Room Acoustics and Sound Reinforcement Systems

Total Page:16

File Type:pdf, Size:1020Kb

Room Acoustics and Sound Reinforcement Systems Room Acoustics and Sound Reinforcement Systems Tadeusz Fidecki Contents Introduction ................................................................................................................................. 3 1. Wave theory approach ................................................................................................... 3 1.1 Eigenfrequencies and eigenmodes .......................................................................... 3 1.2 Modal density ............................................................................................................ 8 1.3 Loss factor and reverberation time ........................................................................... 8 1.4 Conclusion ................................................................................................................ 11 2. Statistical method ........................................................................................................... 12 2.1 The room response to the sound radiation ............................................................... 12 2.2 Reverberation in enclosures ..................................................................................... 13 2.3 Growth of energy in enclosure .................................................................................. 13 2.4 Decay of energy in enclosure ................................................................................... 14 2.5 Reverberation time ................................................................................................... 15 2.6 Direct and diffuse sound field in enclosure ............................................................... 19 3. Geometric Acoustics and Diffuse Sound Fields ............................................................ 21 3.1 Mirror Sound Sources and Ray Tracing ................................................................... 21 3.2 Flutter Echoes ........................................................................................................... 23 3.3 Impulse Responses of Rectangular Rooms ............................................................. 24 3.4 Diffuse Sound Fields ................................................................................................. 25 3.5 Ray tracing and mirroring ......................................................................................... 26 3.6 Sources and receivers .............................................................................................. 26 3.7 Planes ....................................................................................................................... 27 3.8 Multiple reflecting planes .......................................................................................... 27 3.9 Geometrical impulse response ................................................................................. 28 3.10 Impulse response of real rooms ............................................................................... 30 3.11 Room frequency response ........................................................................................ 31 4. Absorption, reflection and diffusion ................................................................................ 32 4.1 Absorption mechanisms ........................................................................................... 32 4.2 Fundamental quantities and their measurement ...................................................... 32 4.3 Measurement of absorption coefficient for normal sound incidence ........................ 34 4.4 Measurement for random incidence ......................................................................... 34 4.5 Porous absorbers ..................................................................................................... 36 4.6 Porous materials in front of a rigid wall and effects of air gap .................................. 37 4.7 Sound absorption by resonators ............................................................................... 38 4.8 Basic principles and properties of individual Helmhotz resonators .......................... 38 4.9 Perforated panels ..................................................................................................... 39 4.10 Microperforated sound absorbers ............................................................................. 41 4.11 Plate and membrane absorbers ............................................................................... 42 5. Diffusion ......................................................................................................................... 42 5.1 The need of diffusion ................................................................................................ 42 5.2 Basic principles of sound diffusers ........................................................................... 43 6. Subjective room acoustics ............................................................................................. 46 6.1 Subjective and objective evaluation of sound in rooms ............................................ 46 6.2 Metrics for perceived sound and relation to physical measuresl .............................. 47 6.3 Subjective preference for room acoustical quantities ............................................... 52 7. Measuring techniques for the evaluation of room acoustics parameters ...................... 54 7.1 Conventional interrupted noise methods of measurement ....................................... 56 7.2 New measurement method based on impulse response ......................................... 57 7.3 Auditorium measures derived from impulse responses ........................................... 58 7.4 Measurement of the pulse response ........................................................................ 69 8. Applied room acoustics .................................................................................................. 77 8.1 Design procedures in room acoustics planning ........................................................ 77 8.2 The basic recommended values of objective parameters ........................................ 77 8.3 Concert Hall Acoustical Design ................................................................................ 83 8.4 Concert Hall Architectural Design ............................................................................. 85 8.5 Hall Design Procedure .............................................................................................. 86 8.6 Case Studies ............................................................................................................ 86 8.7 Acoustics for Pop and Rock Music ........................................................................... 94 Bibliography ................................................................................................................................ 99 Introduction Sound that propagates inside enclosures is reflected by the enclosure boundaries. The reflected waves are modified by the reflection properties of the walls and other surfaces. The size and shape of the surfaces as well as the wave frequency affect the creation and properties of the reflected wave. The room volumes we live, work, speak and listen to music vary and the acoustic properties of that interiors strongly change over the audio frequency range. One of the important acoustical features of the rooms is the large range of the wavelength of sound in the audio frequency, from about 17 m at 20 Hz to several cm at 20 kHz. The listening in small rooms is different from the listening in large rooms such as auditoria or concert halls. The physical analyses and listening experience indicate that the room properties depend on the frequency, particularly at low frequencies. This requires a combined approach using separate acoustics methods for the small and large rooms and for the low and high audio frequencies: wave theory, statistical and geometrical acoustic methods. 1. Wave theory approach 1.1 Eigenfrequencies and eigenmodes *) The free waves in enclosures are standing waves that are created by the wave reflections from the enclosure walls. Figure 1.1 shows a rectangular enclosure with the dimensions Lx, Ly, Lz. Fig. 1.1. Dimensions of rectangular room *) "Eigenvalue" comes from the German "Eigenwert" which means proper or characteristic value. "Eigenfunction" is from "Eigenfunktion" meaning "proper or characteristic function". The sound pressure is a function of three coordinates. The wave equation for the sound pressure of harmonic waves: In rectangular coordinate system, the eigenfunction can be separated into three functions that depend on one coordinate only. Substituting into the wave equation results in the separation into three spatial functions: where kx, ky, kz are the wave numbers for wave components that propagate in one direction only. Equation can be split into three equations, each depending on one variable only [1]. For the variable x: Applying the boundary condition ux = 0 at x = Lx, solution of the second-order differential equation results in: kxLx = m m = 0,1,2,3,… and The wave number km is for a plane standing wave that propagates in the direction of x- axes and is therefore called axial wave. The general name of this wave is a mode and the frequencies fm,n,l are called characteristic frequencies or eigenfrequencies. Whenever the distance between the walls is a multiple of half wavelengths, a standing wave can exist. The calculation may be repeated for the variables y and z. The expressions
Recommended publications
  • The Pomegranate Cycle
    The Pomegranate Cycle: Reconfiguring opera through performance, technology & composition By Eve Elizabeth Klein Bachelor of Arts Honours (Music), Macquarie University, Sydney A PhD Submission for the Department of Music and Sound Faculty of Creative Industries Queensland University of Technology Brisbane, Australia 2011 ______________ Keywords Music. Opera. Women. Feminism. Composition. Technology. Sound Recording. Music Technology. Voice. Opera Singing. Vocal Pedagogy. The Pomegranate Cycle. Postmodernism. Classical Music. Musical Works. Virtual Orchestras. Persephone. Demeter. The Rape of Persephone. Nineteenth Century Music. Musical Canons. Repertory Opera. Opera & Violence. Opera & Rape. Opera & Death. Operatic Narratives. Postclassical Music. Electronica Opera. Popular Music & Opera. Experimental Opera. Feminist Musicology. Women & Composition. Contemporary Opera. Multimedia Opera. DIY. DIY & Music. DIY & Opera. Author’s Note Part of Chapter 7 has been previously published in: Klein, E., 2010. "Self-made CD: Texture and Narrative in Small-Run DIY CD Production". In Ø. Vågnes & A. Grønstad, eds. Coverscaping: Discovering Album Aesthetics. Museum Tusculanum Press. 2 Abstract The Pomegranate Cycle is a practice-led enquiry consisting of a creative work and an exegesis. This project investigates the potential of self-directed, technologically mediated composition as a means of reconfiguring gender stereotypes within the operatic tradition. This practice confronts two primary stereotypes: the positioning of female performing bodies within narratives of violence and the absence of women from authorial roles that construct and regulate the operatic tradition. The Pomegranate Cycle redresses these stereotypes by presenting a new narrative trajectory of healing for its central character, and by placing the singer inside the role of composer and producer. During the twentieth and early twenty-first century, operatic and classical music institutions have resisted incorporating works of living composers into their repertory.
    [Show full text]
  • Basics of Acoustics Contents
    BASICS OF ACOUSTICS CONTENTS 1. preface 03 2. room acoustics versus building acoustics 04 3. fundamentals of acoustics 05 3.1 Sound 05 3.2 Sound pressure 06 3.3 Sound pressure level and decibel scale 06 3.4 Sound pressure of several sources 07 3.5 Frequency 08 3.6 Frequency ranges relevant for room planning 09 3.7 Wavelengths of sound 09 3.8 Level values 10 4. room acoustic parameters 11 4.1 Reverberation time 11 4.2 Sound absorption 14 4.3 Sound absorption coefficient and reverberation time 16 4.4 Rating of sound absorption 16 5. index 18 2 1. PREFACE Noise or unwanted sounds is perceived as disturbing and annoying in many fields of life. This can be observed in private as well as in working environments. Several studies about room acoustic conditions and annoyance through noise show the relevance of good room acoustic conditions. Decreasing success in school class rooms or affecting efficiency at work is often related to inadequate room acoustic conditions. Research results from class room acoustics have been one of the reasons to revise German standard DIN 18041 on “Acoustic quality of small and medium-sized room” from 1968 and decrease suggested reverberation time values in class rooms with the new 2004 version of the standard. Furthermore the standard gave a detailed range for the frequency dependence of reverberation time and also extended the range of rooms to be considered in room acoustic design of a building. The acoustic quality of a room, better its acoustic adequacy for each usage, is determined by the sum of all equipment and materials in the rooms.
    [Show full text]
  • Physics of Music PHY103 Lab Manual
    Physics of Music PHY103 Lab Manual Lab #6 – Room Acoustics EQUIPMENT • Tape measures • Noise making devices (pieces of wood for clappers). • Microphones, stands, preamps connected to computers. • Extra XLR microphone cables so the microphones can reach the padded closet and hallway. • Key to the infamous padded closet INTRODUCTION One important application of the study of sound is in the area of acoustics. The acoustic properties of a room are important for rooms such as lecture halls, auditoriums, libraries and theatres. In this lab we will record and measure the properties of impulsive sounds in different rooms. There are three rooms we can easily study near the lab: the lab itself, the “anechoic” chamber (i.e. padded closet across the hall, B+L417C, that isn’t anechoic) and the hallway (that has noticeable echoes). Anechoic means no echoes. An anechoic chamber is a room built specifically with walls that absorb sound. Such a room should be considerably quieter than a normal room. Step into the padded closet and snap your fingers and speak a few words. The sound should be muffled. For those of us living in Rochester this will not be a new sensation as freshly fallen snow absorbs sound well. If you close your eyes you could almost imagine that you are outside in the snow (except for the warmth, and bizarre smell in there). The reverberant sound in an auditorium dies away with time as the sound energy is absorbed by multiple interactions with the surfaces of the room. In a more reflective room, it will take longer for the sound to die away and the room is said to be 'live'.
    [Show full text]
  • Introduction to Audio Acoustics, Speakers and Audio Terminology
    White paper Introduction to audio Acoustics, speakers and audio terminology OCTOBER 2017 Table of contents 1. Introduction 3 2. Audio frequency 3 2.1 Audible frequencies 3 2.2 Sampling frequency 3 2.3 Frequency and wavelength 3 3. Acoustics and room dimensions 4 3.1 Echoes 4 3.2 The impact of room dimensions 4 3.3 Professional solutions for neutral room acoustics 4 4. Measures of sound 5 4.1 Human sound perception and phon 5 4.2 Watts 6 4.3 Decibels 6 4.4 Sound pressure level 7 5. Dynamic range, compression and loudness 7 6. Speakers 8 6.1 Polar response 8 6.2 Speaker sensitivity 9 6.3 Speaker types 9 6.3.1 The hi-fi speaker 9 6.3.2 The horn speaker 9 6.3.3 The background music speaker 10 6.4 Placement of speakers 10 6.4.1 The cluster placement 10 6.4.2 The wall placement 11 6.4.3 The ceiling placement 11 6.5 AXIS Site Designer 11 1. Introduction The audio quality that we can experience in a certain room is affected by a number of things, for example, the signal processing done on the audio, the quality of the speaker and its components, and the placement of the speaker. The properties of the room itself, such as reflection, absorption and diffusion, are also central. If you have ever been to a concert hall, you might have noticed that the ceiling and the walls had been adapted to optimize the audio experience. This document provides an overview of basic audio terminology and of the properties that affect the audio quality in a room.
    [Show full text]
  • Vern Oliver Knudsen Papers LSC.1153
    http://oac.cdlib.org/findaid/ark:/13030/kt109nc33w No online items Finding Aid for the Vern Oliver Knudsen Papers LSC.1153 Finding aid updated by Kelly Besser, 2021. UCLA Library Special Collections Finding aid last updated 2021 March 29. Room A1713, Charles E. Young Research Library Box 951575 Los Angeles, CA 90095-1575 [email protected] URL: https://www.library.ucla.edu/special-collections Finding Aid for the Vern Oliver LSC.1153 1 Knudsen Papers LSC.1153 Contributing Institution: UCLA Library Special Collections Title: Vern Oliver Knudsen papers Creator: Knudsen, Vern Oliver, 1893-1974 Identifier/Call Number: LSC.1153 Physical Description: 28.25 Linear Feet(57 document boxes, and 8 map folders) Date (inclusive): circa 1922-1980 Abstract: Vern Oliver Knudsen (1893-1974) was a professor in the Department of Physics at UCLA before serving as the first dean of the Graduate Division (1934-58), Vice Chancellor (1956), Chancellor (1959). He also researched architectural acoustics and hearing impairments, developed the audiometer with Isaac H. Jones, founded the Acoustical Society of America (1928), organized and served as the first director of what is now the Naval Undersea Research and Development Center in San Diego, and worked as a acoustical consultant for various projects including the Hollywood Bowl, the Dorothy Chandler Pavilion, Schoenberg Hall, the United Nations General Assembly building, and a variety of radio and motion picture studios. The collection consists of manuscripts, correspondence, galley proofs, and other material related to Knudsen's professional activities. The collection also includes the papers of Leo Peter Delsasso, John Mead Adams, and Edgar Lee Kinsey.
    [Show full text]
  • Quality of Piano Tones
    THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA Volume 34 Number 6 JUNE. 1962 Quality of Piano Tones HARVEY FLETCIIER,E. DONNEL• BLACKHAM,AND RICIIARD STRATTON Brigham Young University, Provo, Utah (ReceivedNovember 27, 1961) A synthesizerwas constructedto producesimultaneously 100 pure toneswith meansfor controllingthe intensity and frequencyof each one of them. The piano toneswere analyzedby conventionalapparatus and methodsand the analysisset into the synthesizer.The analysiswas consideredcorrect only when a jury of eight listenerscould not tell which were real and which were synthetictones. Various kinds of synthetictones were presented to the jury for comparisonwith real tones.A numberof thesewere judged to have better quality than the real tones.According to thesetests synthesized piano-like tones were produced when the attack time was lessthan 0.01 sec.The decaycan be as long as 20 secfor the lower notes and be lessthan 1 secfor the very high ones.The best quality is producedwhen the partials decreasein level at the rate of 2 db per 100-cpsincrease in the frequencyof the partial. The partialsbelow middle C must be inharmonicin frequencyto be piano-like. INTRODUCTION synthesizer,and (4) the frequencychanger. To these HISpaper isa reportof our efforts tofind an ob- facilitieshave been added, a sonograph,an analyzer, a jectivedescription of the qualityof pianotones as single-tracktape recorder,a 5-track tape recorder,and understoodby musicians,and also to try to find syn- other apparatususually available in electronicresearch thetic toneswhich are consideredby them to be better laboratories.A block diagram of the arrangementis than real-piano tones. shownin Fig. 1. The usual statement found in text books is that the pitch of a tone is determinedby the frequencyof EQUIPMENT vibration,the loudnessby the intensityof the vibration, 1.
    [Show full text]
  • A Pocket-Sized Introduction to Acoustics Keith Attenborough, Michiel Postema
    A pocket-sized introduction to acoustics Keith Attenborough, Michiel Postema To cite this version: Keith Attenborough, Michiel Postema. A pocket-sized introduction to acoustics. The Univerisity of Hull, 80 p., 2008, 978-90-812588-2-1. hal-03188302 HAL Id: hal-03188302 https://hal.archives-ouvertes.fr/hal-03188302 Submitted on 6 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A pocket-sized introduction to acoustics Prof. Dr. Keith Attenborough Dr. Michiel Postema Department of Engineering The University of Hull 2 ISBN 978-90-812588-2-1 °c 2008 K. Attenborough, M. Postema. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechan- ical, photocopying, recording or otherwise, without the prior written permission of the authors. Publisher: Michiel Postema, Bergschenhoek Printed in England by The University of Hull Typesetting system: LATEX 2" Contents 1 Acoustics and ultrasonics 5 2 Mass on a spring 7 3 Wave equation in fluid 9 4 Sound speed
    [Show full text]
  • The Room Acoustics of Large Spaces
    ROOMROOM ACOUSTICSACOUSTICS OFOF LARGELARGE SPACESSPACES TheThe TalaskeTalaske Group,Group, inc.inc. The Room Acoustics of Large Spaces Presented by: Rick Talaske The Talaske Group, inc. Oak Park, IL – U.S.A. ASA Tutorial Cancun, Mexico The photos of all projects are designed by The Talaske Group, inc. Presented to the Acoustical Society of America – Cancun, Mexico 02 December 2002 ROOMROOM ACOUSTICSACOUSTICS OFOF LARGELARGE SPACESSPACES TheThe TalaskeTalaske Group,Group, inc.inc. Acoustically speaking: What is a “Large” Room It is my pleasure to present this discussion in Cancun regarding the acoustics of large rooms. Generally, this topic is what the public thinks of when they hear the word “acoustics”. This is because of their experiences in churches, theatres and music halls. I hope to better your understanding about this interesting topic. Es un placer de estar aqui en Cancun y al al vez hacer un presentacion sobre la acustica en grandes espacios. Generalmente, la gente cada vez que se menciona la palabra “acusticaq”, la relacionan con iglesias, teatros ysalas musicales. Espero de que en esta presentacion, ustedes se lleven un mejor entendimiento del concepto de acustica. Presented to the Acoustical Society of America – Cancun, Mexico 02 December 2002 ROOMROOM ACOUSTICSACOUSTICS OFOF LARGELARGE SPACESSPACES TheThe TalaskeTalaske Group,Group, inc.inc. Acoustically speaking: What is a “Large” Room In this paper, a large room: • Schroeder’s Frequency is less than 50 Hz •fc = 2000*SR ( T60/V ) •fc is below the voice and music bandwidth. • Comb filtering is a lesser consideration. • Un espacio grande es un cuarto con muchas resonancias normales. Hay tantas resonancias que finalmente no son tan importantes.
    [Show full text]
  • Harmonic Analysis for Music Transcription and Characterization
    UNIVERSITA` DEGLI STUDI DI BRESCIA FACOLTA` DI INGEGNERIA Dipartimento di Ingegneria dell'Informazione DOTTORATO DI RICERCA IN INGEGNERIA DELLE TELECOMUNICAZIONI XXVII CICLO SSD: ING-INF/03 Harmonic Analysis for Music Transcription and Characterization Ph.D. Candidate: Ing. Alessio Degani .............................................. Ph.D. Supervisor: Prof. Pierangelo Migliorati .............................................. Ph.D. Coordinator: Prof. Riccardo Leonardi .............................................. ANNO ACCADEMICO 2013/2014 to my family Sommario L'oggetto di questa tesi `elo studio dei vari metodi per la stima dell'informazione tonale in un brano musicale digitale. Il lavoro si colloca nel settore scientifico de- nomitato Music Information Retrieval, il quale studia le innumerevoli tematiche che riguardano l'estrazione di informazioni di alto livello attraverso l'analisi del segnale audio. Nello specifico, in questa dissertazione andremo ad analizzare quelle procedure atte ad estrarre l'informazione tonale e armonica a diversi lev- elli di astrazione. Come prima cosa verr`apresentato un metodo per stimare la presenza e la precisa localizzazione frequenziale delle componenti sinusoidali stazionarie a breve termine, ovvero le componenti fondamentali che indentificano note e accordi, quindi l'informazione tonale/armonica. Successivamente verr`aesposta un'analisi esaustiva dei metodi di stima della frequenza di riferimento (usata per accordare gli strumenti musicali) basati sui picchi spettrali. Di solito la frequenza di riferimento `econsiderata standard e associata al valore di 440 Hz, ma non sempre `ecos`ı. Vedremo quindi che per migliorare le prestazioni dei vari metodi che si affidano ad una stima del contenuto armonico e melodico per determinati scopi, `efondamentale avere una stima coerente e robusta della freqeunza di riferimento. In seguito, verr`apresentato un sistema innovativo per per misurare la rile- vanza di una data componente frequenziale sinusoidale in un ambiente polifonico.
    [Show full text]
  • A History of Audio Effects
    applied sciences Review A History of Audio Effects Thomas Wilmering 1,∗ , David Moffat 2 , Alessia Milo 1 and Mark B. Sandler 1 1 Centre for Digital Music, Queen Mary University of London, London E1 4NS, UK; [email protected] (A.M.); [email protected] (M.B.S.) 2 Interdisciplinary Centre for Computer Music Research, University of Plymouth, Plymouth PL4 8AA, UK; [email protected] * Correspondence: [email protected] Received: 16 December 2019; Accepted: 13 January 2020; Published: 22 January 2020 Abstract: Audio effects are an essential tool that the field of music production relies upon. The ability to intentionally manipulate and modify a piece of sound has opened up considerable opportunities for music making. The evolution of technology has often driven new audio tools and effects, from early architectural acoustics through electromechanical and electronic devices to the digitisation of music production studios. Throughout time, music has constantly borrowed ideas and technological advancements from all other fields and contributed back to the innovative technology. This is defined as transsectorial innovation and fundamentally underpins the technological developments of audio effects. The development and evolution of audio effect technology is discussed, highlighting major technical breakthroughs and the impact of available audio effects. Keywords: audio effects; history; transsectorial innovation; technology; audio processing; music production 1. Introduction In this article, we describe the history of audio effects with regards to musical composition (music performance and production). We define audio effects as the controlled transformation of a sound typically based on some control parameters. As such, the term sound transformation can be considered synonymous with audio effect.
    [Show full text]
  • The Ukrainian Weekly 1996, No.5
    www.ukrweekly.com INSIDE: ^ Primakov travels to Kyiv to fay groundwork for Yeltsin visit - page 3. e Radio Canada International saved by Cabinet shuffle - page 4. 9 Washington Post correspondent shares impressions of Ukraine - page 5. THE UKRAINIAN WEEKLY Published by the Ukrainian National Association Inc., a fraternal non-profit association Vol. LXIV No. 5 THE UKRAINIAN WEEKLY SUNDAY, FEBRUARY 4, 1996 S1.2542 in Ukraine Ukraine's coal miners stage strike Parliament cancels moratorium to demand payment of back wages on adoptions, sets procedures by Marta Kolomayets during this harsh winter - amidst condi­ by Marta Kolomayets children adopted by foreigners through Kyiv Press Bureau tions of gas and oil shortages - and Kyiv Press Bureau Ukrainian consular services until they should be funded immediately from the turn 18 and forbids any commercial for­ KYIV - Despite warnings of mass state budget. KYIV - The Parliament on January 30 eign intermediaries to take part in the strikes involving coal mines throughout lifted a moratorium on adoption of As The Weekly was going to press, adoption process. Ukraine, Interfax-Ukraine reported that Ukrainian children by foreigners and Coal Industry Minister Serhiy Polyakov The law, which takes effect April 1, as of late Thursday evening, February I, voted to establish a new centralized mon­ had been dispatched to discuss an agree­ will closely scrutinize the fate and workers from only 86 mines out of 227 ment with strike leaders. According to itoring agency that will require all adop­ whereabouts of Ukraine's most precious had decided to walk out. They are Interfax-Ukraine, the Cabinet of Ministers tions in Ukraine to pass through, the resource - its children.
    [Show full text]
  • Paper One the Standing Wave Problem
    LeadingEdge Systematic Approach Room Acoustic Principles - Paper One The Standing Wave Problem Sound quality problems caused by poor room acoustics. We all recognise that room acoustics can cause sound quality problems. But often the issues are not clearly described or discussed. Here we will cover some important considerations and principles of room acoustics problems. Treating your room should not be done in isolation from all the other system building considerations. Your thoughts about room acoustics treatment should be in conjunction with your requirements for mains, supports, system electronics, speakers and cables etc. None of these should be dealt with in isolation, and with regards to room acoustics it’s particularly important to be aware of some of the interactive nature of room acoustics, and other systematic faults. For example, a boomy bass could be caused by a room mode, but equally it could be caused by bass feedback from a wall and up into your system through the mains leads. If it’s your mains cables feeding back vibration that’s the dominant problem, spending money on room treatment may not correctly resolve the issue. Room acoustics problems can be grouped into the following categories. 1. Air mass problems: – Standing waves with sound pressure peaks and suck-outs (and associated velocity peaks) – Velocity generated intermodulation 2. Reflection problems – Unwanted reflected signals at the listening position – Raised reverberant background noise floor The behavior of a room’s air mass is the most important consideration with room treatment. A significant air mass problem is a fundamental destroyer of performance - uncontrolled room modes produce associated velocity intermodulation, which damages every aspect of musical reproduction.
    [Show full text]