Attrition of Mantle Cargo During Kimberlite Ascent: Insights

Total Page:16

File Type:pdf, Size:1020Kb

Attrition of Mantle Cargo During Kimberlite Ascent: Insights ATTRITION OF MANTLE CARGO DURING KIMBERLITE ASCENT: INSIGHTS FROM ANALOGUE EXPERIMENTS by DAVID SASSE B.Sc., The University of British Columbia, 2016 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Geological Sciences) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) December 2019 © David Sasse, 2019 The following individuals certify that they have read, and recommend to the Faculty of Graduate and Postdoctoral Studies for acceptance, a thesis entitled: Attrition of mantle cargo during kimberlite ascent: Insights from analogue experiments submitted by David Sasse in partial fulfillment of the requirements for the degree of Master of Science in Geological Sciences Examining Committee: James Kelly Russell, Geological Sciences Supervisor Thomas Jones, Geological Sciences Supervisory Committee Member Maya Kopylova, Geological Sciences Supervisory Committee Member Lucy Porritt, Geological Sciences Additional Examiner ii Abstract Kimberlite magmas transport mantle cargo in the form of xenoliths and xenocrysts to the surface of the Earth. Due to the lack of recent kimberlite eruptions and unanswered questions concerning melt composition and magma rheology, the mechanisms supporting efficient ascent of these cargo-rich magmas remains enigmatic. Although olivine is the dominant mineral phase in kimberlite, given the polymineralic nature of mantle xenoliths, xenocrysts are transported as a multi-mineral mixture. Within the ascending dyke, high particle concentrations and high velocities resulting in turbulent flow provides an environment for frequent particle-particle interaction. Xenocryst morphologies, textures and size distributions observed in kimberlite deposits are not reflective of how they occur in xenoliths and are therefore modified during ascent to the surface. The degree of modification of each mineral varies and is a function of its chemical and physical properties. Here I present a series of analogue attrition experiments on the mantle minerals: olivine, orthopyroxene, clinopyroxene, garnet and diamond designed to inform on the ascent of kimberlite magmas. Data is collected on particle size distributions, particle morphologies and particle velocities. Natural xenocrysts extracted from coherent kimberlite reveal remarkably similar surface features and morphologies to that of the experiments suggesting that attrition indeed operates during kimberlite ascent. Kimberlite ascent velocities are estimated by using a scaling analysis of the experiment conditions and by investigating impact pits observed on the surfaces of kimberlitic olivine and garnet xenocrysts. Both methods result in calculated ascent velocities of ~ 4 m s-1. In mineral mixtures, cleavage is shown to be a controlling factor in determining attrition rates whereby minerals with cleavage undergo accelerated breakdown. I suggest that the accelerated breakdown of orthopyroxene increases assimilation rates, contributing to the onset of turbulent ascent. iii Lay Summary Anyone who has walked along a beach, or a dry stream bed will have at some point observed the remarkably well rounded and polished pebbles. These shapes and textures are the result of low energy collisions over long periods of time. Kimberlite is a rock type well known for being the major global source of diamonds. The magma that goes on to form the rock, kimberlite, originates deep in the Earth’s interior and picks up mantle rocks and minerals on its way to surface. The mantle material observed in kimberlites is often anomalously well rounded and just like the pebbles in a stream, began as angular fragments. This study aims to better understand the processes that lead to the observed morphologies in kimberlite and to gain insight into the conditions present during the ascent of kimberlite magma towards the surface. iv Preface This thesis was completed under the supervision of Dr. Kelly Russell and Dr. Thomas Jones who collectively designed the project, offered direction and helped with editing. This dissertation is original, unpublished, independent work by the author, Sasse. D. The project was completed as a requirement of the NSERC CREATE program: Diamond Exploration and Research Training School (DERTS). v Table of Contents Abstract ................................................................................................................................... iii Lay Summary ........................................................................................................................... iv Preface ....................................................................................................................................... v Table of Contents ..................................................................................................................... vi List of Tables ............................................................................................................................ ix List of Figures........................................................................................................................... xi List of Symbols ...................................................................................................................... xvii Acknowledgements ................................................................................................................. xix Chapter 1: Introduction ............................................................................................................ 1 Chapter 2: Background on Attrition ........................................................................................ 6 2.1 Particle Attrition Mechanisms and Applications ...........................................................6 2.2 Applications in Engineering .........................................................................................9 2.2.1 Applications in Chemical Engineering .....................................................................9 2.2.2 Applications in Mining .......................................................................................... 11 2.3 Attrition in Geological Environments......................................................................... 13 2.4 Applications in Volcanology ...................................................................................... 14 2.5 Attrition in Kimberlites .............................................................................................. 17 Chapter 3: Attrition Apparatus for Experiments .................................................................. 23 3.1 Modifications to the Attrition Apparatus .................................................................... 25 3.2 Experimental Conditions............................................................................................ 26 3.3 Scaling the Experiments to the Natural System .......................................................... 29 vi 3.4 Data Collection During and After Experiments .......................................................... 30 3.5 Experimental Grid ..................................................................................................... 34 Chapter 4: Sample Characterization...................................................................................... 36 4.1 Sample Characterization ............................................................................................ 36 4.1.1 Density Measurements ........................................................................................... 36 4.1.2 2D Shape Characterization ..................................................................................... 38 4.1.3 Scanning Electron Microscopy ............................................................................... 40 4.1.4 Summary of Experiments Chosen for Analysis ...................................................... 40 4.1.5 Mineral Properties Summary .................................................................................. 42 Chapter 5: Results and Analysis ............................................................................................. 43 5.1 Attrition of Individual Minerals ................................................................................. 43 5.1.1 Fines Production Datasets ...................................................................................... 43 5.1.2 Grain Size Distributions ......................................................................................... 49 5.1.3 Experiment Observations / Videography ................................................................ 52 5.1.4 Grain Shapes and Surfaces ..................................................................................... 58 5.2 Attrition of Mineral Mixtures ..................................................................................... 72 Chapter 6: Discussion ............................................................................................................. 75 6.1 Transport Duration and Velocity of Kimberlite Ascent .............................................. 75 6.2 Morphology and Surface Features of Coherent Kimberlite Xenocrysts....................... 79 6.3 Mineral Physical Properties Related to Attrition Susceptibility and Mechanisms ....... 84 6.4 Attrition Mechanics ................................................................................................... 86 6.4.1 Abrasion Mechanics..............................................................................................
Recommended publications
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Infrared and Raman Spectroscopic Characterization of the Carbonate Bear- Ing Silicate Mineral Aerinite - Implications for the Molecular Structure
    This may be the author’s version of a work that was submitted/accepted for publication in the following source: Frost, Ray, Scholz, Ricardo, & Lopez Toro, Andres (2015) Infrared and Raman spectroscopic characterization of the carbonate bear- ing silicate mineral aerinite - Implications for the molecular structure. Journal of Molecular Structure, 1097, pp. 1-5. This file was downloaded from: https://eprints.qut.edu.au/84503/ c Consult author(s) regarding copyright matters This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the docu- ment is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recog- nise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to [email protected] License: Creative Commons: Attribution-Noncommercial-No Derivative Works 2.5 Notice: Please note that this document may not be the Version of Record (i.e. published version) of the work. Author manuscript versions (as Sub- mitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appear- ance. If there is any doubt, please refer to the published source. https://doi.org/10.1016/j.molstruc.2015.05.008 Infrared and Raman spectroscopic characterization of the carbonate bearing silicate mineral aerinite – implications for the molecular structure Ray L.
    [Show full text]
  • New Mineral Names*
    American Mineralogist, Volume 73, pages 1492-1499. 1988 NEW MINERAL NAMES* JOHN L. JAMBOR CANMET, 555 Booth Street, Ottawa, Ontario KIA OGI, Canada ERNST A. J. BURKE lnstituut voor Aardwetenschappen, Vrije Universitiete, De Boelelaan 1085, 1081 HV, Amsterdam, Netherlands T. SCOTT ERCIT, JOEL D. GRICE National Museum of Natural Sciences, Ottawa, Ontario KIA OM8, Canada Acuminite* prismatic to acicular crystals that are up to 10 mm long and 0.5 H. Pauly, O.Y. Petersen (1987) Acuminite, a new Sr-fluoride mm in diameter, elongate and striated [001], rhombic to hex- from Ivigtut, South Greenland. Neues Jahrb. Mineral. Mon., agonal in cross section, showing {l00} and {l10}. Perfect {100} 502-514. cleavage, conchoidal fracture, vitreous luster, H = 4, Dm'.. = 2.40(5) glcm3 (pycnometer), Dcale= 2.380 glcm3 for the ideal Wet-chemical analysis gave Li 0.0026, Ca 0.0185, Sr 37.04, formula, and Z = 4. Optically biaxial positive, a = 1.5328(4), (3 Al 11.86, F 33.52, OH (calc. from anion deficit) 6.82, H20 (calc. = 1.5340(4), 1.5378(4), 2 Vmoa,= 57(2)°, 2 Vcale= 59°; weak assuming 1 H20 in the formula) 7.80, sum 97.06 wt%, corre- 'Y = dispersion, r < v; Z = b, Y A c = -10°. X-ray structural study sponding to Sro98AIl.o2F.o7(OH)o.93H20. The mineral occurs as indicated monoclinic symmetry, space group C21c, a = 18.830(2), aggregates of crystals shaped like spear points and about I mm b= I 1.517(2), c= 5.190(I)A,{3 = 100.86(1)°. A Guinierpowder long.
    [Show full text]
  • Volume 25 / No. 3 / 1996
    he Journa TGemmolog Volume 25 No. 3 July 1996 f~J J The Gemmological Association and Gem Testing Laboratory of Great Britain President E.M. Bruton Vice-Presidents AE. Farn, D.G. Kent, RK. Mitchell Honorary Fellows R.T. Liddicoat [nr., E. Miles, K. Nassau Honorary Life Members D.}. Callaghan, E.A Iobbins, H. Tillander Council of Management CR Cavey, T.}. Davidson, N.W. Deeks, RR Harding, 1.Thomson, v.P. Watson Members' Council AJ. Allnutt, P. Dwyer-Hickey, R. Fuller, B. Jackson, J. Kessler, G. Monnickendam, L. Music, J.B. Nelson, K. Penton, P.G. Read, 1. Roberts, R Shepherd, CH. Winter Branch Chairmen Midlands: J.W. Porter North West: 1. Knight Scottish: J. Thomson Examiners AJ. Allnutt, M.Sc., Ph.D., FGS S.M. Anderson, B.SdHonst FGA L. Bartlett, B.Sc., M.Phil., FGA, DGA E.M. Bruton, FGA, DGA CR. Cavey, FGA S. Coelho, B.Sc., FGA, DGA AT. Collins, B.Sc., Ph.D. AG. Good, FGA, DGA CJ.E. Hall, B.Sc.(Hons), FGA G.M. Howe, FGA, DGA G.H. Jones, B.5c., Ph.D., FGA H.L. Plumb, B.Sc., FGA, DGA RD. Ross, B.Sc., FGA DGA P.A. Sadler, B.Sc., FGA, DGA E. Stem, FGA, DGA Prof. 1. Sunagawa, D.Sc. M. Tilley, GG, FGA CM. Woodward, B.5c., FGA DGA The Gemmological Association and Gem Testing Laboratory of Great Britain 27 Greville Street, London EC1N 8SU Telephone: 0171-404 3334 Fax: 0171-404 8843 j*3fr \ St TGemmologhe Journal of y QAQTT. VOLUME 25 NUMBER 3 JULY 1996 Editor Dr R.R.
    [Show full text]
  • Volume 73. 1988
    AmericanMineralogist, Volume 73, pages 1502-1519,1988 INDEX. VOLUME 73. 1988 Abbott, R.N., Jr., C.trrr.Burnham: Polytypism in Bailey, S.Itr., see Peacor, D.R., 876 nicas: A polyhedral approach to energy Baldwj-n, D,K., see Edgar, A.D., 524 calculations, 105 Ba11, D.G.A., see Robin, P.F., 253 Abrecht, J.: Experimental evaluation of the Barton, M., C. Van Gaans: Formation of or- MnC03 + Si02 = I4nSiO3 + C02 equilibrium at 1 thopyroxene - Fe-Ti oxide symplectltes in kbar, 1285 Precambrian intrusives, Rogaland, southwes- Abrecht, J., D.A. Hewitt: Experimental evidence tern Norway, 1046 on the substitution of Ti in bi-otite. 1,275 Batiza, R., see A1lan, J.F., 74I Afifi, A.M., E.J. Essene: MTNFILE: A microcom- Bayliss, P., A.A, Levinson: A system of puter program for storage and manipulation of nomenclature for rare-earth mineral species: chemical data on minerals. 446 Revision and extension. 422 Ahn, J.H., D.M. Burt, P.R. Buseck: Alteration of Belkin, H.E., G. Cavarretta, B. De Vivo, F, andalusite to sheet silicates in a Tecce: Hydrothermal phlogopite and anhydrite pegmatite, 559 from the SH2 we11, Sabatini volcanic dis- Aizenshtat, 2,, see He11er-Kal1ai, L., 376 trict, Latj,um, Italy: Fluld inclusions and Akizuki, M., K. Harada: Symmetry, twinning, and nlneral chemistry, 775 para11e1 growth of scolecite, mesolite, and Be11, D.R., see Edgar, A.D., 524 natroli-te, 613 Bernstein, L.R., see Ross, C.R,, ff, 657 Akizukl, M., H. Nishido: Epistilbite: Symrnetry Bethke, C.M., see Altaner, S.P., 766 and twinning, 1434 Bethke, P.M., see Altaner, S.P., 145 A11an, J.F., R.0.
    [Show full text]
  • 2004Subject Index.Indd
    American Mineralogist, Volume 89, pages 1851–1859, 2004 Subject Index, Vol. 89, 2004 03-03-03 angle 614 coutinhoite 721 yuksporite 1561, 1816 27 GPa 1337 Cs 1304 zircon 1795 3-D chemical analysis 547 datolite 767 ANALYSIS, CHEMICAL (ROCK) 3-D structure 1304 depth-profi le 1067 3-D chemical analysis 547 3QMAS 777 diopside 7 clinopyroxene 1078 EMPA 640 eclogite 1078 Ab initio MMR 1314 empressite 1043 impactite 961 Ab initio molecular dynamics simulations 102 epidote 1772 lamprophyre 841 Ab Initio quantum calculations 377 Fe oxides 665 topaz aplite 841 Ab initio structure determination 365 ferrocolumbite 841 topaz granite 841 Absorption coeffi cient 301 ferrotapiolite 505 A new trioctahedral mica 232 Acid leaching 1694 garnet 1078, 1772 Annealing 941, 1162 Acoustic velocity 1221 getchellite 696 Anorogenic 841 Activity of silica 1438 glass 498 Anorthominasragrite 476 Additive components 1546 högbomite 819 Ansermetite 1575 Aerinite 1833 immiscibility gap 7 Antigorite 147 AFM/SFM/STM 1456 indialite 1 Antimony 696 albite 1048 ion probe 832, 1067 Apatite 629, 1411 calcite 1709 jimthompsonite 15 Apatite solid solutions 1411 coccoliths 1709 labuntsovite group 1655 Apatite-water interfacial structure 1647 dissolution rates 554 lindbergite 1087 APHID1546 fl uid cell 714 magnetite 462 Appalachian Blue Ridge 20 new technique 1048 mica 1772 Aqueous fl uid 1433 pearl 1384 microlite 505 Aragonite 1348 polysaccharides 1709 Mn oxides 1807 Arsenic 696, 1728 quartz 1048 monazite 1533 Arsenopyrite 878 specifi c surface area 1456 mordenite 421 Artifacts 15 (Ag, Cu)12Te3S2,(Ag,Au,
    [Show full text]
  • The Journal of ^ Y Volume 26 No
    Gemmolog^^ The Journal of ^ y Volume 26 No. 8 October 1999 fj J The Gemmological Association and Gem Testing Laboratory of Great Britain Gemmological Association and Gem Testing Laboratory of Great Britain 27 Greville Street, London EC1N 8TN Tel: 020 7404 3334 Fax: 020 7404 8843 e-mail: [email protected] Website: www.gagtl.ac.uk/gagtl. President: Professor R.A. Howie Vice-Presidents: E.M. Bruton, A.E. Farn, D.G. Kent, R.K. Mitchell Honorary Fellows: Chen Zhonghui, R.A. Howie, R.T. Liddicoat Jnr, K. Nassau Honorary Life Members: H. Bank, D.J. Callaghan, E.A. Jobbins, H. Tillander Council of Management: T.J. Davidson, N.W. Deeks, R.R. Harding, I. Mercer, J. Monnickendam, M J. O'Donoghue, E. Stern, I. Thomson, V.P. Watson Members' Council: A.J. Allnutt, P. Dwyer-Hickey, S.A. Everitt, A.G. Good, J. Greatwood, B. Jackson, L. Music, J.B. Nelson, PG. Read, R. Shepherd, P.J. Wates, C.H. Winter Branch Chairmen: Midlands - G.M. Green, North West -1. Knight, Scottish - B. Jackson Examiners: A.J. Allnutt, MSc, Ph.D., FGA, L. Bartlett, B.Sc, MPhiL, FGA, DGA, E.M. Bruton, FGA, DGA, S. Coelho, B.Sc, FGA, DGA, Prof. A.T. Collins, B.Sc, Ph.D, A.G. Good, FGA, DGA, J. Greatwood, FGA, G.M. Howe, FGA, DGA, B. Jackson, FGA, DGA, G.H. Jones, B.Sc, Ph.D., FGA, M. Newton, B.Sc, D.Phil., C.J.E. Oldershaw, B.Sc (Hons), FGA, H.L. Plumb, B.Sc, FGA, DGA, R.D. Ross, B.Sc, FGA, DGA, PA.
    [Show full text]
  • Nedlasting (4.17
    Geological Survey of Queensland project Characterising and assessing prospectivity of intrusion-related hydrothermal mineral systems in north-east Queensland Section 11: The Watershed tungsten deposit, North Queensland, Australia Jaime Poblete, Zhaoshan Chang, Paul H.G.M. Dirks, Robert A. Henderson, and Fredrik Sahlström Economic Geology Research Centre (EGRU), College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia August 2017 1 ABSTRACT The Watershed deposit is located in far north Queensland, about 100 km northwest of Cairns. It has a combined JORC resource of 49.32 Mt @ 0.14% WO3 totalling 70,400 tonnes of WO3. Watershed lies within the Mossman Orogen, which comprises a folded sequence of Ordovician- Devonian metasedimentary rocks intruded by Carboniferous-Permian granites of the Kennedy Province. Mineralization is hosted by a sequence of folded carbonaceous slates and, locally calcareous, psammites of the Hodgkinson Formation. In addition, multiple felsic dykes assigned to the Permian S- type Whypalla Supersuite granites occur cutting the metasediments. The psammitic units show an enrichment in tungsten-tin-molybdenum-fluorine-beryllium-zinc-arsenic-bismuth-cesium in addition to copper and silver towards Watershed. A new age of ca. 350±3 Ma (LA-ICP-MS zircon U-Pb) for a strongly folded scheelite-rich granitic dyke has been established, and two more zircon ages of 276±2 Ma and 275±2 Ma from dykes from the eastern and western margin of Watershed have been established. Based on hand specimen and drill core observations, petrography and EPMA analysis, alteration and mineralization are shown to have occurred in at least seven stages. A pre-skarn event with grossular (Grs40-70) and quartz is followed by a prograde skarn event characterized by Grs>70, clinopyroxene (Di31- 61), and minor titanite.
    [Show full text]
  • Issues in Quantitative Phase Analysis
    Issues in Quantitative Phase Analysis Arnt Kern & Ian Madsen This document was presented at PPXRD - Pharmaceutical Powder X-ray Diffraction Symposium Sponsored by The International Centre for Diffraction Data This presentation is provided by the International Centre for Diffraction Data in cooperation with the authors and presenters of the PPXRD symposia for the express purpose of educating the scientific community. All copyrights for the presentation are retained by the original authors. The ICDD has received permission from the authors to post this material on our website and make the material available for viewing. Usage is restricted for the purposes of education and scientific research. PPXRD Website – www.icdd.com/ppxrd ICDD Website - www.icdd.com Issues in Quantitative Phase Analysis Limitations in accuracy and precision are mostly experimental • Mathematical basis and methodology of quantitative phase analysis is well established and work OK • Errors arise during application of methods ("PICNIC") Sample related errors • The material is not an "ideal powder" • Preferred orientation • Particle statistics • ... • Absorption • ... Issues in Quantitative Phase Analysis Operator errors • Incomplete / wrong phase identification The Reynolds Cup – what is needed to win? Mark D Raven and Peter G Self 29 July 2014 CSIRO LAND AND WATER / MINERALS RESOURCES FLAGSHIPS Non clay minerals (2002-2012) • Quartz (18) • Gypsum (2) • Apatite (1) • K-feldspar (13) • Anhydrite (2) • Tourmaline (2) • Plagioclase (14) • Alunite (1) • Zircon (2) • Calcite
    [Show full text]
  • Infrared and Raman Spectroscopic Characterization of the Carbonate Bearing Silicate Mineral Aerinite – Implications for the Molecular Structure ⇑ Ray L
    Journal of Molecular Structure 1097 (2015) 1–5 Contents lists available at ScienceDirect Journal of Molecular Structure journal homepage: www.elsevier.com/locate/molstruc Infrared and Raman spectroscopic characterization of the carbonate bearing silicate mineral aerinite – Implications for the molecular structure ⇑ Ray L. Frost a, , Ricardo Scholz b, Andrés López a a School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia b Geology Department, School of Mines, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG 35,400-00, Brazil highlights graphical abstract The mineral aerinite contains both silicate and carbonate units which is unusual. It is a highly colored mineral being bright blue/purple. We have analyzed aerinite using EDX and SEM techniques. Raman bands attributable to silicate and carbonate units are observed. Multiple hydroxyl vibrations support the concept that water is in different molecular environments. article info abstract Article history: The mineral aerinite is an interesting mineral because it contains both silicate and carbonate units which Received 2 February 2015 is unusual. It is also a highly colored mineral being bright blue/purple. We have studied aerinite using a Received in revised form 4 May 2015 combination of techniques which included scanning electron microscopy, energy dispersive X-ray anal- Accepted 5 May 2015 ysis, Raman and infrared spectroscopy. Raman bands at 1049 and 1072 cmÀ1 are assigned to the carbon- Available online 12 May 2015 ate symmetric stretching mode. This observation supports the concept of the non-equivalence of the carbonate units in the structure of aerinite.
    [Show full text]
  • First Identification and Compositional Study of Brown Aerinite Directly on Polished Thin-Sections by Synchrotron Through-The-Substrate Microdiffraction
    First identification and compositional study of brown aerinite directly on polished thin-sections by synchrotron through-the-substrate microdiffraction ANNA CRESPI1, ORIOL VALLCORBA2, IGORS ŠICS2 and JORDI RIUS1* 1Institut de Ciència de Materials de Barcelona, CSIC, Campus de la UAB, 08193 Bellaterra, Catalonia, Spain 2ALBA Synchrotron Light Source (CELLS), 08920 Cerdanyola del Vallès, Barcelona, Spain *Corresponding author, e-mail: [email protected] Abstract: A brown variety of the fibrous chain silicate aerinite has been identified by synchrotron through-the-substrate (tts) microdiffraction [a = 16.937(2), c = 5.223(1) Å, V = 1297.5(3) Å3, P3c1, illuminated sample volume = 15 x 15 x 30 µm3]. The small zone containing the brown submicrometric fibers was detected next to a pale-blue aerinite region during the inspection of a polished thin-section of a specimen from Tartareu (Catalonia, Spain). Compared to pale-blue aerinite, brown aerinite is Si poorer, Fe richer and its lower Ca content is compensated by a Mn increase. By using the total number of electrons at sites M1a, M1b, M2, M3, T1a and T1b supplied by the Rietveld refinement, the atomic proportions derived from the electron microprobe analysis (EMPA) of the small brown zone could be scaled to Si11.7Al5.8Fe4.6Mg0.9Mn2.0Ca2.8Na0.1K0.1. This gives a total of 28atoms which implies that the 28 cationic sites of the aerinite crystal structure are fully occupied. In this refinement, the carbonate ions, centered along a ternary axis, converged to a staggered stacking with 0.94(1) occupancy. The atomic distribution of brown aerinite has been studied by combining the refined scattering power values at the cationic sites with the EMPA results.
    [Show full text]
  • Shin-Skinner January 2018 Edition
    Page 1 The Shin-Skinner News Vol 57, No 1; January 2018 Che-Hanna Rock & Mineral Club, Inc. P.O. Box 142, Sayre PA 18840-0142 PURPOSE: The club was organized in 1962 in Sayre, PA OFFICERS to assemble for the purpose of studying and collecting rock, President: Bob McGuire [email protected] mineral, fossil, and shell specimens, and to develop skills in Vice-Pres: Ted Rieth [email protected] the lapidary arts. We are members of the Eastern Acting Secretary: JoAnn McGuire [email protected] Federation of Mineralogical & Lapidary Societies (EFMLS) Treasurer & member chair: Trish Benish and the American Federation of Mineralogical Societies [email protected] (AFMS). Immed. Past Pres. Inga Wells [email protected] DUES are payable to the treasurer BY January 1st of each year. After that date membership will be terminated. Make BOARD meetings are held at 6PM on odd-numbered checks payable to Che-Hanna Rock & Mineral Club, Inc. as months unless special meetings are called by the follows: $12.00 for Family; $8.00 for Subscribing Patron; president. $8.00 for Individual and Junior members (under age 17) not BOARD MEMBERS: covered by a family membership. Bruce Benish, Jeff Benish, Mary Walter MEETINGS are held at the Sayre High School (on Lockhart APPOINTED Street) at 7:00 PM in the cafeteria, the 2nd Wednesday Programs: Ted Rieth [email protected] each month, except JUNE, JULY, AUGUST, and Publicity: Hazel Remaley 570-888-7544 DECEMBER. Those meetings and events (and any [email protected] changes) will be announced in this newsletter, with location Editor: David Dick and schedule, as well as on our website [email protected] chehannarocks.com.
    [Show full text]