The Global Flora © 2018 Plant Gateway Ltd

Total Page:16

File Type:pdf, Size:1020Kb

The Global Flora © 2018 Plant Gateway Ltd THE GLOBAL FLORA © 2018 Plant Gateway Ltd. A practical flora to vascular plant species of the world ISSN 2398-6336 eISSN 2398-6344 www.plantgateway.com/globalflora/ ISBN 978-0-9929993-9-1 i Published online 14 January 2018 PLANT GATEWAy’s THE GLOBAL FLORA A practical flora to vascular plant species of the world INTRODUCTION Introducing The Global Flora The phylogeny of angiosperms poster January 2018 The Global Flora A practical flora to vascular plant species of the world Introduction, Vol. 1: 1-35. Published by Plant Gateway Ltd., 5 Baddeley Gardens, Bradford, BD10 8JL, United Kingdom © Plant Gateway 2018 This work is in copyright. Subject to statutory exception and to the provision of relevant col- lective licensing agreements, no reproduction of any part may take place without the written permission of Plant Gateway Ltd. ISSN 2398-6336 eISSN 2398-6344 ISBN 978-0-9929993-9-1 Plant Gateway has no responsibility for the persistence or accuracy of URLS for external or third-party internet websites referred to in this work, and does not guarantee that any con- tent on such websites is, or will remain, accurate or appropriate. British Library Cataloguing in Publication data A Catalogue record of this book is available from the British Library For information or to purchase other Plant Gateway titles please visit www.plantgateway.com Cover image: Simplified angiosperm phylogeny © James Byng THE GLOBAL FLORA © 2018 Plant Gateway Ltd. A practical flora to vascular plant species of the world ISSN 2398-6336 eISSN 2398-6344 www.plantgateway.com/globalflora/ ISBN 978-0-9929993-9-1 Introducing The Global Flora, a global series of botany James W. Byng1,2 & Maarten M.J. Christenhusz1,3 1Plant Gateway Ltd., 5 Baddeley Gardens, Bradford, BD10 8JL, UK. 2Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands. 3Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK. Species Plantarum by Linnaeus (1753) contained taxonomic focus are being produced. Those who must 5,940 species of plants, including all known species rely heavily on these treatments, such as ecologists, then known globally. Since its publication 264 years conservation biologists, and invasive species biologists ago, the exploration of plant diversity across the planet often are fully aware that no reliable and current source has led to approximately 374,000 known, described of current taxonomic information exists at the global and accepted plant species (Christenhusz & Byng, level for many groups of plants. 2016). This number increases by approximately 2000 Plant Gateway is working on various higher-level additional new species each year, despite the slow but classifications and overviews of vascular plants (e.g. steady decrease in the number of active herbarium Christenhusz et al., 2011; Christenhusz & Chase, 2014; taxonomists focused on monography. Current estimates Byng, 2014, 2015; APG IV, 2016; Christenhusz & Byng suggest that at least twenty percent of all botanical 2016; Christenhusz et al., 2017; Byng et al., 2018). In diversity still remains to be discovered, analysed (or re- this framework, we are introducing The Global Flora, analysed), described and named. a new international serial for botanical taxonomy, to Herbaria are exceptionally rich sources of botanical provide accepted species-level classifications for all information. They house voucher specimens used for vascular plant families based on available or generated anatomical, biogeographical, chemical, molecular, molecular data and re-examining the literature and morphological, palynological and taxonomical studies. herbarium specimens in major herbaria. The goal is Type specimens, which permanently link a scientific to provide a current, balanced and practical taxonomy name to a physical specimen, effectively are the “birth reflecting evolutionary relationships. certificates” of each species, and are amongst the most The Global Flora will be available in print and online important specimens in each herbarium. Herbarium versions and include three series: (A) Angiosperms specimens collectively provide critical baseline data for (following APG IV, 2016); (B) Lycopods, Ferns and where and when a species occurred, and they can be Gymnosperms (classification following Christenhusz et used to evaluate population increases or declines. Thus al., 2017); and (C) special editions. The first two series herbarium collections provide the physical evidence for will only treat monophyletic taxa on a global scale much of our botanical knowledge. (e.g. family, subfamily, tribe, genus or section). The An ongoing and acute problem in taxonomy is that content and format of each taxonomic treatment in large numbers of specimens in nearly all herbaria the first two series will vary depending on the group, are either unidentified or identified incorrectly (e.g. and interested authors should consult the first few Bebber et al., 2010; Goodwin et al., 2015). This does published treatments for guidance. The special editions not reflect incompetence or negligence on the part of series aims to make significant contributions to the botanists, but rather a dearth of active taxonomists body of plant systematic knowledge and typically will (Uno, 2009) and low (and declining) levels of funding be of a global botanical scope. for basic research (Dalton et al., 2003; Agnarsson & The Global Flora will be published frequently and at Kuntner, 2007; Ahrends et al., 2010). Taxonomic studies regular intervals. It will be amply illustrated and should are never-ending as new species are described, new appeal to many different users, including ecologists, specimens are collected and need identifying and older conservationists, gardeners and other plant enthusiasts treatments need to be updated following new findings in the applied sciences, as opposed to appealing in nomenclature, taxonomy and evolutionary botany. solely to practicing taxonomists. As important new Fortunately, some positive developments are evidence becomes available updates and revisions to occurring in systematics given the advent of digitial already published treatments will be allowed to make technologies. The recent acceptance of electronic the treatments current and dynamic. Unlike other publication in the International Code of Nomenclature journals and flora serials, The Global Flora will share for Algae, Fungi and Plants has significantly expedited royalties with authors and compensate reviewers and species discovery and the solving of associated editors for their respective duties. This is important nomenclatural issues (McNeill et al., 2012; Christenhusz for maintaining momentum, because relatively few & Byng, 2016). But while digital technologies and institutions provide time and funds for researchers to electronic publication are helping to speed up some do this time-consuming, yet crucially important work. aspects of taxonomy, fewer treatments having a global An unspoken consensus of many taxonomists is that the Published online 14 January 2018 1 THE GLOBAL FLORA © 2018 Plant Gateway Ltd. A practical flora to vascular plant species of the world ISSN 2398-6336 eISSN 2398-6344 www.plantgateway.com/globalflora/ ISBN 978-0-9929993-9-1 historical lack of remuneration for this type of research Byng, J. W. (2015) The Gymnosperms Handbook: A practical is a primary reason that taxonomy does not progress guide to extant families and genera of the world. Plant Gateway: more rapidly. Hertford. 36 pp. In addition, we believe that some of the funds Byng, J. W. (2014[2015]) The Flowering Plants Handbook: generated from taxonomic work should be retained A practical guide to families and genera of the world. Plant within the taxonomic community. For reviewers and Gateway: Hertford. 619 pp. contributors who are unable to accept royalties as part of their positions, or who choose to waive them Byng, J.W., Smets, E., Vugt, R. van, Bidault, E., Davidson, C., altogether, the royalties will be transferred to a Global Kenicer, G., Chase, M.W. & Christenhusz, M.J.M. (2018) The Flora Small Grants Fund to allow future contributors phylogeny of angiosperms poster. The Global Flora 1: 4–35. to undertake herbarium visits and generate data for Christenhusz, M.J.M. & Byng, J.W. (2016) The number of known future treatments in The Global Flora. In return for a plant species in the world and its annual increase. Phytotaxa fee, authors may opt for their taxonomic treatments 261: 201–217. to be open-access, which will cover editorial costs, and the remainder of which shall be added to the Global Christenhusz, M.J.M. & Chase, M.W. (2014) Trends and concepts Flora Small Grants Fund. All special edition issues will in fern classifications. Annals of Botany 113: 571–59. be open-access. Christenhusz, M.J.M., Fay, M.F. & Chase, M.W. (2017) Plants of We hope our readers enjoy and support The Global the World. An illustrated encyclopedia of vascular plants. Kew Flora in its initial stages. An Editorial Board is being Publishing: Richmond & Chicago University Press: Chicago. 792 formed as our first issues appear. We also hope that pp. the contents of The Global Flora will provide significant Christenhusz, M. J. M., Chase, M. W. & Fay, M. F. (eds.). (2011) contributions to help achieve Target 1 of the Global Linear sequence, classification, synonymym and bibliography Strategy for Plant Conservation established for 2020, of vascular plants. Phytotaxa 19: 4-134. and we hope the series will grow towards a global and complete coverage of the vascular plants of the world. Dalton, R. (2003) Natural
Recommended publications
  • Arthur Monrad Johnson Colletion of Botanical Drawings
    http://oac.cdlib.org/findaid/ark:/13030/kt7489r5rb No online items Arthur Monrad Johnson colletion of botanical drawings 1914-1941 Processed by Pat L. Walter. Louise M. Darling Biomedical Library History and Special Collections Division History and Special Collections Division UCLA 12-077 Center for Health Sciences Box 951798 Los Angeles, CA 90095-1798 Phone: 310/825-6940 Fax: 310/825-0465 Email: [email protected] URL: http://www.library.ucla.edu/libraries/biomed/his/ ©2008 The Regents of the University of California. All rights reserved. Arthur Monrad Johnson colletion 48 1 of botanical drawings 1914-1941 Descriptive Summary Title: Arthur Monrad Johnson colletion of botanical drawings, Date (inclusive): 1914-1941 Collection number: 48 Creator: Johnson, Arthur Monrad 1878-1943 Extent: 3 boxes (2.5 linear feet) Repository: University of California, Los Angeles. Library. Louise M. Darling Biomedical Library History and Special Collections Division Los Angeles, California 90095-1490 Abstract: Approximately 1000 botanical drawings, most in pen and black ink on paper, of the structural parts of angiosperms and some gymnosperms, by Arthur Monrad Johnson. Many of the illustrations have been published in the author's scientific publications, such as his "Taxonomy of the Flowering Plants" and articles on the genus Saxifraga. Dr. Johnson was both a respected botanist and an accomplished artist beyond his botanical subjects. Physical location: Collection stored off-site (Southern Regional Library Facility): Advance notice required for access. Language of Material: Collection materials in English Preferred Citation [Identification of item], Arthur Monrad Johnson colletion of botanical drawings (Manuscript collection 48). Louise M. Darling Biomedical Library History and Special Collections Division, University of California, Los Angeles.
    [Show full text]
  • Australia Lacks Stem Succulents but Is It Depauperate in Plants With
    Available online at www.sciencedirect.com ScienceDirect Australia lacks stem succulents but is it depauperate in plants with crassulacean acid metabolism (CAM)? 1,2 3 3 Joseph AM Holtum , Lillian P Hancock , Erika J Edwards , 4 5 6 Michael D Crisp , Darren M Crayn , Rowan Sage and 2 Klaus Winter In the flora of Australia, the driest vegetated continent, [1,2,3]. Crassulacean acid metabolism (CAM), a water- crassulacean acid metabolism (CAM), the most water-use use efficient form of photosynthesis typically associated efficient form of photosynthesis, is documented in only 0.6% of with leaf and stem succulence, also appears poorly repre- native species. Most are epiphytes and only seven terrestrial. sented in Australia. If 6% of vascular plants worldwide However, much of Australia is unsurveyed, and carbon isotope exhibit CAM [4], Australia should host 1300 CAM signature, commonly used to assess photosynthetic pathway species [5]. At present CAM has been documented in diversity, does not distinguish between plants with low-levels of only 120 named species (Table 1). Most are epiphytes, a CAM and C3 plants. We provide the first census of CAM for the mere seven are terrestrial. Australian flora and suggest that the real frequency of CAM in the flora is double that currently known, with the number of Ellenberg [2] suggested that rainfall in arid Australia is too terrestrial CAM species probably 10-fold greater. Still unpredictable to support the massive water-storing suc- unresolved is the question why the large stem-succulent life — culent life-form found amongst cacti, agaves and form is absent from the native Australian flora even though euphorbs.
    [Show full text]
  • Morphological Nature of Floral Cup in Lauraceae
    l~Yoc. Indian Acad. Sci., Vol. 88 B, Part iI, Number 4, July 1979, pp. 277-281, @ printed in India. Morphological nature of floral cup in Lauraceae S PAL School of Plant Morphology, Meerut College, Meerut 250 001 MS received 19 June 1978 Abstract. On the basis of anatomical criteria the floral cup of Lauraceae can be regarded as appendicular, as the traces entering into the floral cup are morphologi- cally compound, differentiated into tepal and stamen traces at higher levels. The ontogenetic studies also support this contention. The term Perigynous hypanthium is retained for the floral cup of Lauraceae as it is formed as a result of intercalary growth occurring underneath the region of perianth and androecium. Keywords. Lauraceae; floral cup; morphological nature; appendicular; peri- gynous hypanthium. 1. Introduction The family Lauraceae has received comparatively little attention from earlier workers because of difficulty in procuring the material. So far very little work has been done on the floral anatomy of this family (Reece 1939 ; Sastri 1952 ; Pal 1974). There has been considerable difference of opinion regarding the nature of floral cup in angiosperms. The present work was initiated to study the morphological nature of the floral cup. 2. Materials and methods The present investigation embodies the results of observations on 21 species of the Lauraceae. The material of Machilus duthiei King ex Hook.f., M. odoratissima Nees, Persea gratissima Gaertn.f., Phoebe cooperiana Kanjilal and Das, P. goal- parensis Hutch., P. hainesiana Brandis, Alseodaphne keenanii Gamble, A. owdeni Parker, Cinnamomum camphora Nees and Eberm, C. cecidodaphne Meissn., C. tamala Nees and Eberm, C.
    [Show full text]
  • Phylogeny and Classification of the Melastomataceae and Memecylaceae
    Nord. J. Bot. - Section of tropical taxonomy Phylogeny and classification of the Melastomataceae and Memecy laceae Susanne S. Renner Renner, S. S. 1993. Phylogeny and classification of the Melastomataceae and Memecy- laceae. - Nord. J. Bot. 13: 519-540. Copenhagen. ISSN 0107-055X. A systematic analysis of the Melastomataceae, a pantropical family of about 4200- 4500 species in c. 166 genera, and their traditional allies, the Memecylaceae, with c. 430 species in six genera, suggests a phylogeny in which there are two major lineages in the Melastomataceae and a clearly distinct Memecylaceae. Melastomataceae have close affinities with Crypteroniaceae and Lythraceae, while Memecylaceae seem closer to Myrtaceae, all of which were considered as possible outgroups, but sister group relationships in this plexus could not be resolved. Based on an analysis of all morph- ological and anatomical characters useful for higher level grouping in the Melastoma- taceae and Memecylaceae a cladistic analysis of the evolutionary relationships of the tribes of the Melastomataceae was performed, employing part of the ingroup as outgroup. Using 7 of the 21 characters scored for all genera, the maximum parsimony program PAUP in an exhaustive search found four 8-step trees with a consistency index of 0.86. Because of the limited number of characters used and the uncertain monophyly of some of the tribes, however, all presented phylogenetic hypotheses are weak. A synapomorphy of the Memecylaceae is the presence of a dorsal terpenoid-producing connective gland, a synapomorphy of the Melastomataceae is the perfectly acrodro- mous leaf venation. Within the Melastomataceae, a basal monophyletic group consists of the Kibessioideae (Prernandra) characterized by fiber tracheids, radially and axially included phloem, and median-parietal placentation (placentas along the mid-veins of the locule walls).
    [Show full text]
  • High Tree Endemism Recorded in Kanana Kanda Isolated Forest Fragment in Wet Zone of Sri Lanka
    International Journal of Agriculture, Forestry and Plantation, Vol. 2 (February.) ISSN 2462-1757 2 01 6 HIGH TREE ENDEMISM RECORDED IN KANANA KANDA ISOLATED FOREST FRAGMENT IN WET ZONE OF SRI LANKA P.K.J. De Mel Department of Agricultural and Plantation Engineering Open University of Sri Lanka, P.O. Box 21, Nawala, Nugegoda (10250), Sri Lanka Email: [email protected] K.A.J.M. Kuruppuarachchi Department of Botany Open University of Sri Lanka, P.O. Box 21, Nawala, Nugegoda (10250), Sri Lanka Email: [email protected] ABSTRACT Kanana Kanda is an isolated lowland hill with an altitude of 115m covered by natural forest with an extent of 13ha. The forest fragment located in wet zone of Sri Lanka where much species diversity and endemism is found. The forest is disappearing fast due to anthropogenic influences. Therefore the present study was carried out with the objective of assessment of existing tree flora. Reconnaissance survey was first conducted in the forest in order to gather basic information on vegetation types and floristic characteristics. Four transects with a size of 100m x 5m each were laid for sampling trees. A woody plant with a dbh equal or greater than 5cm considered as a tree. A total number of 464 trees were enumerated in the forest. Field identification of species performed with the consultation of personnel who have sufficient knowledge, skills and experience on similar vegetation. Herbarium specimens were prepared from each tree unidentified in the field and later identified those comparing with the specimens preserved in the National Herbarium. Present study, recorded a total number of 50 different species belongs to 29 families.
    [Show full text]
  • Oral Allergy Syndrome: a Confuence of Immunology and Phylogeny by Merle K
    NATIONAL CENTER FOR CASE STUDY TEACHING IN SCIENCE NATIONAL CENTER FOR CASE STUDY TEACHING IN SCIENCE Oral Allergy Syndrome: A Confuence of Immunology and Phylogeny by Merle K. Heidemann, Mike S. Taylor, Amanda Storm, Cassie Dresser-Briggs, Alexa Warwick, and Peter J.T. White Objectives Upon completion of this case study, you should be able to: • Explain the symptoms of allergic reactions in terms of cell biology (immune system cells). • Describe the molecular features of cross reactivity. • Build phylogenetic trees using morphological data. • Build phylogenetic trees using molecular data and interpret two kinds of phylogenetic trees. Part I – Immunology Sam had a history of allergic reactions, including reactions to various plant pollens. Birch pollen elicited a particularly strong reaction, causing him annoying sneezing fts and a sore throat. As he grew to adulthood, he discovered that he was also variably allergic to common foods, including some raw fruits and vegetables, as well as most nuts. Sam was puzzled by his recent food allergies. Also puzzling was the variability in his reactions. He reacted strongly to some foods; others resulted in only a mild itchy throat. He wondered, What exactly causes allergic reactions? Sam was determined to fgure out how and why he reacted to birch pollen and later became allergic to other plant- based food. He also hoped this information might help him avoid other foods that might cause him allergies. First, Sam decided he needed to know something about the cellular bases of allergic reactions. He knew it had some- thing to do with the immune system. He did some basic research on the Internet and here’s what he found: Allergens are bits of protein from an innocuous foreign substance, such as pollen or food.
    [Show full text]
  • The Laurel Or Bay Forests of the Canary Islands
    California Avocado Society 1989 Yearbook 73:145-147 The Laurel or Bay Forests of the Canary Islands C.A. Schroeder Department of Biology, University of California, Los Angeles The Canary Islands, located about 800 miles southwest of the Strait of Gibraltar, are operated under the government of Spain. There are five islands which extend from 15 °W to 18 °W longitude and between 29° and 28° North latitude. The climate is Mediterranean. The two eastern islands, Fuerteventura and Lanzarote, are affected by the Sahara Desert of the mainland; hence they are relatively barren and very arid. The northeast trade winds bring moisture from the sea to the western islands of Hierro, Gomera, La Palma, Tenerife, and Gran Canaria. The southern ends of these islands are in rain shadows, hence are dry, while the northern parts support a more luxuriant vegetation. The Canary Islands were prominent in the explorations of Christopher Columbus, who stopped at Gomera to outfit and supply his fleet prior to sailing "off the map" to the New World in 1492. Return voyages by Columbus and other early explorers were via the Canary Islands, hence many plants from the New World were first established at these points in the Old World. It is suspected that possibly some of the oldest potato germplasm still exists in these islands. Man exploited the islands by growing sugar cane, and later Mesembryanthemum crystallinum for the extraction of soda, cochineal cactus, tomatoes, potatoes, and finally bananas. The banana industry is slowly giving way to floral crops such as strelitzia, carnations, chrysanthemums, and several new exotic fruits such as avocado, mango, papaya, and carambola.
    [Show full text]
  • Wood Anatomy of Lythraceae Assigned to The
    Ada Bot. Neerl. 28 (2/3), May 1979, p.117-155. Wood anatomy of the Lythraceae P. Baas and R.C.V.J. Zweypfenning Rijksherbarium, Leiden, The Netherlands SUMMARY The wood anatomy of 18 genera belonging to the Lythraceae is described. The diversity in wood structure of extant Lythraceae is hypothesized to be derived from a prototype with scanty para- I tracheal parenchyma, heterogeneous uniseriate and multiseriate rays, (septate)libriform fibres with minutely bordered pits, and vessels with simple perforations. These characters still prevail in a number of has been limited in of Lythraceae. Specialization very most Lythraceae shrubby or herbaceous habit: these have juvenilistic rays composed mainly of erect rays and sometimes com- pletely lack axial parenchyma. Ray specialization towards predominantly uniseriate homogeneous concomitant with fibre abundant and with rays, dimorphism leading to parenchyma differentiation, the advent of chambered crystalliferous fibres has been traced in the “series” Ginoria , Pehria, Lawsonia , Physocalymma and Lagerstroemia. The latter genus has the most specialized wood anatomy in the family and has species with abundant parenchyma aswell as species with alternating fibres. with its bands of dimorphous septate Pemphis represents an independent specialization vasicentric parenchyma and thick-walled nonseptate fibres. The affinities of with other are discussed. Pun Psiloxylon, Lythraceae Myrtales ica, Rhynchocalyx , Oliniaceae,Alzatea, Sonneratiaceae, Onagraceae and Melastomataceae all resemble Lythraceae in former accommodated in the without their wood anatomy. The three genera could even be family its wood anatomical Alzatea and Sonneratia differ in minor details extending range. Oliniaceae, only from order facilitate identification of wood tentative the Lythraceae. In to samples, keys to genera or groups ofgenera of Lythraceae as well as to some species of Lagerstroemiaare presented.
    [Show full text]
  • Phylogeny and Historical Biogeography of Lauraceae
    PHYLOGENY Andre'S. Chanderbali,2'3Henk van der AND HISTORICAL Werff,3 and Susanne S. Renner3 BIOGEOGRAPHY OF LAURACEAE: EVIDENCE FROM THE CHLOROPLAST AND NUCLEAR GENOMES1 ABSTRACT Phylogenetic relationships among 122 species of Lauraceae representing 44 of the 55 currentlyrecognized genera are inferredfrom sequence variation in the chloroplast and nuclear genomes. The trnL-trnF,trnT-trnL, psbA-trnH, and rpll6 regions of cpDNA, and the 5' end of 26S rDNA resolved major lineages, while the ITS/5.8S region of rDNA resolved a large terminal lade. The phylogenetic estimate is used to assess morphology-based views of relationships and, with a temporal dimension added, to reconstructthe biogeographic historyof the family.Results suggest Lauraceae radiated when trans-Tethyeanmigration was relatively easy, and basal lineages are established on either Gondwanan or Laurasian terrains by the Late Cretaceous. Most genera with Gondwanan histories place in Cryptocaryeae, but a small group of South American genera, the Chlorocardium-Mezilauruls lade, represent a separate Gondwanan lineage. Caryodaphnopsis and Neocinnamomum may be the only extant representatives of the ancient Lauraceae flora docu- mented in Mid- to Late Cretaceous Laurasian strata. Remaining genera place in a terminal Perseeae-Laureae lade that radiated in Early Eocene Laurasia. Therein, non-cupulate genera associate as the Persea group, and cupuliferous genera sort to Laureae of most classifications or Cinnamomeae sensu Kostermans. Laureae are Laurasian relicts in Asia. The Persea group
    [Show full text]
  • 3. Canary Islands and the Laurel Forest 13
    The Laurel Forest An Example for Biodiversity Hotspots threatened by Human Impact and Global Change Dissertation 2014 Dissertation submitted to the Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto–Carola–University of Heidelberg, Germany for the degree of Doctor of Natural Sciences presented by Dipl. biol. Anja Betzin born in Kassel, Hessen, Germany Oral examination date: 2 The Laurel Forest An Example for Biodiversity Hotspots threatened by Human Impact and Global Change Referees: Prof. Dr. Marcus A. Koch Prof. Dr. Claudia Erbar 3 Eidesstattliche Erklärung Hiermit erkläre ich, dass ich die vorgelegte Dissertation selbst verfasst und mich dabei keiner anderen als der von mir ausdrücklich bezeichneten Quellen und Hilfen bedient habe. Außerdem erkläre ich hiermit, dass ich an keiner anderen Stelle ein Prüfungsverfahren beantragt bzw. die Dissertation in dieser oder anderer Form bereits anderweitig als Prü- fungsarbeit verwendet oder einer anderen Fakultät als Dissertation vorgelegt habe. Heidelberg, den 23.01.2014 .............................................. Anja Betzin 4 Contents I. Summary 9 1. Abstract 10 2. Zusammenfassung 11 II. Introduction 12 3. Canary Islands and the Laurel Forest 13 4. Aims of this Study 20 5. Model Species: Laurus novocanariensis and Ixanthus viscosus 21 5.1. Laurus ...................................... 21 5.2. Ixanthus ..................................... 23 III. Material and Methods 24 6. Sampling 25 7. Laboratory Procedure 27 7.1. DNA Extraction . 27 7.2. AFLP Procedure . 27 7.3. Scoring . 29 7.4. High Resolution Melting . 30 8. Data Analysis 32 8.1. AFLP and HRM Data Analysis . 32 8.2. Hotspots — Diversity in Geographic Space . 34 8.3. Ecology — Ecological and Bioclimatic Analysis .
    [Show full text]
  • First Steps Towards a Floral Structural Characterization of the Major Rosid Subclades
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2006 First steps towards a floral structural characterization of the major rosid subclades Endress, P K ; Matthews, M L Abstract: A survey of our own comparative studies on several larger clades of rosids and over 1400 original publications on rosid flowers shows that floral structural features support to various degrees the supraordinal relationships in rosids proposed by molecular phylogenetic studies. However, as many apparent relationships are not yet well resolved, the structural support also remains tentative. Some of the features that turned out to be of interest in the present study had not previously been considered in earlier supraordinal studies. The strongest floral structural support is for malvids (Brassicales, Malvales, Sapindales), which reflects the strong support of phylogenetic analyses. Somewhat less structurally supported are the COM (Celastrales, Oxalidales, Malpighiales) and the nitrogen-fixing (Cucurbitales, Fagales, Fabales, Rosales) clades of fabids, which are both also only weakly supported in phylogenetic analyses. The sister pairs, Cucurbitales plus Fagales, and Malvales plus Sapindales, are structurally only weakly supported, and for the entire fabids there is no clear support by the present floral structural data. However, an additional grouping, the COM clade plus malvids, shares some interesting features but does not appear as a clade in phylogenetic analyses. Thus it appears that the deepest split within eurosids- that between fabids and malvids - in molecular phylogenetic analyses (however weakly supported) is not matched by the present structural data. Features of ovules including thickness of integuments, thickness of nucellus, and degree of ovular curvature, appear to be especially interesting for higher level relationships and should be further explored.
    [Show full text]
  • Atlas of Pollen and Plants Used by Bees
    AtlasAtlas ofof pollenpollen andand plantsplants usedused byby beesbees Cláudia Inês da Silva Jefferson Nunes Radaeski Mariana Victorino Nicolosi Arena Soraia Girardi Bauermann (organizadores) Atlas of pollen and plants used by bees Cláudia Inês da Silva Jefferson Nunes Radaeski Mariana Victorino Nicolosi Arena Soraia Girardi Bauermann (orgs.) Atlas of pollen and plants used by bees 1st Edition Rio Claro-SP 2020 'DGRV,QWHUQDFLRQDLVGH&DWDORJD©¥RQD3XEOLFD©¥R &,3 /XPRV$VVHVVRULD(GLWRULDO %LEOLRWHF£ULD3ULVFLOD3HQD0DFKDGR&5% $$WODVRISROOHQDQGSODQWVXVHGE\EHHV>UHFXUVR HOHWU¶QLFR@RUJV&O£XGLD,Q¬VGD6LOYD>HW DO@——HG——5LR&ODUR&,6(22 'DGRVHOHWU¶QLFRV SGI ,QFOXLELEOLRJUDILD ,6%12 3DOLQRORJLD&DW£ORJRV$EHOKDV3µOHQ– 0RUIRORJLD(FRORJLD,6LOYD&O£XGLD,Q¬VGD,, 5DGDHVNL-HIIHUVRQ1XQHV,,,$UHQD0DULDQD9LFWRULQR 1LFRORVL,9%DXHUPDQQ6RUDLD*LUDUGL9&RQVXOWRULD ,QWHOLJHQWHHP6HUYL©RV(FRVVLVWHPLFRV &,6( 9,7¯WXOR &'' Las comunidades vegetales son componentes principales de los ecosistemas terrestres de las cuales dependen numerosos grupos de organismos para su supervi- vencia. Entre ellos, las abejas constituyen un eslabón esencial en la polinización de angiospermas que durante millones de años desarrollaron estrategias cada vez más específicas para atraerlas. De esta forma se establece una relación muy fuerte entre am- bos, planta-polinizador, y cuanto mayor es la especialización, tal como sucede en un gran número de especies de orquídeas y cactáceas entre otros grupos, ésta se torna más vulnerable ante cambios ambientales naturales o producidos por el hombre. De esta forma, el estudio de este tipo de interacciones resulta cada vez más importante en vista del incremento de áreas perturbadas o modificadas de manera antrópica en las cuales la fauna y flora queda expuesta a adaptarse a las nuevas condiciones o desaparecer.
    [Show full text]