Hearing Threshold Measurements of Infrasound Combined with Audio Frequency Sound

Total Page:16

File Type:pdf, Size:1020Kb

Hearing Threshold Measurements of Infrasound Combined with Audio Frequency Sound 12th ICBEN Congress on Noise as a Public Health Problem Hearing threshold measurements of infrasound combined with audio frequency sound Elisa Burke1, Johannes Hensel1, Thomas Fedtke1 1 Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany Corresponding author's e-mail address: [email protected] ABSTRACT Within the framework of the European project EMPIR 15HLT03 "Ears II" this study aims at a better understanding of the human response to infrasound. The purpose of this study is to examine which role the combination of infrasound (< 20 Hz) and sound in the audio frequency range (between 20 Hz and 20 kHz) plays for the perception of infrasound. One hypothesis to be validated is that the interaction between infrasound and audio-frequency sound may explain the perceptibility of infrasound. Another aim is to investigate whether the presence of infrasound influences the hearing threshold of audio frequency sound. In order to test these hypotheses detection threshold measurements were performed separately for infrasound and audio-frequency sound stimuli. Then thresholds were measured for infrasound stimuli in the presence of audio-frequency sound and for audio-frequency sound stimuli in the presence of infrasound. The measurement setup consisted of an infrasound source and an audio-frequency sound source, each coupled by a sound tube to the same eartip that was used for monaural presentation of the acoustic stimuli. 1. INTRODUCTION An increasing number of individuals are being exposed to infrasound. It is well known that certain individuals may be particularly sensitive and that their quality of life is considerably degraded by a range of symptoms (insomnia, concentration disorders, restlessness, migraine), e.g. [1]. Unfortunately, even technology indispensable for a sustainable development in the European Union (like renewable energy technology and road traffic) also produces infrasound noise. It is, therefore, an important overall need with respect to many aspects of quality of life to gather more basic knowledge about infrasound perception and impact mechanisms. Infrasound detection thresholds, loudness estimates and other psychoacoustical characteristics are reported from a number of studies, e.g. [1, 2, 3]. 1 It is, however, still not clear, how human beings process infrasound. Our study aims at contributing to knowledge about the perception mechanisms for infrasound and low-frequency sound by investigating the interaction between infrasound and audio-frequency sound with respect to the detection thresholds. Moreover, we think it is worth investigating whether the presence of infrasound influences the hearing threshold of audio-frequency sound. This study confines the perception of infrasound to “hearing by means of the human auditory system”. All other ways of sensation, e.g. somatosensory mechanisms, are intentionally ruled out for our investigation. Therefore we used insert earphone sound sources, both for the infrasound and the audio-frequency stimuli. The results presented in this conference paper are outcome of a pilot study for further research within the framework of the project. 2. MATERIALS AND METHODS 2.1. Measurement setup Figure 1: Schematic view of setup for the detection threshold measurement of infrasound and audio frequency sound stimuli using the insert earphone sound source system. In order to obtain a controlled auditory stimulation with infrasound combined with audio frequency sound we used a specially developed insert earphone sound source system (see Figure 1). The sound source system consisted of an infrasound source and an audio- frequency sound source, both realized as damped wooden boxes into which loudspeakers were mounted hermetically. Their sound was transferred to the audiometric eartip (E-A-RTone/ E-A-RLink, Standard Insert Foam Eartips) by means of connecting tubes. The 2 eartip was inserted into the test subject’s right ear for monaural presentation of the acoustic stimuli. The contralateral ear was occluded with an ear plug. The test subject as well as the sound sources and the sound tubes were located in an anechoic room with sufficiently low background noise levels. A computer display and a keyboard, which were necessary for the experimental procedure (see section 2. 5., Psychoacoustic measurement procedure), were placed in front of the subject. The computer controlling the experiments was located outside the anechoic room. The infrasound and the audio-frequency waveforms were calculated with MATLAB at 96 kHz sample rate. An external sound card (RME Fireface UC; infrasound and audio-frequency components in separate channels) generated analogue output signals that were fed to three separate amplifiers (type Beak BAA 120 for the compensation and the infrasound source, type Tira BAA 120 for the audio sound source). The infrasound source contained a 13“ electrodynamic loudspeaker (Beyma 15P80/Nd) generating the infrasonic pure-tone stimuli with sufficiently high sound pressure levels at low harmonic distortion [4]. The upper 8“ electrodynamic loudspeaker (Beyma 8P300Fe/N) inside the combined source (hereafter referred to as audio sound source) generated the stimuli in the audio frequency range up to 4 kHz. A major difficulty associated with the combination of infrasound and audio-frequency sound is that infrasound which is transferred by the sound tube to the audio sound source may cause a technical modulation by displacing the audio sound source loudspeaker's membrane. In order to compensate this modulation, down to a sufficiently (i.e., imperceptible) low level, an additional 8“ loudspeaker (Beyma 8P300Fe/N) (hereafter referred to as compensation source) was mounted in the box, below the audio sound source. The compensation source emitted infrasound with the same frequency as the infrasound source but with a frequency-dependent time shift adjusted with a time delay unit (part of Behringer Ultradrive Pro DCX 2496). Second-order low-pass filters (fc = 25 Hz) were inserted between the amplifiers and the loudspeakers for the infrasound source and the compensation source, and a second-order high-pass filter (fc = 460 Hz) as well as a 30 dB attenuator were inserted into the signal path of the audio sound source for suppressing the amplifiers' 50 Hz hum and its harmonics sufficiently to be well below the normal hearing threshold level. 2.2. Stimuli In the low-frequency range we used pure-tone stimuli at 12 Hz and 20 Hz. Band limited pink-noise stimuli were applied in the audio-frequency range: a one-third octave pink noise and a four octave wide pink noise, both centred at 1 kHz. The pink-noise signals were digitally pre-shaped by multiplying them with the inverted frequency response of the audio sound source in order to get a flat acoustical spectrum of the stimuli. All stimuli were windowed with a cos² function of a well-defined duration. Three oscillations for each cos² ramp were chosen for the 12 Hz stimuli, resulting in 0.25 s duration of each cos² ramp. The duration of the cos² ramps applied to the 20 Hz pure tone and to the pink-noise stimuli was 0.2 s. The sound pressure levels of the low-frequency stimuli were calibrated with a ½“ low- frequency pressure-field microphone (Brüel & Kjær, type 4193 + UC0211) that was placed in a cavity having an equivalent ear canal volume of 1.3 cm³, whereas the audio-frequency pink- 3 noise stimuli were calibrated with an occluded-ear simulator (Brüel & Kjær, type 4157 + ear canal extension DB 2012). The sound tubes from the sound sources were coupled to the cavity and the ear canal extension, respectively, by means of the eartip. 2.3. Experimental design The test subject received written and oral instructions prior to the beginning of the first experiment. The threshold measurements performed in this study were separated in three experiments (see Table 1). Each experiment was divided in several experimental runs. One experimental run comprised one threshold measurement of the target stimulus in silence or in presence of a background stimulus at a specific sound pressure level. Table 1: Overview of the experimental design of the detection threshold measurements. Target stimulus Background stimulus Sound pressure level of background stimulus / dB SL Experiment 1 Pink noise 250 - 4000 Hz - - Pink noise 890 - 1121 Hz - - 20 Hz* - - 12 Hz - - Experiment 2 12 Hz Pink noise 250 - 4000 Hz 0, +35, +65 12 Hz Pink noise 890 - 1121 Hz 0, +35, +65 Experiment 3 Pink noise 250 - 4000 Hz 12 Hz -10, 0, +10 Pink noise 890 - 1121 Hz 12 Hz -10, 0, +10 *The experimental run at 20 Hz was only intended to allow the subjects to familiarize themselves with the unusual perception of low-frequency sound. First (see Table 1, Experiment 1) detection threshold measurements were performed for infrasound and audio-frequency stimuli in silence. The experiment began with detection threshold measurements of the two bandlimited pink-noise audio-frequency signals, followed by a shortened detection threshold measurement for 20 Hz, which was only intended to allow the subjects to familiarize themselves with the unusual perception of low-frequency sound. Therefore it was not included in the measurement evaluation. Finally, the detection threshold of the 12 Hz infrasonic stimulus was measured. The two following experiments comprised detection threshold measurements of infrasound stimuli in the presence of audio-frequency sound (Experiment 2) and detection threshold measurements of audio-frequency stimuli in the presence of infrasound (Experiment 3). Both experiments were separated
Recommended publications
  • Introduction to Audio Acoustics, Speakers and Audio Terminology
    White paper Introduction to audio Acoustics, speakers and audio terminology OCTOBER 2017 Table of contents 1. Introduction 3 2. Audio frequency 3 2.1 Audible frequencies 3 2.2 Sampling frequency 3 2.3 Frequency and wavelength 3 3. Acoustics and room dimensions 4 3.1 Echoes 4 3.2 The impact of room dimensions 4 3.3 Professional solutions for neutral room acoustics 4 4. Measures of sound 5 4.1 Human sound perception and phon 5 4.2 Watts 6 4.3 Decibels 6 4.4 Sound pressure level 7 5. Dynamic range, compression and loudness 7 6. Speakers 8 6.1 Polar response 8 6.2 Speaker sensitivity 9 6.3 Speaker types 9 6.3.1 The hi-fi speaker 9 6.3.2 The horn speaker 9 6.3.3 The background music speaker 10 6.4 Placement of speakers 10 6.4.1 The cluster placement 10 6.4.2 The wall placement 11 6.4.3 The ceiling placement 11 6.5 AXIS Site Designer 11 1. Introduction The audio quality that we can experience in a certain room is affected by a number of things, for example, the signal processing done on the audio, the quality of the speaker and its components, and the placement of the speaker. The properties of the room itself, such as reflection, absorption and diffusion, are also central. If you have ever been to a concert hall, you might have noticed that the ceiling and the walls had been adapted to optimize the audio experience. This document provides an overview of basic audio terminology and of the properties that affect the audio quality in a room.
    [Show full text]
  • Acoustic Textiles - the Case of Wall Panels for Home Environment
    Acoustic Textiles - The case of wall panels for home environment Bachelor Thesis Work Bachelor of Science in Engineering in Textile Technology Spring 2013 The Swedish school of Textiles, Borås, Sweden Report number: 2013.2.4 Written by: Louise Wintzell, Ti10, [email protected] Abstract Noise has become an increasing public health problem and has become serious environment pollution in our daily life. This indicates that it is in time to control and reduce noise from traffic and installations in homes and houses. Today a plethora of products are available for business, but none for the private market. The project describes a start up of development of a sound absorbing wall panel for the private market. It will examine whether it is possible to make a wall panel that can lower the sound pressure level with 3 dB, or reach 0.3 s in reverberation time, in a normally furnished bedroom and still follow the demands of price and environmental awareness. To start the project a limitation was made to use the textiles available per meter within the range of IKEA. The test were made according to applicable standards and calculation of reverberation time and sound pressure level using Sabine’s formula and a formula for sound pressure equals sound effect. During the project, tests were made whether it was possible to achieve a sound classification C on a A-E grade scale according to ISO 11654, where A is the best, with only textiles or if a classic sound absorbing mineral wool had to be used. To reach a sound classification C, a weighted sound absorption coefficient (αw) of 0.6 as a minimum must be reached.
    [Show full text]
  • Infrasound and Low Frequency Noise of a Wind Turbine
    Vibrations in Physical Systems Vol.26 (2014) Infrasound and Low Frequency Noise of a Wind TurBine Malgorzata WOJSZNIS Institute of Applied Mechanics, Poznan University of Technology 3 Piotrowo Street, 60-965 Poznań [email protected] Jacek SZULCZYK Environmental Acoustics Laboratory EKO – POMIAR 4 Sloneczna Street, 64-600 Oborniki [email protected] ABstract The paper presents noise evaluation for a 2 MW wind turbine. The obtained results have been analyzed with regard to infrasound and low frequency noise generated during work of the wind turbine. The evaluation was based on standards and decrees binding in Poland. The paper presents also current literature data on the influ- ence of the infrasound and low frequency noise on a human being. It has been concluded, that the permissible levels of infrasound for the investigated wind turbine were not exceeded. Keywords: low frequency noise, infrasound, wind turbine 1. Introduction Research that has been conducted in the world for many years shows that noise can be described as sound below and above so called hearing threshold . It can be assumed that the infrasound , which cannot be heard by a human being, concerns frequencies below 20 Hz, and the ultrasound concerns frequencies above 20 kHz [1]. We receive it as me- chanical vibrations of the medium it passes through, transferring energy from the source in the form of acoustic waves. Puzyna in [1] describes infrasound as infraaccoustic vi- brations . Some investigations show that for some people the hearing level begins already at 16Hz, and sometimes even at 4Hz. Such a phenomenon occurs at appropriate condi- tions and at a high level of sound pressure [2].
    [Show full text]
  • Quality of Piano Tones
    THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA Volume 34 Number 6 JUNE. 1962 Quality of Piano Tones HARVEY FLETCIIER,E. DONNEL• BLACKHAM,AND RICIIARD STRATTON Brigham Young University, Provo, Utah (ReceivedNovember 27, 1961) A synthesizerwas constructedto producesimultaneously 100 pure toneswith meansfor controllingthe intensity and frequencyof each one of them. The piano toneswere analyzedby conventionalapparatus and methodsand the analysisset into the synthesizer.The analysiswas consideredcorrect only when a jury of eight listenerscould not tell which were real and which were synthetictones. Various kinds of synthetictones were presented to the jury for comparisonwith real tones.A numberof thesewere judged to have better quality than the real tones.According to thesetests synthesized piano-like tones were produced when the attack time was lessthan 0.01 sec.The decaycan be as long as 20 secfor the lower notes and be lessthan 1 secfor the very high ones.The best quality is producedwhen the partials decreasein level at the rate of 2 db per 100-cpsincrease in the frequencyof the partial. The partialsbelow middle C must be inharmonicin frequencyto be piano-like. INTRODUCTION synthesizer,and (4) the frequencychanger. To these HISpaper isa reportof our efforts tofind an ob- facilitieshave been added, a sonograph,an analyzer, a jectivedescription of the qualityof pianotones as single-tracktape recorder,a 5-track tape recorder,and understoodby musicians,and also to try to find syn- other apparatususually available in electronicresearch thetic toneswhich are consideredby them to be better laboratories.A block diagram of the arrangementis than real-piano tones. shownin Fig. 1. The usual statement found in text books is that the pitch of a tone is determinedby the frequencyof EQUIPMENT vibration,the loudnessby the intensityof the vibration, 1.
    [Show full text]
  • A Pocket-Sized Introduction to Acoustics Keith Attenborough, Michiel Postema
    A pocket-sized introduction to acoustics Keith Attenborough, Michiel Postema To cite this version: Keith Attenborough, Michiel Postema. A pocket-sized introduction to acoustics. The Univerisity of Hull, 80 p., 2008, 978-90-812588-2-1. hal-03188302 HAL Id: hal-03188302 https://hal.archives-ouvertes.fr/hal-03188302 Submitted on 6 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A pocket-sized introduction to acoustics Prof. Dr. Keith Attenborough Dr. Michiel Postema Department of Engineering The University of Hull 2 ISBN 978-90-812588-2-1 °c 2008 K. Attenborough, M. Postema. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechan- ical, photocopying, recording or otherwise, without the prior written permission of the authors. Publisher: Michiel Postema, Bergschenhoek Printed in England by The University of Hull Typesetting system: LATEX 2" Contents 1 Acoustics and ultrasonics 5 2 Mass on a spring 7 3 Wave equation in fluid 9 4 Sound speed
    [Show full text]
  • Infrasound and Ultrasound
    Infrasound and Ultrasound Exposure and Protection Ranges Classical range of audible frequencies is 20-20,000 Hz <20 Hz is infrasound >20,000 Hz is ultrasound HOWEVER, sounds of sufficient intensity can be aurally detected in the range of both infrasound and ultrasound Infrasound Can be generated by natural events • Thunder • Winds • Volcanic activity • Large waterfalls • Impact of ocean waves • Earthquakes Infrasound Whales and elephants use infrasound to communicate Infrasound Can be generated by man-made events • High powered aircraft • Rocket propulsion systems • Explosions • Sonic booms • Bridge vibrations • Ships • Air compressors • Washing machines • Air heating and cooling systems • Automobiles, trucks, watercraft and rail traffic Infrasound At very specific pitch, can explode matter • Stained glass windows have been known to rupture from the organ’s basso profunda Can incapacitate and kill • Sea creatures use this power to stun and kill prey Infrasound Infrasound can be heard provided it is strong enough. The threshold of hearing is determined at least down to 4 Hz Infrasound is usually not perceived as a tonal sound but rather as a pulsating sensation, pressure on the ears or chest, or other less specific phenomena. Infrasound Produces various physiological sensations Begin as vague “irritations” At certain pitch, can be perceived as physical pressure At low intensity, can produce fear and disorientation Effects can produce extreme nausea (seasickness) Infrasound: Effects on humans Changes in blood pressure, respiratory rate, and balance. These effects occurred after exposures to infrasound at levels generally above 110 dB. Physical damage to the ear or some loss of hearing has been found in humans and/or animals at levels above 140 dB.
    [Show full text]
  • Determination of Speed of Sound in the Air Using Kundt's Tube. the Exercise Aims to Determine the Speed of Sound in the Air with Kundt's Pipe's Application
    Determination of speed of sound in the air using Kundt's tube. The exercise aims to determine the speed of sound in the air with Kundt's pipe's application. 1. Theory Waves could be divided into three main types: 1. Mechanical waves – waves propagate as an oscillation of the medium, for example, sea waves, sound waves and seismic waves. They are propagating consistent with classical physics laws and can exist only in water, air or solid-state. 2. Electromagnetic waves – waves propagate as continuous changes of electric and magnetic fields. This kind of waves doesn't require a medium, and it can propagate in a vacuum. Light, radio waves, TV waves, microwaves, X-rays are examples of electromagnetic waves. They propagate with the speed of light. 3. Matter waves – waves related to all objects in motion. The wavelength of matter waves is given by ℎ ℎ de Broglie formula λ = = . It is easier to detect matter waves of particles (e.g. electrons) than 푚푣 푝 heavy objects like a human. The waves can be divided into two types depending on the oscillation medium's direction with respect to wave propagation direction. If the oscillation direction is perpendicular to the propagation's direction, this kind of wave is called the transverse wave. If the oscillation direction is parallel to the propagation's direction, this kind of wave is called a longitudinal wave. A following formula is used to describe the propagation of the harmonic wave : 푦(푥, 푡) = 퐴 푠푖푛(푘푥 − ω푡), where: 푦(푥, 푡, ) – displacement as a function of position x and time t, A – amplitude of the wave, k – wavenumber equal to 2π/λ, where λ is a wavelength (distance between to minimum or maximum of the wave) ω – circular frequency equal to 2π/T, where T means oscillation period (kx-ωt) – phase of the wave.
    [Show full text]
  • Harmonic Analysis for Music Transcription and Characterization
    UNIVERSITA` DEGLI STUDI DI BRESCIA FACOLTA` DI INGEGNERIA Dipartimento di Ingegneria dell'Informazione DOTTORATO DI RICERCA IN INGEGNERIA DELLE TELECOMUNICAZIONI XXVII CICLO SSD: ING-INF/03 Harmonic Analysis for Music Transcription and Characterization Ph.D. Candidate: Ing. Alessio Degani .............................................. Ph.D. Supervisor: Prof. Pierangelo Migliorati .............................................. Ph.D. Coordinator: Prof. Riccardo Leonardi .............................................. ANNO ACCADEMICO 2013/2014 to my family Sommario L'oggetto di questa tesi `elo studio dei vari metodi per la stima dell'informazione tonale in un brano musicale digitale. Il lavoro si colloca nel settore scientifico de- nomitato Music Information Retrieval, il quale studia le innumerevoli tematiche che riguardano l'estrazione di informazioni di alto livello attraverso l'analisi del segnale audio. Nello specifico, in questa dissertazione andremo ad analizzare quelle procedure atte ad estrarre l'informazione tonale e armonica a diversi lev- elli di astrazione. Come prima cosa verr`apresentato un metodo per stimare la presenza e la precisa localizzazione frequenziale delle componenti sinusoidali stazionarie a breve termine, ovvero le componenti fondamentali che indentificano note e accordi, quindi l'informazione tonale/armonica. Successivamente verr`aesposta un'analisi esaustiva dei metodi di stima della frequenza di riferimento (usata per accordare gli strumenti musicali) basati sui picchi spettrali. Di solito la frequenza di riferimento `econsiderata standard e associata al valore di 440 Hz, ma non sempre `ecos`ı. Vedremo quindi che per migliorare le prestazioni dei vari metodi che si affidano ad una stima del contenuto armonico e melodico per determinati scopi, `efondamentale avere una stima coerente e robusta della freqeunza di riferimento. In seguito, verr`apresentato un sistema innovativo per per misurare la rile- vanza di una data componente frequenziale sinusoidale in un ambiente polifonico.
    [Show full text]
  • A History of Audio Effects
    applied sciences Review A History of Audio Effects Thomas Wilmering 1,∗ , David Moffat 2 , Alessia Milo 1 and Mark B. Sandler 1 1 Centre for Digital Music, Queen Mary University of London, London E1 4NS, UK; [email protected] (A.M.); [email protected] (M.B.S.) 2 Interdisciplinary Centre for Computer Music Research, University of Plymouth, Plymouth PL4 8AA, UK; [email protected] * Correspondence: [email protected] Received: 16 December 2019; Accepted: 13 January 2020; Published: 22 January 2020 Abstract: Audio effects are an essential tool that the field of music production relies upon. The ability to intentionally manipulate and modify a piece of sound has opened up considerable opportunities for music making. The evolution of technology has often driven new audio tools and effects, from early architectural acoustics through electromechanical and electronic devices to the digitisation of music production studios. Throughout time, music has constantly borrowed ideas and technological advancements from all other fields and contributed back to the innovative technology. This is defined as transsectorial innovation and fundamentally underpins the technological developments of audio effects. The development and evolution of audio effect technology is discussed, highlighting major technical breakthroughs and the impact of available audio effects. Keywords: audio effects; history; transsectorial innovation; technology; audio processing; music production 1. Introduction In this article, we describe the history of audio effects with regards to musical composition (music performance and production). We define audio effects as the controlled transformation of a sound typically based on some control parameters. As such, the term sound transformation can be considered synonymous with audio effect.
    [Show full text]
  • Wind Farm Infrasound Detectability and Its Effects on the Percep- Tion of Wind Farm Noise Amplitude Modulation
    Wind farm infrasound detectability and its effects on the percep- tion of wind farm noise amplitude modulation Duc Phuc Nguyen (1), Kristy Hansen (1), Branko Zajamsek (2), Gorica Micic (2) and Peter Catcheside (2) (1) College of Science and Engineering, Flinders University, Adelaide, Australia (2) Adelaide Institute for Sleep Health, Flinders University, Adelaide, Australia ABSTRACT Some residents attribute adverse effects to the presence of wind farm (WF) infrasound. However, dominant fea- tures of windfarm noise such as infrasound, tonality and amplitude modulation span the average human hearing threshold, so attribution to infrasound is problematic. This study used a combination of pre-recorded noise stimuli, measured at 3.2 km from a wind farm, in laboratory-based listening tests to investigate human perception of infrasound and amplitude modulation at realistic sound pressure levels in a group of 14 participants. Although a small sample size warrants cautious interpretation, preliminary results suggest differential effects between self- reported non-sensitive versus noise-sensitive participants, where the latter detected infrasound above chance. Infrasound did not affect the perception of amplitude modulation. Larger studies remain needed to clarify these findings. 1 INTRODUCTION Wind farm (WF) infrasound remains controversial and the source of substantial debate regarding potential effects of wind farm noise (WFN) on human health. The main infrasonic components of WFN can be measured many kilometres away from a wind farm, but typically at levels deemed well below the normal hearing threshold (Zajamšek et al. 2016, Turnbull, Turner, and Walsh 2012, Jakobsen 2005). The evidence for infrasound-specific effects on human health is very poor. A key hypothesis that has been advanced to explain wind farm noise related complaints, and partly supported by animal studies, suggesting that WF infrasound could potentially be detected by the ear, yet not heard, although supporting evidence from human studies remain lacking (Salt and Hullar 2010).
    [Show full text]
  • A Study in Infrasound and Game Performance
    A Study in Infrasound and Game Performance By Kim Young Hornshøj Hansen Aalborg University Cph, spring 2013 Kim Young Hornshøj Hansen Spring 2013 Aalborg University CPH Master 4th Semester Table of Content 1. Introduction and Motivation ..................................................................................................................... 4 2. Initial Research .......................................................................................................................................... 5 2.1. The Power of Sound .......................................................................................................................... 5 2.1.1. Psychoacoustics ......................................................................................................................... 5 2.2. Infrasound ......................................................................................................................................... 7 2.3. Sound Reflection and Absorption. ................................................................................................. 7 2.4. State of the Art .................................................................................................................................. 9 2.4.1. Brainwaves............................................................................................................................... 11 2.4.2. The Nervous System ................................................................................................................ 12 2.4.3.
    [Show full text]
  • A Prototype Soundproof Box for Isolating Ground-Air Seismo-Acoustic Signals
    Volume 36 http://acousticalsociety.org/ 177th Meeting of the Acoustical Society of America Louisville, Kentucky 13-17 May 2019 Physical Acoustics: Paper 4pPAb9 Aprototypesoundproofboxforisolatingground-air seismo-acousticsignals PhysicsandAstronomy,BrighamYoungUniversity,Provo,Utah,84602; [email protected] RobinMatoza EarthScience,UniversityofCalifornia,SantaBarbara,SantaBarbara; [email protected] Published by the Acoustical Society of America © 2019 Acoustical Society of America. https://doi.org/10.1121/2.0001034 Proceedings of Meetings on Acoustics, Vol. 36, 045002 (2019) Page 1 E. J. Lysenko et al. A prototype soundproof box for isolating ground-air seismo-acoustic signals 1. INTRODUCTION Volcanic eruptions pose a serious threat to operating aircraft, since ejecta from volcanoes have a lower melting point than the operating temperature of aircraft engines (Matoza et al. 2018a). For example, during the 2010 eruption of the Icelandic volcano Eyjafjallajökull, the ash cloud climbed almost 9 km into the atmosphere causing most of the European airspace to close for six days. The proximity of this relatively small volcanic eruption to numerous major airports caused the largest disruption of air travel since World War II. Currently, satellites are used for visual confirmation of volcanic eruptions and estimation of how much ejecta and vapor is released into the atmosphere. Recent research has focused on using infrasound from volcanoes for early volcanic eruption detection. The ability to interpret volcano infrasound has the potential to not only reduce the time to confirm an eruption but also indicate the type and amount of ejecta (Matoza et al. 2018a). Infrasound can travel thousands of kilometers due to low atmospheric absorption and atmospheric refraction effects.
    [Show full text]