretty confusing. What do all those specs mean? What’s a compression driver? Is it different from a loudspeaker? Why is a 4 watt amp cheaper than an 8 watt amp? What’s a balanced interface, and why does it matter? We’re Here to Help When you’re searching for the right audio equipment, you don’t need to know everything about audio engineering. You just need to understand the terms that matter to you. This quick-reference guide explains some basic audio terms and why they matter. © 2012 Bosch Security Systems 3 What makes EV the expert? Experience. Dedication. Passion. Electro-Voice has been in the audio equipment business since 1930. Recognized the world over as a leader in audio technology, EV is ubiquitous in performing arts centers, sports facilities, houses of worship, cinemas, dance clubs, transportation centers, theaters, and, of course, live music. EV’s reputation for providing superior audio products and dedication to innovation continues today. Whether EV microphones, loudspeaker systems, amplifiers, signal processors, the EV solution is always a step up in performance and reliability.
    [Show full text]
  • A Guide to Audio-Frequency Induction Loop Systems Contents
    A Guide to Audio-Frequency Induction Loop Systems Contents About this guide .................................................................................................................. 3 What is an audio frequency induction loop system?...................................................... 4 How does an induction loop system work? .................................................................... 5 Why we have induction loop systems .............................................................................. 6 Where are ‘aids to communication’ required? ................................................................ 7 Which induction loop system should I use? .................................................................. 9 1.2m2 PL1 Portable Induction Loop System .................................................................................... 10 1.2m2 ML1/K Counter Induction Loop System ................................................................................ 11 1.2m2 PDA102C Counter Induction Loop System .......................................................................... 12 1.2m2 VL1 Vehicle Induction Loop System ......................................................................................13 50m2 PDA102L/R/S Small Room Induction Loop System .............................................................. 14 50m2 DL50/K Domestic Induction Loop System ..............................................................................15 120m2 ‘AK’ Range Induction Loop Kits / PDA200E Amplifier............................................................16
    [Show full text]
  • Sparse Pursuit and Dictionary Learning for Blind Source Separation in Polyphonic Music Recordings
    Schulze and King This is the authors’ manuscript (post peer-review). In order to access the published article, please visit: https://doi.org/10.1186/s13636-020-00190-4 RESEARCH Sparse Pursuit and Dictionary Learning for Blind Source Separation in Polyphonic Music Recordings Sören Schulze1* and Emily J. King2 Abstract We propose an algorithm for the blind separation of single-channel audio signals. It is based on a parametric model that describes the spectral properties of the sounds of musical instruments independently of pitch. We develop a novel sparse pursuit algorithm that can match the discrete frequency spectra from the recorded signal with the continuous spectra delivered by the model. We first use this algorithm to convert an STFT spectrogram from the recording into a novel form of log-frequency spectrogram whose resolution exceeds that of the mel spectrogram. We then make use of the pitch-invariant properties of that representation in order to identify the sounds of the instruments via the same sparse pursuit method. As the model parameters which characterize the musical instruments are not known beforehand, we train a dictionary that contains them, using a modified version of Adam. Applying the algorithm on various audio samples, we find that it is capable of producing high-quality separation results when the model assumptions are satisfied and the instruments are clearly distinguishable, but combinations of instruments with similar spectral characteristics pose a conceptual difficulty. While a key feature of the model is that it explicitly models inharmonicity, its presence can also still impede performance of the sparse pursuit algorithm.
    [Show full text]
  • 16 Jun 2005 Physical Consonance Law of Sound Waves
    Physical Consonance Law of Sound Waves Mario Goto ([email protected]) Departamento de F´ısica Centro de Ciˆencias Exatas Universidade Estadual de Londrina December 18, 2004 Revised: June 14, 2005 Abstract Sound consonance is the reason why it is possible to exist music in our life. However, rules of consonance between sounds had been found quite subjectively, just by hearing. To care for, the proposal is to establish a sound consonance law on the basis of mathematical and physical foundations. Nevertheless, the sensibility of the human auditory system to the audible range of frequencies is individual and depends on a several factors such as the age or the health in a such way that the human perception of the consonance as the pleasant sensation it produces, while reinforced by an exact physical relation, may involves as well the individual subjective feeling 1 Introduction Sound consonance is one of the main reason why it is possible to exist mu- sic in our life. However, rules of sound consonance had been found quite arXiv:physics/0412118v2 [physics.gen-ph] 16 Jun 2005 subjectively, just by hearing [1]. It sounds good, after all music is art! But physics challenge is to discover laws wherever they are [2]. To care for, it is proposed, here, a sound consonance law on the basis of mathematical and physical foundations. As we know, Occidental musics are based in the so called Just Intonation Scale, built with a set of musical notes which frequencies are related between 1 them in the interval of frequencies from some f0 to f1 =2f0 that defines the octave.
    [Show full text]
  • The Physical Nature of Sound
    Chapter 1.1 The Physical Nature of Sound Floyd E. Toole E. A. G. Shaw, G. A. Daigle, M. R. Stinson 1.1.1 Introduction Sound is a physical disturbance in the medium through which it is propagated. Although the most common medium is air, sound can travel in any solid, liquid, or gas. In air, sound consists of localized variations in pressure above and below normal atmospheric pressure (compressions and rarefactions). Air pressure rises and falls routinely, as environmental weather systems come and go, or with changes in altitude. These fluctuation cycles are very slow, and no perceptible sound results, although it is sometimes evident that the ears are responding in a different way to these infra- sonic events. At fluctuation frequencies in the range from about 20 cycles per second up to about 20,000 cycles per second the physical phenomenon of sound can be perceived as having pitch or tonal character. This generally is regarded as the audible or audio-frequency range, and it is the frequencies in this range that are the concern of this chapter. Frequencies above 20,000 cycles per second are classified as ultrasonic. 1.1.2 Sound Waves The essence of sound waves is illustrated in Figure 1.1.1, which shows a tube with a piston in one end. Initially, the air within and outside the tube is all at the prevailing atmospheric pressure. When the piston moves quickly inward, it compresses the air in contact with its surface. This energetic compression is rapidly passed on to the adjoining layer of air, and so on, repeatedly.
    [Show full text]