Subject Index, Volume 84, 1999

Total Page:16

File Type:pdf, Size:1020Kb

Subject Index, Volume 84, 1999 American Mineralogist, Volume 84, pages 1985–1992, 1999 SUBJECT INDEX, VOLUME 84, 1999 Aenigmatite 257 andalusite 1727 ites and related rocks. By A.F. Aerinite 1467 Annealing 1213, 1224, 1235 Glazner 1210 AFM (SFM, STM) 620, 884 Anion-centered tetrahedra 1099 Coppens, P.: X-Ray Charge hematite 1061 Anomalous scattering 294 Densities and Chemical Bonding. ilmenite 1384 Arnhemite 193 By J.W.Downs 690 pyrite 1549 Apatite 581, 977, 1213, 1224, 1235, Dyar, M.D., McCammon, C. Akimotite 226, 233, 267 1346 and Schaefer M.W.: Mineral Al2SiO5 group 1152 dental 1406 Spectroscopy: A Tribute to Roger Albite 27, 333, 726, 746, 1144 Armenite 86, 92 G. Burns. By A. Treiman 211 melting 1830 Arsenides 639 Grew, E.S. and Anovitz, L.M.: ALH84001 1569 Ashanite 688 Boron: Mineralogy, Petrology Alkali basalt 357 Au, As in pyrite 1071 and Geochemistry. By E.E Allanite 1346 Auorthosites 806 Foord, J.T. O’Connor 1209 Almandine 374 Au2SbO2(OH) 197 Hughes, R.W.: Ruby and Sapphire. AlO6 octahedral chains 1152 Averievite 685 By J. Sinkankas 211 Aluminosilicates 152, 311, 345, 465, Awards Moore, D.M. and Reynolds, R. C., Jr.: 983 Distinguished Public Service X-ray Diffraction and the Identifi- Alunite-group minerals 1687 Medal, acceptance of 1207 cation and Analysis of Clay Miner- Amphibole 1, 86, 102, 1033, 1304 Distinguished Public Service als, second edition. By S.P. Altaner, Analcime 112 Medal, presentation of 1205 689 Analysis chem. (mineral) 1170 Mineralogical Society of America, Young, D.A.: N.L. Bowen and aenigmatite 257 acceptance of 1203 cystallization—differentation: amphibole 102 Mineralogical Society of America, The evolution of a theory.By bederite 1674 presentation of 1202 H.S. Yoder Jr. 690 biotite 695, 794, 977, 1287 Roebling Medal, acceptance of Boroaluminosilicate 1152 chladniite 1354 1200 Boron 1451, 1495 chlorite 607 Roebling Medal, presentation of Borosilicates 536, 550, 794, 1451 clinoproxene 78, 596, 1883 1199 Brillouin spectroscopy Cr-bearing majorite 199 garnet 245 garnet 78, 695, 1287 Bacteria 183 pyroxene 677 gonnardite 1445 Bafertisite 1688 Brendelite 1195 gradtonite 1354 Barquillite 1464 Buckhornite 669 hellandite-(Ce) 913 Basalt 1819 khmaralite 1650 BaSi4O9 987 CaAlFSiO4 1162 lunar 806 Bederite 1674 Ca-aluminate hydride 1186 muscovite 695, 794, 1287, Beryl 733, 746 Ca-Cu-U minerals 687 β 1270 -eucryptitic 1360 CaGeO3 perovskite 277 migmatite 1256 Biotite 15, 695, 794, 977, 1287 Ca(H2AsO4)2 687 nagyagite 669 Birefingence 997 Calcite 1049, 1392, 1632 parascordite 1439 Blatonite 990 Calcium silicate 202, 282 pegmatite 695 Blatterite 1467 Calorimetry phosphates 1354 Boltwoodite 993 β-eucryptitic 1360 plagioclase 695, 806, 1027, Bond properties 435 carbonates 1622 1287 Bond valence theory 1099 chabazite 1870 potassium feldspar 695 Book Reviews Li1-x 1360 preisweskite 977 Adams, A.E. and MacKenzie, W.S.: Mg1–xFexCa(CO3)2 1622 rutile 754 A Color Atlas of Carbonate stuffed-derivatives of quartz sarcopside 1354 Sediments and Rocks Under the 1360 titanite 37 Microscope. By Donald H. zeolites 1870 tourmaline 794, 922 Zenger 689 Calculations of Al species 1641 tremolite 596 Brown, M., Candela, P.A., Peck, Cancrinite 1850 white mica 52 D.L., Stephens, W.E., Walker, Carbonates 861, 1622, 1627, 1939 Anatase 528, 871 R.J., and Zen, E.: Third Hutton Carbonatite 1117 Andalurite-sillimanite reaction 1270 Symposium: The origin of gran- Carbon isotopes 1495 1985 1986 SUBJECT INDEX, VOLUME 84, 1999 CAS glasses 1562 chlorite 1415 Density 465 CaTiO3 perovskite 277 Cr-bearing majorite 199 Dental apatite 1406 Cation exchange 1126 Cs-tetra-ferri-annite 325 Devolatilization 1495 Chabazite 1870 dehydrated chlorite 1415 Diffusion 345, 581, 725 Chadwickite 1195 dental apatite 1406 aqueous solute 1693 Changoite 1685 epidote 933 calcite 1392 Charge ordering 294 Fe3O4 203, 555 diopside 1577 Chladniite 1354 ganophyllite1088 Fe in Re 1528 Chlorartinite 1195 glass 946 pyrope-grossular 1422 Chlorite 160, 596, 607, 1080, 1415 gonnardite 1445 muscovite 1270 Chlorite-corrensite-smectite 1080 gullulyite 400 Diopside 596, 1577 Chlorite-smectite 160, 607, 1080 hellandite 913 Discredited minerals Chloromenite 1464 ilvaite 1604 ashanite 688 Clinocervantite 1464 kalsilite 1951 Dissolution 620, 877 Cinnabar 877 khmaralite 1650 Djerfisherite-thalfenisite analogs 193 Cl 1186 kornerupine 536 Dolimitization 1392 Clays 620 lead feldspar 120 Dravite 922 Clinopyroxene 78, 596, 1883 majorite-pyrone 1135 DTA/TGA Cluster variation method 311 MgTiO3-FeTiO3 1595 cancrinite 1850 Compreignacite 993 mullite 965 Dugganite 993 Compressibility nagyagite 669 CaGeO3 perovskite 277 olivine 1400 Eclogite 78 calcium silicate 282 orthopyroxene 1895 Elastic properties carbonates 861 phosphorous oxynitride 207 alumina 1961 enstatite 1588 protopyroxene 245 garnet 374, 384 feldspar 333 pseudobrookite-type 130 MgSiO3 233, 677 magnesiowustite 272 pseudowollastinite 929 silicate perovskite 221 perovskite 277 pseudowollastonite 1956 Electrical properties pseudowollastonite 1956 pumpellite 1906 Electrochemistry 493 pyroxene 245 Rb,Cs-phlogopite 778 Electron diffraction 1741 silicate perovskite 226 richterite 601 carbonaceous material 1967 titanite 282 ringwoodite 288 chlorite-smectite 1080 Container-based dilatometry 1176 schubnelite 665 clinopyroxene 1883 Cooling rates 708 silicate 946 corrensite1080 Coparsite 1685 silicate perovskite 214 ganophyllite1088 Cordierite1181 sogdianite 764 ilmenite 1384 Corrensite1080 spinel 555 muscovite 1270 Cr-bearing majorite 199 tobermorites 1613 pyrite 1535 Crenulation 1711 tourmaline 922 Electron loss spectrosopy Crystal growth 718, 725 wyartite 1456 glass 946 amphibole 1304 Crystal synthesis silicate 946 andalusite 1727 amphibole 1304 Electron microscopy 1741 calcite1049 cancrinite 1850 akimotoite 233, 267 carbonates 1939 hydroxapatite 1861 Al2SiO5 152 garnet 1727 nepheline 1850 amphibole 1304 plagioclase in basalt 1819 pyrope-grossular 1422 cancrinite 1850 pseudowollastonite 1956 Crystallization 708, 725 carbonaceous material 1967 Crystal-size distribution 718 Cs-tetra-ferri-annite 325 carbonates 1939 Crystal structure 1126, 1152, 1162, (Cu,Ag,Fe)6S4 1687 chlorite 160 1170, 1181 Cuboargyrite 1196 chlorite-smectite 1080 aenigmatite 257 Cu2Fe3Zn5S10 197 clinopyroxene 1883 amphibole 86, 102, 1304 corrensite1080 analcime 112 Dashkesanite 1688 ganophyllite1088 anion-centered tetrahedra, Deformation 1711 goethite 171 1099 Dedication to Charles T. Prewitt 213 lead feldspar 120 armenite 86 Dehydrated chlorite 1415 marine sediments 187 BaSi4O9 987 Dense hydrous magnesium silicates muscovite 1270 bederite 1674 454 olivine 1915 SUBJECT INDEX, VOLUME 84, 1999 1987 parascordite 1439 magma 1506 calcium silicate 202 plagioclase 517 oxygen 1333 carbonate 861 pyrite1071 titanite 37 CaTiO3 perovskite 277 saponite 160 water 1333 dense hydrous magnesium serpentine 160 Fluor edenite 1685 silicates 454 spinel 1915 Fluoride 769 enstatite 233, 848, 1588 EPR spectroscopy Forsterite 1181, 1319 garnet 374, 384, 838 Electron transfer1061 Franocoanellite 688 haplogranite 27 Enstatite 233, 677, 848, 1319, 1588 Fugacity H2O 520 ilmenite 233 Epidote 922, 933 Fullerite 1686 karrooite 1370 Equations of state magesiowüstite 272 magnesite 1627 Gadolinite-group minerals 782 magma 1506 spinel 1902 Ganophyllite 1088 magnesite 856, 1627 Errata 212, 692, 1208, 1468, 1692 Garnet 78, 245, 374, 384, 389, 695, magnesioferrite 1902 Exolution 517, 754, 821 838, 1287, 1727 magnetite 203, 1902 Expansivity Geocronology1009, 1766 majorite 233 enstatite 1588 lunar crust 1469 MgSiO3 233 perovskite 226 Geomicobiology 171, 183, 1961 MgTiO3-FeTiO3 1595 silicate perovskite 221, 226 Geospeedometry 1400 MgTi2O5 130 soda-lime glass 1176 Gerenite-(Y) 990 mica 325 Experimental petrology 1336 Glass 946 NaCl melt 341 albite melting 1830 Glass properties 937, 983 perovskite 226, 277 alkali basalt 357 albite 1830 phosphorous oxynitride 207 amphibole 1304 CAS ternary 1562 protopyroxene 245 biotite 15 Goethite 171, 884, 895 pseudowollastonite 1956 cancrinite 1850 Gold 1521 rhyolite 1843 enstatite 1319 Gonnardite 1445 ringwoodite 288, 1902 fluid distribution 1693 Gradtonite 1354 silicate perovskite 221, 233 forsterite 1319 GRA95209 1354 spinel 905, 1902 iron loss 1521 Graeserite 990 titanite 282, 848 mare basalts 1469 Granite 581, 733, 1346, 1495, 1781, High-temperature studies 1336 quench technique 48 1793 albite melting 1830 Re loop technique 1528 Granulites 15 amphibole 1304 talc 1319 Grossular 374, 848 analcime 112 wollastonite 1319 Grumiplucite 1465 biotite 15 Gullulyite 400 clinopyroxene 1883 57Fe forward scattering 447 Gwihabaite 194 enstatite 233, 1588 Fe3+ 214 haplogranite 27 2+ Fe -Ti wodginite 992 H2O 520 kalsilite 1950 Fe analog of werdingite 993 H2O-CO2 1319, 1850 karrooite 1370 Fe,Mg partitioning 1400 Haiweeite 197 lead feldspar 120 (Fe,Mn,Mg)TiO3 solid solution 1375 Halogen 37 magma 1506 Fe3O4 203, 555 Haplogranite 27 magnesioferrite 1902 Feldspar 333 Health/Respiratory disease 1009 magnetite 1902 Ferronordite-(Ce) 685 Heat capacity 848 majorite 226 Ferrorhodsite 1685 Hedenbergite 447 mica 325, 493 Ferrotitano wodginite 773 Hellandite 913 MgTiO3-FeTiO3 1595 Fibrolite 152, 1270 Hematite1061 olivine 1400 Fission-track 1213, 1224, 1235 Hemotite 895, 977 orthopyroxene 1895 Flourine 86, 102 Heulandite1126 oxygen 1333 Fluid inclusion 746, 1117 Hexaferrum 1686 Re loop technique 1528 Fluid phase 477, 794 Hg complexes 877 rhyolite 1843 chlorite 596 High-pressure studies ringwoodite 1902 cordierite 1181 albite melting 1830 perovskite 221, 226, devolatilization 1495 aenigmatite 257 quench technique 48 granulites 15 amphibole
Recommended publications
  • New Mineral Names*
    American Mineralogist, Volume 84, pages 1464–1468, 1999 NEW MINERAL NAMES* JOHN L. JAMBOR1 AND ANDREW C. ROBERTS2 1Department of Earth Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada 2Geological Survey of Canada, 601 Booth Street, Ottawa K1A 0E8, Canada Barquillite* Chloromenite* A. Murciego, I. Pascua, J. Babkine, Y. Dusausoy, O. Medenbach, L. Vergasova, S. Krivovichev, T. Semenova, S. Filatov, V. Ananiev H.-J. Bernhardt (1999) Barquillite, Cu2(Cd,Fe)GeS4, a new (1999) Chloromenite, Cu9O2(SeO3)4Cl6, a new mineral from mineral from the Barquilla deposit, Salamanca, Spain. Eur. J. the Tolbachik volcano, Kamchatka, Russia. Eur. J. Mineral., Mineral., 11, 111–117. 11, 119-123. The mean of nine listed electron microprobe analyses is Cu The mean of four listed electron microprobe analyses is 30.67, Ag 0.26, Cd 20.38, Fe 2.20, Mn 0.43, Zn 0.09, Ge 14.99, CuO 46.23, ZnO 5.94, SeO2 34.37, Cl 16.57, O ≡ Cl 3.74, sum Sn 0.17, Ga 0.05, Bi 0.16, Sb 0.09, S 29.42, sum 98.91 wt%, 99.36 wt%, corresponding to (Cu7.71Zn0.97)Σ8.68Se4.11O13.80Cl6.20. corresponding to (Cu Ag )Σ (Cd Fe Mn Zn )Σ The mineral occurs as transparent plates, up to 0.2 mm long, 2.10 0.01 2.11 0.79 0.17 0.03 0.01 1.00 – (Ge Sn )Σ S for 8 atoms. The mineral occurs as plates, flattened on {101}, elongate [111] and rarely [010], showing 0.90 0.01 0.91 3.98 – – up to 50 µm across and <20 µm thick, either isolated or in {001}, {101}, {110}, {011} {312} and poorly developed – rosette-like aggregates.
    [Show full text]
  • 19660017397.Pdf
    .. & METEORITIC RUTILE Peter R. Buseck Departments of Geology and Chemistry Arizona State University Tempe, Arizona Klaus Keil Space Sciences Division National Aeronautics and Space Administration Ames Research Center Mof fett Field, California r ABSTRACT Rutile has not been widely recognized as a meteoritic constituent. show, Recent microscopic and electron microprobe studies however, that Ti02 . is a reasonably widespread phase, albeit in minor amounts. X-ray diffraction studies confirm the Ti02 to be rutile. It was observed in the following meteorites - Allegan, Bondoc, Estherville, Farmington, and Vaca Muerta, The rutile is associated primarily with ilmenite and chromite, in some cases as exsolution lamellae. Accepted for publication by American Mineralogist . Rutile, as a meteoritic phase, is not widely known. In their sunanary . of meteorite mineralogy neither Mason (1962) nor Ramdohr (1963) report rutile as a mineral occurring in meteorites, although Ramdohr did describe a similar phase from the Faxmington meteorite in his list of "unidentified minerals," He suggested (correctly) that his "mineral D" dght be rutile. He also ob- served it in several mesosiderites. The mineral was recently mentioned to occur in Vaca Huerta (Fleischer, et al., 1965) and in Odessa (El Goresy, 1965). We have found rutile in the meteorites Allegan, Bondoc, Estherville, Farming- ton, and Vaca Muerta; although nowhere an abundant phase, it appears to be rather widespread. Of the several meteorites in which it was observed, rutile is the most abundant in the Farmington L-group chondrite. There it occurs in fine lamellae in ilmenite. The ilmenite is only sparsely distributed within the . meteorite although wherever it does occur it is in moderately large clusters - up to 0.5 mn in diameter - and it then is usually associated with chromite as well as rutile (Buseck, et al., 1965), Optically, the rutile has a faintly bluish tinge when viewed in reflected, plane-polarized light with immersion objectives.
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine
    nanomaterials Review Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine Daniel Ziental 1 , Beata Czarczynska-Goslinska 2, Dariusz T. Mlynarczyk 3 , Arleta Glowacka-Sobotta 4, Beata Stanisz 5, Tomasz Goslinski 3,* and Lukasz Sobotta 1,* 1 Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; [email protected] 2 Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; [email protected] 3 Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; [email protected] 4 Department and Clinic of Maxillofacial Orthopedics and Orthodontics, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland; [email protected] 5 Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; [email protected] * Correspondence: [email protected] (T.G.); [email protected] (L.S.) Received: 4 January 2020; Accepted: 19 February 2020; Published: 23 February 2020 Abstract: Metallic and metal oxide nanoparticles (NPs), including titanium dioxide NPs, among polymeric NPs, liposomes, micelles, quantum dots, dendrimers, or fullerenes, are becoming more and more important due to their potential use in novel medical therapies. Titanium dioxide (titanium(IV) oxide, titania, TiO2) is an inorganic compound that owes its recent rise in scientific interest to photoactivity. After the illumination in aqueous media with UV light, TiO2 produces an array of reactive oxygen species (ROS). The capability to produce ROS and thus induce cell death has found application in the photodynamic therapy (PDT) for the treatment of a wide range of maladies, from psoriasis to cancer.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Electronic Structure and Optical Properties of Prominent Phases of Tio2: First-Principles Study
    Pramana – J. Phys. (2017) 89:5 © Indian Academy of Sciences DOI 10.1007/s12043-017-1400-5 Electronic structure and optical properties of prominent phases of TiO2: First-principles study SANTOSH SINGH and MADHVENDRA NATH TRIPATHI∗ Department of Pure and Applied Physics, Guru Ghasidas Vishwavidyalaya (Central University), Koni, Bilaspur 495 009, India ∗Corresponding author. E-mail: [email protected] Published online 19 June 2017 Abstract. First-principles study based on density functional theory (DFT) of two prominent phases, the rutile and the anatase phases, of titanium dioxide (TiO2) are reported within the generalized gradient approximation (GGA). Our calculated band structure shows that there is a significant presence of O-2p and Ti-3d hybridization in the valence bands. These bands are well separated from the conduction bands by a direct band gap value of 1.73 eV in the rutile phase and an indirect band gap value of 2.03 eV in the anatase phase, from to X. Our calculations reproduced the peaks in the conduction and valence band, are in good agreement with experimental observations. Our structural optimization for the rutile and anatase phase led to lattice parameter values of 4.62 Å and 2.99 Å rutile and 3.80 Å and 9.55 Å for anatase for a and c. The static dielectric values 7.0 and 5.1 for the rutile and anatase phases respectively are in excellent agreement with experimental results. Our calculation of optical properties reveals that maximum value of the transmittance in anatase phase of TiO2 may be achieved by considering the anisotropic behaviour of the optical spectra in the optical region for transparent conducting application.
    [Show full text]
  • Third-Generation Synchrotron X-Ray Diffraction of 6- M Crystal of Raite, Na
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 12263–12267, November 1997 Geology Third-generation synchrotron x-ray diffraction of 6-mm crystal of raite, 'Na3Mn3Ti0.25Si8O20(OH)2z10H2O, opens up new chemistry and physics of low-temperature minerals (crystal structureymicrocrystalyphyllosilicate) JOSEPH J. PLUTH*, JOSEPH V. SMITH*†,DMITRY Y. PUSHCHAROVSKY‡,EUGENII I. SEMENOV§,ANDREAS BRAM¶, CHRISTIAN RIEKEL¶,HANS-PETER WEBER¶, AND ROBERT W. BROACHi *Department of Geophysical Sciences, Center for Advanced Radiation Sources, GeologicalySoilyEnvironmental, and Materials Research Science and Engineering Center, 5734 South Ellis Avenue, University of Chicago, Chicago, IL 60637; ‡Department of Geology, Moscow State University, Moscow, 119899, Russia; §Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, 117071, Russia; ¶European Synchrotron Radiation Facility, BP 220, 38043, Grenoble, France; and UOP Research Center, Des Plaines, IL 60017 Contributed by Joseph V. Smith, September 3, 1997 ABSTRACT The crystal structure of raite was solved and the energy and metal industries, hydrology, and geobiology. refined from data collected at Beamline Insertion Device 13 at Raite lies in the chemical cooling sequence of exotic hyperal- the European Synchrotron Radiation Facility, using a 3 3 3 3 kaline rocks of the Kola Peninsula, Russia, and the 65 mm single crystal. The refined lattice constants of the Monteregian Hills, Canada (2). This hydrated sodium- monoclinic unit cell are a 5 15.1(1) Å; b 5 17.6(1) Å; c 5 manganese silicate extends the already wide range of manga- 5.290(4) Å; b 5 100.5(2)°; space group C2ym. The structure, nese crystal chemistry (3), which includes various complex including all reflections, refined to a final R 5 0.07.
    [Show full text]
  • New Mineral Names*,†
    American Mineralogist, Volume 100, pages 1649–1654, 2015 New Mineral Names*,† DMITRIY I. BELAKOVSKIY1 AND OLIVIER C. GAGNE2 1Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskiy Prospekt 18 korp. 2, Moscow 119071, Russia 2Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada IN THIS ISSUE This New Mineral Names has entries for 10 new minerals, including debattistiite, evdokimovite, ferdowsiite, karpovite, kolskyite, markhininite, protochabournéite, raberite, shulamitite, and vendidaite. DEBATTISTIITE* for 795 unique I > 2σ(I) reflections] corner-sharing As(S,Te)3 A. Guastoni, L. Bindi, and F. Nestola (2012) Debattistiite, pyramids form three-membered distorted rings linked by Ag atoms in triangular or distorted tetrahedral coordination. Certain Ag9Hg0.5As6S12Te2, a new Te-bearing sulfosalt from Len- genbach quarry, Binn valley, Switzerland: description and features of that linkage are similar to those in the structures of crystal structure. Mineralogical Magazine, 76(3), 743–750. trechmannite and minerals of pearceite–polybasite group. Of the seven anion positions, one is almost fully occupied by Te (Te0.93S0.07). The Hg atom is in a nearly perfect linear coordination Debattistiite (IMA 2011-098), ideally Ag9Hg0.5As6S12Te2, is a new mineral discovered in the famous for Pb-Cu-Ag-As-Tl with two Te/S atoms. One of five Ag sites and Hg site, which are bearing sulfosalts Lengenbach quarry in the Binn Valley, Valais, very close (separation 1.137 Å), are partially occupied (50%). Switzerland. Debattistiite has been identified in two specimens Thus there is a statistical distribution (50:50) between Hg(Te,S)2 from zone 1 of the quarry in cavities in dolomitic marble with and AgS2(Te,S)2 polyhedra in the structure.
    [Show full text]
  • 1457 Vol 43#5 Art 02.Indd
    1457 The Canadian Mineralogist Vol. 43, pp. 1457-1468 (2005) WILUITE FROM ARICCIA, LATIUM, ITALY: OCCURRENCE AND CRYSTAL STRUCTURE FABIO BELLATRECCIA Dipartimento di Scienze della Terra, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, I–00185 Roma, Italy, and Dipartimento di Scienze Geologiche, Università Roma Tre, Largo S. Leonardo Murialdo 1, I–00146 Roma, Italy FERNANDO CÁMARA AND LUISA OTTOLINI CNR – Istituto di Geoscienze e Georisorse, Sede di Pavia, via Ferrata 1, I–27100 Pavia, Italy GIANCARLO DELLA VENTURA§, GIANNANTONIO CIBIN AND ANNIBALE MOTTANA Dipartimento di Scienze Geologiche, Università Roma Tre, Largo S. Leonardo Murialdo 1, I–00146 Roma, Italy ABSTRACT We report a new occurrence of the rare mineral wiluite, the B-rich equivalent of vesuvianite, from Ariccia, Alban Hills volcano, Rome, Italy. The specimen studied was found in the collection of the Museum of Mineralogy of the University of Rome (label MMUR22496/482). Wiluite from Ariccia was sampled at the Parco Chigi quarry, within the phreatomagmatic unit emitted by the Albano maar known locally as “Peperino di Marino”. It occurs as dark brown to black euhedral, well-formed prismatic crystals, up to 1.0 cm in length and 0.5 cm across. Optical observations show a weak pleochroism and an imperfect extinction. The mineral is uniaxial (+) with ␻ 1.722(2) and ␧ 1.727(2). It is tetragonal P4/nnc, a 15.716(2), c 11.704(2) Å, V 2890.8(7) Å3. The crystal-chemical formula, obtained by combining EMP, SIMS and XREF data and calculated on the basis of 18 Si atoms, is: X Y(1) 3+ Y(2) 3+ Y(3) 3+ T(1) (Ca18.72Mg0.15Sr0.02La0.05Ce0.04Nd0.01) (Fe 0.36Mg0.26Ti0.27Mn0.11) (Al3.67Fe 0.19Mg0.14) (Al3.29Fe 1.36Mg3.35) (B2.18 T(2) Z O(11) [O(10)+O(12)] Al0.02Be0.02H0.47Ⅺ1.31) (B0.68H0.32) Si18O68 (F1.21O6.79) O2.68.
    [Show full text]
  • Al, Si Retained
    Abstracts of Workshop on Transport Properties of the Lower Mantle, Yunishigawa-onsen, Tochigi-ken, Japan, 2008 Scale limits on free-silica seismic scatterers in the lower mantle Craig R. Bina Dept. of Earth and Planetary Sciences, Northwestern University, U.S.A. Seismic velocity anomalies and scatterers of seismic energy in the lower mantle often are attributed to subducted oceanic lithosphere. In particular, silica-saturated basalts in oceanic crust (MORB) under lower mantle conditions should contain high-pressure phases of free silica among assemblages otherwise dominated by silicate perovskite. Free silica phases such as stishovite are expected to generate seismic velocity anomalies that are fast by a few percent relative to surrounding ultramafic peridotite or harzburgite assemblages (Mattern et al. 2002, Bina 2003a, Ricard et al. 2005), and post-stishovite phases such as CaCl2-structured silica may also generate locally slow shear-wave velocity anomalies due to displacive shear-mode transitions (Bina 2003b, Lakshtanov 2007, Konishi et al. 2008). Such models, however, must address the thermodynamic instability of free silica phases in the presence of peridotites or harzburgites, as the silica will react with adjacent ferropericlase (magnesiowüstite) to form silicate perovskite. Thus, any free silica phases preserved in the lower mantle may persist as armored relics, in which silica phases are insulated from surrounding ferropericlase phases by coronas of silicate perovskite. This parallels the situation in crustal metamorphic rocks where, for example, staurolite crystals are often found as armored relics within garnet phases or spinel crystals can be found as relics armored by staurolite poikiloblasts (Whitney 1991, Gil Ibarguchi et al.
    [Show full text]
  • Relationship Among Metamorphic Grade, Vesuvianite “Rod Polytypism,” and Vesuvianite Composition
    American Mineralogist, Volume 91, pages 862–870, 2006 Relationship among metamorphic grade, vesuvianite “rod polytypism,” and vesuvianite composition EDWIN GNOS1,* AND THOMAS ARMBRUSTER2 1Institut für Geologie, Universität Bern, Baltzerstrasse 1-3, CH-3012 Bern, Switzerland 2Laboratorium für chemische und mineralogische Kristallographie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland ABSTRACT Single-crystal X-ray study of different vesuvianite samples of known origin shows that differ- ent metamorphic grade results in different arrangements of structural rods oriented parallel to the vesuvianite c axis, interpreted as “rod polytypism.” There is a systematic dependence of space-group symmetry and rod arrangement on crystallization temperature: P4nc-dominant < 300 °C, P4/n-domi- nant ~300–500 °C, and P4/nnc > 500 °C. Partial occupancy of the T sites (B, Al, Fe3+) and increased F-content seem to stabilize rod disorder causing P4/nnc space-group symmetry. All studied vesuvianites in calcsilicate rocks and marbles from regional- and contact-metamorphic upper amphibolite facies have disordered rods (P4/nnc symmetry). Electron-microprobe analyses of metamorphic vesuvianites from alpine and non-alpine occurrences, supported by structural investigation, showed that in addi- tion to homo- and heterovalent substitution, partial occupancy of the commonly vacant T sites by B, 3+ 4– → 4– Al, or Fe , and the (O4H4) SiO4 (hydrogarnet-type) substitutions are signiÞ cant in nature. With few exceptions, T-site occupancy seems to be restricted to high-grade metamorphic rocks whereas the “hydrovesuvianite” substitution is only found in vesuvianites formed at very low metamorphic grade. The cell parameters of vesuvianite with empty T sites increase with increasing Ti + Mg → 2 Al substitution, and this increase is even more pronounced with increasing “hydrovesuvianite” component.
    [Show full text]
  • Subject Index, Volume 81, 1996
    American Mineralogist, Volume 81, pages 1543-1551, 1996 SUBJECT INDEX, VOLUME 81, 1996 Ag3TeS 1013 geikielite 485 florencite-(La) 1263 4°Ar 940 hornblende 928 glass 229 AuO(OH) 1282 hyttsj6ite 743 granitic melt 202 AuO(OH,Cl)onH20 766 kalsilite 561, 1360 kaolin 26 Achtarandite 516 kaolinite 26 migmatite 141 Afghanite 1003 kinoshitalite 485 orendite 229 Albite 92, 452, 789, 1133, 1344, laumontite 658 peridotite 79 1413 leonhardite 658, 668 rhyolite 158 Alkali feldspar 92, 719, 800, 1425 liandratite 1237 rhyolitic glass 158, 1249 Almandine 418 magnesiochromite 1186 sandstone 213 Altisite 516 magnesite 181 serpentinite 79 Aluminate sodalite 1375 medenbachite 505 volcanic glass 1176 Aluminosilicate glasses 265 muscovite 141, 1460 volcanic rocks 982 Alumoklyuchevskite 249 namuwite 238 Analysis, surface (mineral) Amphibole 135, 495, 1126 nanpingite 105 calcite 1 Analcime 39 nepheline 561, 1360 pyrite 261 Analysis, chemical (mineral) olivine 194, 1519 Anatexis 141 albite 92 omphacite 181 Androsite-(La) 735 alkali feldspar 719 orthopyroxene 676, 842 Ankerite 1141 almandine 418 pentlandite 187 Annite 475 amphibole 135, 495 phlogopite 202, 485,913 Annite-sanidine-magnetite 415 androsite-(La) 735 pigeonite 1166 Anorthoclase 1332 apatite 515 plagioclase 141, 913, 982, 1460 Antimonselite 1013 augite 1166 potassium feldspar 141 Antitaenite 766 bechererite 244 pumpellyite 603 Apatite 864, 1476 betafite 1237 pyralspitic garnet 418 Aragonite 181, 611 biopyribole 404 pyrite 119, 187 Arsenogorceixite 249 biotite 135, 141, 495, 1396, pyrope 418, 706 Asteroid
    [Show full text]