Conquerors of the Nuclear Icebreaker of Ice Fleet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Russia's Policy on Strengthening the Navy and the Defense Industry*
Russia’s Policy on Strengthening the Navy and the Defense Industry* Yoshiaki Sakaguchi** Abstract The Russian government has begun rebuilding the Russian Navy as a part of the military reforms since October 2008. The Russian leadership has set out a clear policy on strengthening the Navy. Furthermore, the “State Weapons Program for 2011-2020,” unveiled at the end of 2010, presents that 23.4% of the total budget will be allocated to the procurement and development of vessels. This program and the budgetary measures for its realization have contributed to the gradual progress in the construction of new naval vessels since 2011. Nevertheless, the problems confronting the Russian defense industry remain unresolved, putting into question the ability of the defense industry to meet the high procurement targets identified in the State Weapons Program. Introduction A large-scale military reform has been under way in Russia since October 2008, with the focus of reform now shifting to modernization of obsolete armament following the near-completion of organizational and structural reform. The replacement and modernization of armament have been undertaken on the basis of the “State Weapons Program for 2011-2020” (hereinafter referred to as the “current State Weapons Program”), formulated in late 2010. The reform to equip the armed forces with a high degree of mobility and professionalism as well as the latest equipment is gradually beginning to take shape. Under these circumstances, the Navy is emerging out of the battered state that ensued after the collapse of the Soviet Union. The building of new naval vessels that had been stagnant for some time and their introduction into the Navy can be seen again. -
Technical Review of Nuclear Technology As the Advanced Ships Propulsion
Asian Journal of Applied Sciences (ISSN: 2321 – 089) Volume 04 – Issue 03, June 2016 Technical Review of Nuclear Technology as the Advanced Ships Propulsion 1M. Badrus Zaman, 2Hadi Prasutiyon, 1Hari Prastowo and 1*Semin 1Departement of Marine Engineering, Faculty of Marine Technology Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia 2Marine Technology Graduate Program, Faculty of Marine Technology Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia *Corresponding author’s email: semin [AT] its.ac.id _________________________________________________________________________________ ABSTRACT--- Advance Ships Propulsion Nuclear Technology as The Answered. With the development of technology, the need for breakthrough in the of Maritime, especially the advance ship propulsion. Results : There have been more reactor concepts investigated in the naval propulsion area by different manufactures and laboratories than in the civilian field, and much can be learned from their experience for land applications. Conclusion: For these two considerations, it is recognized that a nuclear reactor is the ideal engine for naval advanced propulsion Keywords--- Advanced ship propulsion, diesel engine as an prime mover, nuclear technology _________________________________________________________________________________ 1. INTRODUCTION Marine transport has generally been seen as having a lower environmental impact than other forms of transport. The increasing demand for economical yet rapid movement of both passengers and freight has brought renewed momentum to the development of marine propulsion systems. New technologies are aiding the production of propulsion systems that are capable of driving vessels at higher speeds; that are more efficient; that provide better maneuverability; and are quieter, with less vibration. Here, the latest developments in marine propulsion are brought into focus [1]. Mechanical transmission from energy source to thruster, e.g. -
SBX Sourcebook, Volume II
An SBX Sourcebook, Volume II Version of 2012-05-13 Additional information for this sourcebook would be welcome. Please send it to [email protected] SBX ballasted down in stable “semi-submerged” operating position SBX-1 fully afloat and under way http://www.indeed.com/salary/q-Shift-Security-Lead-Sbx-l-Adak,-AK.html http://marinetraffic.com/ais/ Accessed 2012-05-11T14:32Z http://hosted.ap.org/specials/interactives/documents/nas_response.pdf April 30, 2012 Representative Michael R. Turner Chairman, Strategic Forces Subcommittee House Armed Services Committee Representative Loretta Sanchez Ranking Member House Armed Services Committee Dear Mr. Turner and Ms. Sanchez: We are pleased to provide the following responses to the twelve (12) questions you raised to us in your April 20 letter. Before doing so, however, it is appropriate to make clear that our responses are unclassified as you requested (i.e., some specific details have been omitted to avoid making this letter classified). Furthermore, our responses are based on the briefing we provided to your subcommittee on April 18, as well as the work of a National Research Council (NRC) committee1 which we co-chaired and helped prepare the NRC report entitled Making Sense of Ballistic Missile Defense: An Assessment of Concepts and Systems for U.S. Boost-Phase Missile Defense in Comparison to Other Alternatives which is undergoing final security classification review by the Missile Defense Agency (MDA). It is also appropriate to make clear that the committee examined ballistic missile defense (BMD) for the following limited missions for defense against attacks that could plausibly be mounted by “rogue states” in the next decade or so: (1) protection of the U.S. -
Naval Postgraduate School Thesis
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS A STUDY OF THE RUSSIAN ACQUISITION OF THE FRENCH MISTRAL AMPHIBIOUS ASSAULT WARSHIPS by Patrick Thomas Baker June 2011 Thesis Advisor: Mikhail Tsypkin Second Reader: Douglas Porch Approved for public release; distribution is unlimited THIS PAGE INTENTIONALLY LEFT BLANK REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED June 2011 Master‘s Thesis 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS A Study of the Russian Acquisition of the French Mistral Amphibious Assault Warships 6. AUTHOR(S) Patrick Thomas Baker 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Naval Postgraduate School REPORT NUMBER Monterey, CA 93943-5000 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING N/A AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. -
The Global Submarine Market 2014–2024
The Global Submarine Market 2014–2024 The Global Submarine Market 2014–2024 Report Price: US$4,800 (Single User) 1 The Global Submarine Market 2014–2024 Summary “The Global Submarine Market 2014–2024” offers the reader detailed analysis of the global submarine market over the next ten years, and provides market size forecasts. It covers the key technological and market trends in the submarine market. The demand for global submarines is anticipated to be driven by growing regional tensions, coupled with maritime conflicts. The new technological advancements in the sector will also drive demand. The market is expected to be dominated by North America, followed by Asia Pacific and Europe. In spite of the budget sequestration measures, the US still has the highest spend in the sector and is almost equal to the spending in Asia-Pacific, which is the second largest spending region. Asia Pacific is the second largest market for submarines with major spenders in the region including China, India, Australia and Japan. “The Global Submarine Market 2014–2024” provides detailed analysis of the current industry size and growth expectations from 2014 to 2024, including highlights of key growth stimulators. It also benchmarks the industry against key global markets and provides a detailed understanding of emerging opportunities in specific areas. Key Findings A major finding in the report entails that the sector demand will be largely driven by increase in maritime security threats and need for replacement of obsolete submarines; leading to consistent growth in the market. The demand for submarines is also anticipated to be driven by the need for the balance of power by countries with major militaries. -
Russia's Akademik Lomonosov – the First Modern Floating Nuclear
Russia’s Akademik Lomonosov – The First Modern Floating Nuclear Power Plant (FNPP) Peter Lobner, 15 May 2021 1. Introduction Designated Project 20870, construction of Akademik Lomonosov started on 15 April 2007, when the keel was laid at the Sevmash shipyard in Severodvinsk, which also is Russia’s premier submarine building shipyard. Originally, Akademik Lomonosov was expected to supply power to the Sevmash shipyard itself and the town of Severodvinsk, in Northwest Russia. Cutaway drawing showing the general arrangement of the Akademik Lomonosov. Source: Rosatom In August 2008, the hull of Akademik Lomonosov was transferred to the Baltic Shipyard in St. Petersburg, where a second “keel laying” was held in May 2009. Plans for deploying the FNPP were reconsidered, leading to the final selection of Pevek, a remote Arctic coastal city in Russia’s Far East. The FNPP was launched on 30 June 2010 and outfitting continued with the vessel secured dockside at the Baltic Shipyard. Two un-fueled OKBM Afrikantov KLT-40S modular pressurized water reactors (PWRs) were installed in October 2013. 1 After work on the vessel and reactor systems was completed in April 2018, Akademik Lomonosov was towed 4,000 km (2,485 miles) around Norway to Murmansk, where the reactors were fuelled and tested at Rosatomflot facilities, which also support their nuclear- powered icebreaker fleet. In June 2019, the Russian nuclear regulatory agency Rostekhnadzor issued a 10-year license to Rosenergoatom to operate Akademik Lomonosov until 2029. After successfully completing testing, Akademik Lomonosov departed Murmansk on 23 August 2019 and was towed 4,770 km (2,964 miles) along the Northern Sea Route, arriving at its final destination on 9 September 2019 at a new protected pier at Pevek, which is about 980 km (609 miles) west of the Bering Strait. -
Illllllllll DK9700033
Nordisk Nordisk Pohjoismamen Nordic kerne- karn- ydin- nuclear sikkerheds- sakerhcts- turvallisuus- safety forskning forskning uitkimus research RAK-2 NKS/RAK-2(96)TR-C3 Illllllllll DK9700033 Accidents in Nuclear Ships P. L. 01gaard Rise National Laboratory DK-4000 Roskilde, Denmark Institute of Physics Technical University of Denmark DK-2800 Lyngby, Denmark December 1996 Abstract This report starts with a discussion of the types of nuclear vessels accidents, in particular accidents which involve the nuclear propulsion systems. Next available information on 61 reported nuclear ship events is considered. Of these 6 deals with U.S. ships, 54 with USSR ships and 1 with a French ship. The ships are in almost all cases nuclear submarines. Only events that involve the sinking of vessels, the nuclear propulsion plants, radiation exposures, fires/explosions, sea-water leaks into the submarines and sinking of vessels are considered. For each event a summary of available information is presented, and comments are added. In some cases the available information is not credible, and these events are neglected. This reduces the number of events to 5 U.S. events, 35 USSR/Russian events and 1 French event. A comparison is made between the reported Soviet accidents and information available on dumped and damaged Soviet naval reactors. It seems possible to obtain good correlation between the two types of events. An analysis is made of the accident and estimates are made of the accident probabilities which are found to be of the order of 10"3 per ship reactor year It is finally pointed out that the consequences of nuclear ship accidents are fairly local and does in no way not approach the magnitude of the Chernobyl accident. -
Claude R. Joiris, Grant R. W. Humphries & Alain De Broyer
Seabirds encountered along return transects between South Africa summer in relation to Claude R. Joiris, Grant R. W. Humphries & Alain De Broyer Polar Biology Volume 36-Number 11 -November 2013 ISSN 0722-4060 Volume 36 Number 11 Polar Biol (2013) 36:1633-1647 DOI 10.1007/S00300-013-1382-9 MiMirf'’ tp j stt <£) S p r in g e r & S p ringer Your article is protected by copyright and all rights are held exclusively by Springer- Verlag Berlin Heidelberg. This e-offprint is for personal use only and shall not be self archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com". Ö Springer Author's personal copy Polar Biol (2013) 36:1633-1647 DOI 10.1007/s00300-013-1382-9 ORIGINAL PAPER Seabirds encountered along return transects between South Africa and Antarctica in summer in relation to hydrological features Claude R. Joiris • Grant R. W. Humphries • Alain De Broyer Received: 17 December 2012/Revised: 16 June 2013/Accepted: 5 August 2013/Published online: 25 August 2013 © Springer-Verlag Berlin Heidelberg 2013 Abstract The first aim of our long-term study on the at- individuals per count; the major difference is observed in sea distribution of the upper trophic levels—seabirds and closed pack ice, almost empty in the Arctic but showing a marine mammals—in polar marine ecosystems is to iden very high biomass in the Antarctic. -
Download This Article in PDF Format
E3S Web of Conferences 163, 06011 (2020) https://doi.org/10.1051/e3sconf/202016306011 IV Vinogradov Conference Channel processes of a small river heavily modified by human activities Aleksandr Varenov1, Anna Tarbeeva2,*, Dmitriy Botavin2, Nadezhda Mikhaylova2, Leonid Turykin2,and Aleksandra Chalova2 1Nizhniy Novgorod State Reserve Museum of History and Architecture, 7 Verhne-Volzhskaya Emb., 603005, Nizhniy Novgorod, Russia 2Lomonosov Moscow State University, 1 Leninskiye Gory, 119991, Moscow, Russia Abstract. Widely-spread small rivers are very poorly studied in relation to channel processes. The influence of local factors, high sensitivity to human impact, close connection with basin processes, and relatively low rates of channel changes distinguish them from medium and large ones and make it necessary to form a special approach to studies. Based on collection of long-term maps and local residents’ interviews, we reconstructed the transformation of channels in the Kudma River basin (the Volga Upland) for the last 200 years. Based on the bank erosion monitoring during 2011-2019 the modern rates of channel changes were revealed. We found that significant human impact is associated with the artificial channels cutoffs and draining of ponds which led to channel incision of the Kudma and Ozerka Rivers in the middle reaches and the transformation of floodplain into terrace. Agriculture development caused siltation of the upper reaches of rivers. The rivers of the forested part of the basin experienced the least human changes. From 2011 to 2019 the maximum rates of bank erosion were found to be within range of 0.3 to 2.7 m/year and supposed to be driven by peak water discharge. -
The Russian Northern Fleet Sources of Radioactive Contamination
NO9600025 Bellona Report Volume 2:1996 NEI-NO--726 \ Sources of Radioactive contamination Thomas Nilsen Igor Kudrik Alexandr Nikitin BELLONA V .., I! V: NO9600025 Bellona Report Volume 2:1996 The Russian Northern Fleet Sources of Radioactive contamination Thomas Nilsen Igor Kudrik Alexandr Nikitin 2 C 1 0 1 The publication of this report is sponsored by: Stiftelsen Fritt Ord/Foundation for Freedom of Expression (Main contributor) Contributors: Norsk Hydro a.s. Petrochemicals Division NORSAS, Norwegian Resource Centre for Waste Aker ASA Management and Recycling Chemical Workers Union of Norway Norsk Sivilingeni0rers Forening Norwegian Seafood Export Council Norges ingeni0rorganisasjon (NITO) FESIL AS Green Sea Operations AS Norwegian Society of Engineers UNI STOREBRAND Confederation of Norwegian Business and Industry AGAAS WASA Forsiikring (Stockholm) OZO Hotwater A/S Norwegian Fishermen's Association Energiforsyningens Fellesorganisasjon EnFO Norwegian Federation of Oilworkers' Trade Union Store Norske Spitsbergen Kullkompani AS Norwegian Polar Institute Svalbard Samfunnsdrift AS Odda Smelteverk Norzink AS Published by: The Bellona Foundation Norway: P.O. Box 2141, Griinerl0kka N-0505 OSLO, Norway. E-mail: [email protected] Russia: Brussels: USA Russia Bellona Europa Bellona USA 183038 Murmansk 142-144 Avenue de Tervueren 310 D Street NE P.O. Box 4310 B-1150Bruxelles Washington, DC 20002 Bellona Russia Belgium USA E-mail: [email protected] E-mail: [email protected] E-mail: [email protected] URL: Photos: Copying permitted when source is http://www.grida.no/ngo/bellona/ John Berg (archive), Thorbj0rn Bj0r- stated. kli, Per Stale Bugjerde, Nils B0hmer, ISBN 82-993138-5-6 The Norwegian Defence, Frederic Comments to this report are welco- ISSN 0806-3451 Hauge, Aleksej Klimov, Igor Kudrik, med. -
The Organisation of Control Over Non-Centralized Water Supply Under the Risk of Groundwater Dynamics Disturbance in Karst Areas
JOURNAL OF WATER AND LAND DEVELOPMENT e-ISSN 2083-4535 Polish Academy of Sciences (PAN), Committee on Agronomic Sciences JOURNAL OF WATER AND LAND DEVELOPMENT Section of Land Reclamation and Environmental Engineering in Agriculture 2020, No. 47 (X–XII): 113–124 Institute of Technology and Life Sciences (ITP) https://doi.org/10.24425/jwld.2020.135038 Available (PDF): http://www.itp.edu.pl/wydawnictwo/journal; http://journals.pan.pl/jwld The organisation of control over non-centralized Received 05.08.2020 Reviewed 06.08.2020 Accepted 08.09.2020 water supply under the risk of groundwater dynamics disturbance in karst areas Oleg R. KUZICHKIN 1) , Roman V. ROMANOV 2), Nikolay V. DOROFEEV 2), Anastasia V. GRECHENEVA 1), Gleb S. VASILYEV 1) 1) Belgorod National Research University, Department of Information and Robototechnic Systems, 85 Pobedy St., 308015 Belgorod, Russia 2) Vladimir State University named after A. G. and N. G. Stoletovs, Department of Management and Control in Technical Systems, Vladimir, Russia For citation: Kuzichkin O.R., Romanov R.V., Dorofeev N.V., Grecheneva A.V., Vasilyev G.S. 2020. The organisation of control over non-centralized water supply under the risk of groundwater dynamics disturbance in karst areas. Journal of Water and Land Development. No. 47 (X–XII) p. 113–124. DOI: 10.24425/jwld.2020.135038. Abstract The use of non-centralised water supply in remote settlements is currently the only possible option. Monitoring the wa- ter quality of such supply sources is a complicated task in such areas, especially when there are active karst processes and difficult groundwater conditions. -
Government Support to Upstream Oil & Gas in Russia
GOVERNMENT SUPPORT TO UPSTREAM OIL & GAS IN RUSSIA HOW SUBSIDIES INFLUENCE THE YAMAL LNG AND PRIRAZLOMNOE PROJECTS Page i Government Support to Upstream Oil & Gas in Russia How Subsidies Influence the Yamal LNG and Prirazlomnoe Projects GENEVA-OSLO-MOSCOW JULY 2014 Lars Petter Lunden and Daniel Fjaertoft, Sigra Group PUBLISHED IN PARTNERSHIP BY: www.globalsubsidies.org GOVERNMENT SUPPORT TO UPSTREAM OIL & GAS IN RUSSIA HOW SUBSIDIES INFLUENCE THE YAMAL LNG AND PRIRAZLOMNOE PROJECTS Page ii Government Support to Upstream Oil & Gas in Russia How Subsidies Influence the Yamal LNG and Prirazlomnoe Projects Lars Petter Lunden and Daniel Fjaertoft, Sigra Group Geneva-Oslo-Moscow, July 2014 © 2014 The International Institute for Sustainable Development/WWF Published by the International Institute for Sustainable Development. ACKNOWLEDGEMENTS This report has been commissioned by the Global Subsidies Initiative (GSI) of the International Institute for Sustainable Development (IISD) thanks to the generous support of the Ministry of Foreign Affairs of Norway and Ministry of Foreign Affairs of Denmark. The report has been prepared by Lars Petter Lunden and Daniel Fjaertoft, Sigra Group, in coordination with Ivetta Gerasimchuk, PhD in Economics, and Lucy Kitson, IISD-GSI. WWF-Russia has provided communications and outreach support for the report. This report has been peer-reviewed by: • Mikhail Babenko, PhD in Economics, Oil & Gas Officer, WWF Global Arctic Programme • James Henderson, Senior Research Fellow, Oxford Institute for Energy Studies •