2004Subject Index.Indd

Total Page:16

File Type:pdf, Size:1020Kb

2004Subject Index.Indd American Mineralogist, Volume 89, pages 1851–1859, 2004 Subject Index, Vol. 89, 2004 03-03-03 angle 614 coutinhoite 721 yuksporite 1561, 1816 27 GPa 1337 Cs 1304 zircon 1795 3-D chemical analysis 547 datolite 767 ANALYSIS, CHEMICAL (ROCK) 3-D structure 1304 depth-profi le 1067 3-D chemical analysis 547 3QMAS 777 diopside 7 clinopyroxene 1078 EMPA 640 eclogite 1078 Ab initio MMR 1314 empressite 1043 impactite 961 Ab initio molecular dynamics simulations 102 epidote 1772 lamprophyre 841 Ab Initio quantum calculations 377 Fe oxides 665 topaz aplite 841 Ab initio structure determination 365 ferrocolumbite 841 topaz granite 841 Absorption coeffi cient 301 ferrotapiolite 505 A new trioctahedral mica 232 Acid leaching 1694 garnet 1078, 1772 Annealing 941, 1162 Acoustic velocity 1221 getchellite 696 Anorogenic 841 Activity of silica 1438 glass 498 Anorthominasragrite 476 Additive components 1546 högbomite 819 Ansermetite 1575 Aerinite 1833 immiscibility gap 7 Antigorite 147 AFM/SFM/STM 1456 indialite 1 Antimony 696 albite 1048 ion probe 832, 1067 Apatite 629, 1411 calcite 1709 jimthompsonite 15 Apatite solid solutions 1411 coccoliths 1709 labuntsovite group 1655 Apatite-water interfacial structure 1647 dissolution rates 554 lindbergite 1087 APHID1546 fl uid cell 714 magnetite 462 Appalachian Blue Ridge 20 new technique 1048 mica 1772 Aqueous fl uid 1433 pearl 1384 microlite 505 Aragonite 1348 polysaccharides 1709 Mn oxides 1807 Arsenic 696, 1728 quartz 1048 monazite 1533 Arsenopyrite 878 specifi c surface area 1456 mordenite 421 Artifacts 15 (Ag, Cu)12Te3S2,(Ag,Au, Cu)9Te2S3 1578 mullite 1486 Artsmithite 249 Ag2Cu2TeS 897 muthmannite 1505 Assemblages 819 Ag3AuS2 1405 niobian rutile 841 A-type 841 Agardite-(Ce) 1574 OH in kyanite 998 A-type granite 841 AgAuS 1405 okanoganite-(Y) 1540 Au 498 Al/Si ordering 176 olenite 447 Au2S 1405 Albania 1367 omphacite 7 Augite 1280, 1380 Albite 1048 orpiment 696 Autunite group 1004 Albite glass 1314 oxide mineral 759 Axinite 1763 Albite water solubility 1553 painite 610 ALH84001 294 phase classifi cation 1546 (Ba,Sr)HAsO4H2O 600 Alkali feldspar 1822 plagioclase 64 Bakerite 767 Almarudite 1574 pyrochlore 505 Barrow 1067 Al-rich pyroxene 867 pyroxene 867 Basaltic crust 1516 Alsakharovite-Zn 894 rhyolite 1290 Basalts from the earth, the moon, and Mars 1101 Alumino-Magnesiohulsite 1574 sanidine 1290 Belomorian Complex 819 Aluminous amphibolite 819 scapolite 257 Benitoite gem mine 314 Amorphous state 914 shirozulite 232 Beryllium 327 Amorphous-to-crystalline 1341 spinel 1367 Beryllium in magnesian pegmatiite 327 Amphibole 20, 640, 888, 1516, 1772 spriggite 339 Bi 6s2 LPE 932 Amphibole reaction rims 748 Sr-apatite 1323 Bikitaite 94, 102 ANALYSIS CHEMICAL (MINERAL) 57, 1142, 1743 Sr-bearing monazite 1323 Bimodal magmatism 841 albania 1367 srilankite 759 Biopyriboles 15 amphibole 462, 888, 1516, 1772 Sr-plagioclase 1323 Bergenite, erratum 1834 antigorite 147 stibiotantalite 505 BIOREMEDIATION apatite 629, 1411 stibnite 696, 932 metals 950 augite 1380 talc 319, 1772 Biotite 841, 1625 axinite 1763 tantalite 505 Birnessite 1807 bakerite 767 ternary feldspar 1496 Birnessite made by bacteria 1110 biotite 841, 1625 tetrahedrite 159 Bismuthinite 932 bismuthinite 932 thorite 841 Blackwall rocks 819 cassiterite 505 thortveitite 1795 Blueschist facies 7 chalcopyrite 1026 titanite 1752 Boggsite 1033 chesterite 15 tremolite 74 Book Reviews chondrodite 1056 ultrahigh pressure metamorphism 1323 Anderson, D. L.: Introduction to the physics of the chromite 1367 uranium minerals 1004 earth’s interior by Jean-Paul Poirier 1151 clinopyroxene 421, 462, 1772 wodginite 505 Bershov, L. V.: Luminescent Spectra of Minerals: columbite 505 xenotime 1533 Reference Book, by Boris S. Gorobets and cookeite 1510 yttrialite 1795 Alexandre A. Rogojine 472. 0003-004X/04/1112–1851$05.00 1851 1852 SUBJECT INDEX Caporuscio, F.: Tourmaline. extraLapis English No. CO2 solution + clathrate hyrate 1247 chromite 1367 3: A Gemstone Spectrum translated by Alexan- CO2/water dispersion 1240 clathrate 1254 der Falster and Günter Neumeier 919. Coccoliths 1709 clinopyroxene 462 Duff , M.C.: Applications of Synchrotron Radia- Color 1353 dacite 348 tion in Low-temperature Geochemistry and Columbite 505 edingtonite 633 Environmental Science, edited by P.A. Fenter Cookeite 1510 empressite 1043 et al. 254. Cookeite stability 1510 excess H in amphibole 1464 Kampf, A. R.: Minerals of Nevada by Stephen B. COMPRESSIBILITY MEASUREMENTS 1474 feldspar 527 Castor and Gregory C. Ferdock 1150 aragonite 1348 ferri-ottoliniite 888 Murrell, M.: Uranium-series geochemistry by B. chlorite 1337 ferriwhittakerite 888 Bourdon et al. 1150 halite-sylvite series 204 gas hydrate 1202, 1208, 1254, 1280 Mysen, B. O.: Mind Over Magma by Davis A. isothermal equation of state 633 hedenbergite 1280 Young 916. magnetite 1061 humite group minerals 1056 Vaniman, D.: The Petrographic Microscope by phlogopite bulk modulus 647 hydrate crystal structure 1155 Daniel E. Kile 1580. pyroxene 189 hydrated Pb uranyl oxyhdroxides 339 Borofl uorosilicates 1540 reidite 185 hydrogen-bonding 1056 Boron 832 spessatine 371 in situ study 365 Boundary layer in undercooled melt 857 uvarovite 371 indialite 1 Breakdown 1525 zircon 185, 197 inert pair eff ect 932 Brownmillerite 405 Conasite, F-dominant analog 470 iron-silicon alloy 273 Brucite 701 Contact metamorphism 701 kamacite 519 Brushite 307 Coordination change 455 labuntsovite group 1655 BSE imaging 64 Corona 20 magnetite 462 Buddingtonite 85 Corundum-garnet amphibolites 819 metahohmannite 365 Coseismic fusion 1486 MgSiO3 perovskite 807 (Ca,Ce)Sc(Ti, Fe, Al)20O38 Coulometric titration 301 model pyroxene 614 C and O in calcite 799 Coutinhoite 721 monazite 1533 C in calcite 799 Cr oxidation states 790 mordenite 421 Caichengyunite 894 Cronstedtite 1610 muthmannite 1505 Calcite 701, 714, 785, 1048, 1348, 1709 Crystal chemistry 725, 1367 Na silicate hydrates 1314 Calcite growth 714 Crystal correlation 64 okanoganite-(Y) and vicanite-(Ce) 1540 Calibration 277 Crystal dissolution 527 olenite 447 California 701 Crystal nucleation 1673 painite 610 CALORIMETRY CRYSTAL GROWTH 807, 1260 phologopite at high pressure 647 buddingtonite 85 alkali feldspar 1822 piemontite 1119 diff erential scanning 1215 amphibole reaction rims 748 pyrophyllite 1092 enthalpy of mixing 1496 annealing 1162 pyroxene 189, 614 enthalpy of solution 1496 birnessite 1807 ramsdellite 969 interaction parameter 1496 brushite 307 rare earth disilicates 396 Margules parameter 1496 calcite 714, 1709 rhombohedral carbonates 554 tobelite 85 clathrate 1254 Sb 5s2 LPE 932 transposed-temperature drop calo- CO2 clathrate hydrate 1247 schwertmannite 1728, 1735 rimetry 1586 coccoliths 1709 shirozulite 232 Cañada 110 CSD 126 single layer birnessite microcrystals 1110 Canyon Diablo 519 dendritic biotite 857 sodalite 359 Ca-perovskite 1480 emiliania huxleyi 1709 spinel 1367 Carbokentbrooksite 1826 gas hydrate(s) 1162, 1254 spriggite 339 Carbon dioxide 1447 grossular 211 stereochemical activity 696, 932 Carbon dioxide sequestration 1153 kaoline 1581 structural modifications under P 647 Carbonate 352 mesoporosity 1162 Structure I and II 1215 Carbonate apatite 1422 modifi ers 714 synchrotron powder diff raction 365 Carbonatite melt 1396 morphology 714 tetrahedrite 159 Cassiterite 505 nucleation 1254 titanite 1752 Cation diff usion in olivine 748 nucleation and growth 285 triclinic amphibole 1464 Cation diff usion in silicate melts 748 orbicular granite 857 tugtupite 492 Cation disorder 1142 orthopyroxene reaction rims 748 uranyl structure 976 Cation ordering 777 periodic precipitation 1341 wollastonite 1280 CBED 961 plumose alkali feldspar 857 xenotime 1533 Cementation 1221 silica gel 600 yuksporite 1561, 1816 Cerussite 352 supercritical water 976 zoisite 31 Chalcopyrite 1026 todorokite 1807 CRYSTAL SYNTHESIS Chesterite 15 tremolite 74 amphiboles 640 Chlorite 1138, 1337, 1631 Crystallographically oriented magnetite inclu- brownmillerite 405 Chondrodite 1056 sions 462 buddingtonite 85 Chondrules 867 CRYSTAL STRUCTURE 232, 314, 807, 1138, 1142, carbonate apatite 1422 Chromite 1367, 1557 1260 excess H amphibole 1464 Clathrate hydrate growth 1228 Ab initio structure determination 365 gibbsite 1456 Clathrate hydrate(s) 1153, 1176, 1247,1254, 1264, antigorite 147 hydrothermal synthesis 976 1208 antimony 696 hydroxysodalite 1694 Clathrate hydrates on Mars 1228 apatite 629 linde type A 1694 Clay minerals 164 arsenic 696 magnesite 681 Clinobarylite 249 axinite 1763 majorite 132 Clinopyroxene 462, 1078, 1772 (Ba,Sr)HAsO4H2O 600 MgSiO3 perovskite 807 2 CO2 → clathrate hydrate 1247 Bi 6s LPE 932 monazite 1533 CO2 + H2O 1247 bikitaite 94 mordenite 421 CO2 301, 1228, 1247, 1254, 1264 boggsite 1033 piemontite 1119 CO2 clathrate hydrate 1247 brownmillerite 405 REE disilicates 396 CO2 hydrate 1153, 1240, 1247 brushite 307 siderite 681 CO2 hydrate reactor 1240 carbonate apatite 1422 titanite 1752 SUBJECT INDEX 1853 tobelite 85 augite 1280 environmental samples 1004 xenotime 1533 biopyribole 15 multiple scattering 1004 zeolite-P 1694 brushite 307 uranium minerals 1004 (Cu,Zn)4(SO4)(OH)6·4H2O 470 BSE imaging 64 uranophane group 1004 Cs 1304 chesterite 15 EXPERIMENTAL MINERALOGY: CSD 126 cookeite 1510 alkali feldspar 1822 Cu l-edge 541 detector gas 1533 EXPERIMENTAL PETROLOGY 1142, 1447 Cubic carbon 896 diamond 439 albite water solubility 1553 Cummingtonite1717 EELS 1807 decompression crystallization 1673 electron microprobe 1101 diamond-trap 1078 Dacite 277, 348 element partition 232 exsolution 39 Dalradian 1067 environmental scanning electron
Recommended publications
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Infrared and Raman Spectroscopic Characterization of the Carbonate Bear- Ing Silicate Mineral Aerinite - Implications for the Molecular Structure
    This may be the author’s version of a work that was submitted/accepted for publication in the following source: Frost, Ray, Scholz, Ricardo, & Lopez Toro, Andres (2015) Infrared and Raman spectroscopic characterization of the carbonate bear- ing silicate mineral aerinite - Implications for the molecular structure. Journal of Molecular Structure, 1097, pp. 1-5. This file was downloaded from: https://eprints.qut.edu.au/84503/ c Consult author(s) regarding copyright matters This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the docu- ment is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recog- nise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to [email protected] License: Creative Commons: Attribution-Noncommercial-No Derivative Works 2.5 Notice: Please note that this document may not be the Version of Record (i.e. published version) of the work. Author manuscript versions (as Sub- mitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appear- ance. If there is any doubt, please refer to the published source. https://doi.org/10.1016/j.molstruc.2015.05.008 Infrared and Raman spectroscopic characterization of the carbonate bearing silicate mineral aerinite – implications for the molecular structure Ray L.
    [Show full text]
  • Thirty-Fourth List of New Mineral Names
    MINERALOGICAL MAGAZINE, DECEMBER 1986, VOL. 50, PP. 741-61 Thirty-fourth list of new mineral names E. E. FEJER Department of Mineralogy, British Museum (Natural History), Cromwell Road, London SW7 5BD THE present list contains 181 entries. Of these 148 are Alacranite. V. I. Popova, V. A. Popov, A. Clark, valid species, most of which have been approved by the V. O. Polyakov, and S. E. Borisovskii, 1986. Zap. IMA Commission on New Minerals and Mineral Names, 115, 360. First found at Alacran, Pampa Larga, 17 are misspellings or erroneous transliterations, 9 are Chile by A. H. Clark in 1970 (rejected by IMA names published without IMA approval, 4 are variety because of insufficient data), then in 1980 at the names, 2 are spelling corrections, and one is a name applied to gem material. As in previous lists, contractions caldera of Uzon volcano, Kamchatka, USSR, as are used for the names of frequently cited journals and yellowish orange equant crystals up to 0.5 ram, other publications are abbreviated in italic. sometimes flattened on {100} with {100}, {111}, {ill}, and {110} faces, adamantine to greasy Abhurite. J. J. Matzko, H. T. Evans Jr., M. E. Mrose, lustre, poor {100} cleavage, brittle, H 1 Mono- and P. Aruscavage, 1985. C.M. 23, 233. At a clinic, P2/c, a 9.89(2), b 9.73(2), c 9.13(1) A, depth c.35 m, in an arm of the Red Sea, known as fl 101.84(5) ~ Z = 2; Dobs. 3.43(5), D~alr 3.43; Sharm Abhur, c.30 km north of Jiddah, Saudi reflectances and microhardness given.
    [Show full text]
  • Yuksporite (K; Ba)(Na; Sr)Ca2(Si; Ti)4O11(F; OH) ² H2O C 2001 Mineral Data Publishing, Version 1.2 ° Crystal Data: Orthorhombic
    Yuksporite (K; Ba)(Na; Sr)Ca2(Si; Ti)4O11(F; OH) ² H2O c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Orthorhombic. Point Group: n.d. Fibrous, scaly, or lamellar; in irregular aggregates, to 10 cm. Physical Properties: Hardness = 5 D(meas.) = 3.05(3) D(calc.) = [2.98] Optical Properties: Semitransparent. Color: Rose-red to straw-yellow. Optical Class: Biaxial (+). Pleochroism: Marked; X = pale rose-yellow; Y = Z = rose-yellow. ® = 1.644(2) ¯ = n.d. ° = 1.660(2) 2V(meas.) = 46±{76± Cell Data: Space Group: n.d. a = 24.869(8) b = 16.756(6) c = 7.057(3) Z = 10 X-ray Powder Pattern: Khibiny massif, Russia. 2.778 (10), 3.00 (9), 1.786 (9), 3.10 (8), 3.05 (8), 1.888 (7), 2.92 (6) Chemistry: (1) (2) (1) (2) SiO2 40.92 38.40 BaO 8.60 TiO2 11.00 Na2O 7.94 3.84 Al2O3 0.07 K2O 12.57 6.15 Fe2O3 9.10 0.75 F 3.05 MnO 0.91 0.29 Cl 0.80 + MgO 0.42 H2O 2.20 CaO 20.56 18.90 H2O 8.52 SrO 5.87 O = (F; Cl) 1.46 ¡ 2 Total 100.94 [98.46] (1) Khibiny massif, Russia. (2) Murun massif, Russia; original total given as 99.07%, 3+ corresponds to (K0:70Ba0:30)§=1:00(Na0:66Sr0:30)§=0:96(Ca1:80Ti0:19Fe0:06Mn0:02)§=2:07 (Si3:42Ti0:57Al0:01)§=4:00O11[F0:86Cl0:12(OH)0:02]§=1:00 ² 0:6H2O: Occurrence: In veins in nepheline syenite in a di®erentiated alkalic massif (Khibiny massif, Russia).
    [Show full text]
  • L'leve~Th List of New Mineral Na~Es. ~
    556 L'leve~th list of new mineral na~es. ~ By L. J. SPENCER, M.A., Sc.D., F.R.S. Keeper of Minerals ia the British Museum (Natural History). [Communicated June 12~ 1928.] Ajkaite. (L. Zeehmeister, Math. Termdszettud. ~:rtesitS, Badapest, 1926, vol. 43, p. 332 (ajkait); L. Zechmeister and V. Vrab~ly, Per. Deutsch. Chem. Gesell., 1926, vol. 59, Abt. B, p. 1426). The same as ajkite (Bull. Soc. Min. France, 1878, vol. 1, p. 126 ; abstract from... ?). A fossil resin containing 1-5 ~ sulphur and no succinic acid, from Ajka, com. Veszpr~m, Hungary. [M.A. 3-362.] Albiclase. A. N. Winchell, 1925. Journ. Geol. Chicago, vol. 83, p. 726 ; Elements of optical mineralogy, 2nd edit., 1927, pt. 2, p. 319. P. Niggli, Lehrbuch Min., 1926, vol. 2, p. 536 (Albiklas). A contrac- tion of albite-oligoclase for felspars of the plagioclase series ranging in composition from Ab~Anlo to AbsoAn~o. Allite. tL Harrassowitz, 1926. Laterit, Material und Versuch erdgesehichtlicher Auswertung, Berlin 1926, p. 255 (Allit, plur. Allite). A rock-name to include both bauxite and laterite. Later (Metall und Erz, Halle, ]927, vol. 24, p. 589) bauxite with A1208. H~O is distinguished as monohydrallite (Monohydrallit) and laterite with Al~0s.3H20 as trihydrallite (Trihydrallit). These, although suggestive of mineral- names (and given so i~ error in Chem. Zentr., 1926, vol. 1, p. 671), are proposed as rock-names ; from aluminium and M~o~. Similarly, siallites (1926, p. 252, Siallit, from Si, A1, M0o~), to include kaolinite and allo- phanite, are rocks composed of the aluminium silicates kaolin and allophane.
    [Show full text]
  • New Mineral Names*
    American Mineralogist, Volume 73, pages 1492-1499. 1988 NEW MINERAL NAMES* JOHN L. JAMBOR CANMET, 555 Booth Street, Ottawa, Ontario KIA OGI, Canada ERNST A. J. BURKE lnstituut voor Aardwetenschappen, Vrije Universitiete, De Boelelaan 1085, 1081 HV, Amsterdam, Netherlands T. SCOTT ERCIT, JOEL D. GRICE National Museum of Natural Sciences, Ottawa, Ontario KIA OM8, Canada Acuminite* prismatic to acicular crystals that are up to 10 mm long and 0.5 H. Pauly, O.Y. Petersen (1987) Acuminite, a new Sr-fluoride mm in diameter, elongate and striated [001], rhombic to hex- from Ivigtut, South Greenland. Neues Jahrb. Mineral. Mon., agonal in cross section, showing {l00} and {l10}. Perfect {100} 502-514. cleavage, conchoidal fracture, vitreous luster, H = 4, Dm'.. = 2.40(5) glcm3 (pycnometer), Dcale= 2.380 glcm3 for the ideal Wet-chemical analysis gave Li 0.0026, Ca 0.0185, Sr 37.04, formula, and Z = 4. Optically biaxial positive, a = 1.5328(4), (3 Al 11.86, F 33.52, OH (calc. from anion deficit) 6.82, H20 (calc. = 1.5340(4), 1.5378(4), 2 Vmoa,= 57(2)°, 2 Vcale= 59°; weak assuming 1 H20 in the formula) 7.80, sum 97.06 wt%, corre- 'Y = dispersion, r < v; Z = b, Y A c = -10°. X-ray structural study sponding to Sro98AIl.o2F.o7(OH)o.93H20. The mineral occurs as indicated monoclinic symmetry, space group C21c, a = 18.830(2), aggregates of crystals shaped like spear points and about I mm b= I 1.517(2), c= 5.190(I)A,{3 = 100.86(1)°. A Guinierpowder long.
    [Show full text]
  • A Review of the Structural Architecture of Tellurium Oxycompounds
    Mineralogical Magazine, May 2016, Vol. 80(3), pp. 415–545 REVIEW OPEN ACCESS A review of the structural architecture of tellurium oxycompounds 1 2,* 3 A. G. CHRISTY ,S.J.MILLS AND A. R. KAMPF 1 Research School of Earth Sciences and Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 2601, Australia 2 Geosciences, Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia 3 Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA [Received 24 November 2015; Accepted 23 February 2016; Associate Editor: Mark Welch] ABSTRACT Relative to its extremely low abundance in the Earth’s crust, tellurium is the most mineralogically diverse chemical element, with over 160 mineral species known that contain essential Te, many of them with unique crystal structures. We review the crystal structures of 703 tellurium oxysalts for which good refinements exist, including 55 that are known to occur as minerals. The dataset is restricted to compounds where oxygen is the only ligand that is strongly bound to Te, but most of the Periodic Table is represented in the compounds that are reviewed. The dataset contains 375 structures that contain only Te4+ cations and 302 with only Te6+, with 26 of the compounds containing Te in both valence states. Te6+ was almost exclusively in rather regular octahedral coordination by oxygen ligands, with only two instances each of 4- and 5-coordination. Conversely, the lone-pair cation Te4+ displayed irregular coordination, with a broad range of coordination numbers and bond distances.
    [Show full text]
  • Design Rules for Discovering 2D Materials from 3D Crystals
    Design Rules for Discovering 2D Materials from 3D Crystals by Eleanor Lyons Brightbill Collaborators: Tyler W. Farnsworth, Adam H. Woomer, Patrick C. O'Brien, Kaci L. Kuntz Senior Honors Thesis Chemistry University of North Carolina at Chapel Hill April 7th, 2016 Approved: ___________________________ Dr Scott Warren, Thesis Advisor Dr Wei You, Reader Dr. Todd Austell, Reader Abstract Two-dimensional (2D) materials are championed as potential components for novel technologies due to the extreme change in properties that often accompanies a transition from the bulk to a quantum-confined state. While the incredible properties of existing 2D materials have been investigated for numerous applications, the current library of stable 2D materials is limited to a relatively small number of material systems, and attempts to identify novel 2D materials have found only a small subset of potential 2D material precursors. Here I present a rigorous, yet simple, set of criteria to identify 3D crystals that may be exfoliated into stable 2D sheets and apply these criteria to a database of naturally occurring layered minerals. These design rules harness two fundamental properties of crystals—Mohs hardness and melting point—to enable a rapid and effective approach to identify candidates for exfoliation. It is shown that, in layered systems, Mohs hardness is a predictor of inter-layer (out-of-plane) bond strength while melting point is a measure of intra-layer (in-plane) bond strength. This concept is demonstrated by using liquid exfoliation to produce novel 2D materials from layered minerals that have a Mohs hardness less than 3, with relative success of exfoliation (such as yield and flake size) dependent on melting point.
    [Show full text]
  • GENESIS and TYPOCHEMISM of LAMPROPHYLLITEBARYTOLAMPROPHYLLITE SERIES MINERALS from LUJAVRITEMALIGNITE COMPLEX of KHIBINY MASSIF Yulia V
    New Data on Minerals. M., 2004. Vol. 39 65 UDC 549.657 GENESIS AND TYPOCHEMISM OF LAMPROPHYLLITEBARYTOLAMPROPHYLLITE SERIES MINERALS FROM LUJAVRITEMALIGNITE COMPLEX OF KHIBINY MASSIF Yulia V. Azarova Institute of Ore Deposits, Geology, Petrography, Mineralogy and Geochemistry RAS, Moscow, [email protected] The detail analysis of chemical composition and character of postmagmatic alteration of lamprophyl- litebarytolamprophyllite series minerals from lujavritemalignites of Khibiny massif was made by local roentgenospectral and electronmicroscopic methods. It is determined that in lujavrites highbarium lampro- phyllite is a typomorphic accessory mineral. In malignites two stages of lamprophyllite alteration are ascer- tained, which correspond to two stages of their formation: 1) at the stage of primary rocks (lujavrite or titanite trachytoid melteigiteurtites) transformation in result of K,Simetasomatosis the recrystallization of primary Balamprophyllite without change of chemical composition (in case of lujavrites) and enrichment of primary strontium lamprophyllite by barium and potassium (in case of melteigiteurtites) take place; 2) at the stage of lowtemperature rocks transformation by action of solutions enriched by strontium and/or calcium the replacement of Balamprophyllite by strontium analogue (in malignites genetically connected to lujavrites) and development of titanite after Ba,Klamprophyllite (in malignites connected to ijoliteurtites) occur. It is detected that the character of postmagmatic alteration of primary strontium lamprophyllite in «porphyraceous malignites» is also the evident of primary rocks (trachytoid ijolites) transformation during K,Simetasomatosis. 4 figures, 1 table and 16 references. Lamprophyllite, (Sr,Ba,K)2 Na(Na,Fe,Mn)2 apatitnepheline deposit with overlapping Ti3 (Si4O16)(O,OH,F)2, is one of the most charac- ristschorrites up to the upper course of Ku - teristic accessory minerals of Khibiny alkaline niiok.
    [Show full text]
  • Volume 25 / No. 3 / 1996
    he Journa TGemmolog Volume 25 No. 3 July 1996 f~J J The Gemmological Association and Gem Testing Laboratory of Great Britain President E.M. Bruton Vice-Presidents AE. Farn, D.G. Kent, RK. Mitchell Honorary Fellows R.T. Liddicoat [nr., E. Miles, K. Nassau Honorary Life Members D.}. Callaghan, E.A Iobbins, H. Tillander Council of Management CR Cavey, T.}. Davidson, N.W. Deeks, RR Harding, 1.Thomson, v.P. Watson Members' Council AJ. Allnutt, P. Dwyer-Hickey, R. Fuller, B. Jackson, J. Kessler, G. Monnickendam, L. Music, J.B. Nelson, K. Penton, P.G. Read, 1. Roberts, R Shepherd, CH. Winter Branch Chairmen Midlands: J.W. Porter North West: 1. Knight Scottish: J. Thomson Examiners AJ. Allnutt, M.Sc., Ph.D., FGS S.M. Anderson, B.SdHonst FGA L. Bartlett, B.Sc., M.Phil., FGA, DGA E.M. Bruton, FGA, DGA CR. Cavey, FGA S. Coelho, B.Sc., FGA, DGA AT. Collins, B.Sc., Ph.D. AG. Good, FGA, DGA CJ.E. Hall, B.Sc.(Hons), FGA G.M. Howe, FGA, DGA G.H. Jones, B.5c., Ph.D., FGA H.L. Plumb, B.Sc., FGA, DGA RD. Ross, B.Sc., FGA DGA P.A. Sadler, B.Sc., FGA, DGA E. Stem, FGA, DGA Prof. 1. Sunagawa, D.Sc. M. Tilley, GG, FGA CM. Woodward, B.5c., FGA DGA The Gemmological Association and Gem Testing Laboratory of Great Britain 27 Greville Street, London EC1N 8SU Telephone: 0171-404 3334 Fax: 0171-404 8843 j*3fr \ St TGemmologhe Journal of y QAQTT. VOLUME 25 NUMBER 3 JULY 1996 Editor Dr R.R.
    [Show full text]
  • Volume 73. 1988
    AmericanMineralogist, Volume 73, pages 1502-1519,1988 INDEX. VOLUME 73. 1988 Abbott, R.N., Jr., C.trrr.Burnham: Polytypism in Bailey, S.Itr., see Peacor, D.R., 876 nicas: A polyhedral approach to energy Baldwj-n, D,K., see Edgar, A.D., 524 calculations, 105 Ba11, D.G.A., see Robin, P.F., 253 Abrecht, J.: Experimental evaluation of the Barton, M., C. Van Gaans: Formation of or- MnC03 + Si02 = I4nSiO3 + C02 equilibrium at 1 thopyroxene - Fe-Ti oxide symplectltes in kbar, 1285 Precambrian intrusives, Rogaland, southwes- Abrecht, J., D.A. Hewitt: Experimental evidence tern Norway, 1046 on the substitution of Ti in bi-otite. 1,275 Batiza, R., see A1lan, J.F., 74I Afifi, A.M., E.J. Essene: MTNFILE: A microcom- Bayliss, P., A.A, Levinson: A system of puter program for storage and manipulation of nomenclature for rare-earth mineral species: chemical data on minerals. 446 Revision and extension. 422 Ahn, J.H., D.M. Burt, P.R. Buseck: Alteration of Belkin, H.E., G. Cavarretta, B. De Vivo, F, andalusite to sheet silicates in a Tecce: Hydrothermal phlogopite and anhydrite pegmatite, 559 from the SH2 we11, Sabatini volcanic dis- Aizenshtat, 2,, see He11er-Kal1ai, L., 376 trict, Latj,um, Italy: Fluld inclusions and Akizuki, M., K. Harada: Symmetry, twinning, and nlneral chemistry, 775 para11e1 growth of scolecite, mesolite, and Be11, D.R., see Edgar, A.D., 524 natroli-te, 613 Bernstein, L.R., see Ross, C.R,, ff, 657 Akizukl, M., H. Nishido: Epistilbite: Symrnetry Bethke, C.M., see Altaner, S.P., 766 and twinning, 1434 Bethke, P.M., see Altaner, S.P., 145 A11an, J.F., R.0.
    [Show full text]
  • Glossary of Obsolete Mineral Names
    Uaranpecherz = uraninite, László 282 (1995). überbasisches Cuprinitrat = gerhardtite, Hintze I.3, 2741 (1916). überbrannter Amethyst = heated 560ºC red-brown Fe-rich quartz, László 11 (1995). Überschwefelblei = galena + anglesite + sulphur-α, Chudoba RI, 67 (1939); [I.3,3980]. uchucchacuaïte = uchucchacuaite, MR 39, 134 (2008). uddervallite = pseudorutile, Hey 88 (1963). uddevallite = pseudorutile, Dana 6th, 218 (1892). uddewallite = pseudorutile, Des Cloizeaux II, 224 (1893). udokanite = antlerite, AM 56, 2156 (1971); MM 43, 1055 (1980). uduminelite (questionable) = Ca-Al-P-O-H, AM 58, 806 (1973). Ueberschwefelblei = galena + anglesite + sulphur-α, Egleston 132 (1892). Uekfildit = wakefieldite-(Y), Chudoba EIV, 100 (1974). ufalit = upalite, László 280 (1995). uferite = davidite-(La), AM 42, 307 (1957). ufertite = davidite-(La), AM 49, 447 (1964); 50, 1142 (1965). U-free thorite = huttonite, Clark 303 (1993). U-galena = U-rich galena, AM 20, 443 (1935). ugandite = bismutotantalite, MM 22, 187 (1929). ughvarite = nontronite ± opal-C, MAC catalog 10 (1998). ugol = coal, Thrush 1179 (1968). ugrandite subgroup = uvarovite + grossular + andradite ± goldmanite ± katoite ± kimzeyite ± schorlomite, MM 21, 579 (1928). uhel = coal, Thrush 1179 (1968). Uhligit (Cornu) = colloidal variscite or wavellite, MM 18, 388 (1919). Uhligit (Hauser) = perovskite or zirkelite, CM 44, 1560 (2006). U-hyalite = U-rich opal, MA 15, 460 (1962). Uickenbergit = wickenburgite, Chudoba EIV, 100 (1974). uigite = thomsonite-Ca + gyrolite, MM 32, 340 (1959); AM 49, 223 (1964). Uillemseit = willemseite, Chudoba EIV, 100 (1974). uingvárite = green Ni-rich opal-CT, Bukanov 151 (2006). uintahite = hard bitumen, Dana 6th, 1020 (1892). uintaite = hard bitumen, Dana 6th, 1132 (1892). újjade = antigorite, László 117 (1995). újkrizotil = chrysotile-2Mcl + lizardite, Papp 37 (2004). új-zéalandijade = actinolite, László 117 (1995).
    [Show full text]