Common Ferns of Ivy Creek

Total Page:16

File Type:pdf, Size:1020Kb

Common Ferns of Ivy Creek COMMON FERNS OF IVY CREEK Ferns are ancient plants, inconceivably older than any form of floowering plant. Prolific in the Carboniferous Era, some 50 million years ago, much of the coal that is mined today comes from the remains of those ancdient ferns. Their descendants today bear the same distinctive characteristics. In fact some fossil remains are virtually identical with liviing species — the same feathery grace, symmetry of form, and elegance of pattern - that delights contemporary fern enthusiasts. With ferns, familiarity breeds enthusiasm. To learn even a half dozen species is a good way to start one of the most delightful and accessible pursuits in the natural world. Christmas Fern Ebony Spleenwort Polystichum acrostichoides Aspenium platyneuron This handsome evergreen is the Ebony Spleenwort, the smallest largest and most common fern at thisof the slender ferns, fernis found is a surprisealong wooded Ivy Creek and can be found along edges of many trails. Often unnoticed, infertileany trail. slopes Its nature helps to to grow retard in large clumps on otherwise beauty when examined closely. standIts shiny, erect nearly in the black, center rachis of a cluster erosion and rebuild the soil -- and sword like fertile fronds an important ecological role. of sterile basal fronds that lie almost flat on the ChristmasConspicuously decoration, green in winter, ground. Come autumn, the fertile fronds will it was used by settlers as a wither leaving the small basal fronds to bless us with a touch of green in the winter months. thus may be the origin of its common name. Lady Fern Hay-scented Fern Athyrium aspleniodes Dennstaedtia punctilobulia This strikingly beautiful meansThis graceful its found fern’s on mostability trails to grow at fern with its delicate equally well in sun as in shade triangular blade is found most often at Ivy Creek Ivy Creek. It is easy pattern to confuse with along Martin’s Branch. andLady round Fern althoughsori found its on the on the underside of fertile trailing growth leaves,Its J-shaped and clumped sori, found backside of fertile fronds growth distinguish it from the former. distinguish it from the similar In addition, the underside of the Hay-scented Fern, leaflets are lined with tiny hairs also common at Ivy Creek. topped by glands that produce a “hay scent” when crushed. Its slender stalk often, but not always, has a reddish hue, a sure sign that it’s Lady Fern. Rattlesnake Fern Grape Fern Botrychium virginianum Botrychium obiquum , this delicate Arising in spring In the late summer, just as lacy fern is one of many grape BotrychiumRattlesnake obiquumFern withers,, appears to fern varieties. Like all grape ferns, another grape fern, it grows as a single leaf in moist damp woods and shady brooks. In mid-season,, frondcarry usof B.through dissectum the winter with a second fertile frond will appear arisesa welcome from bit the of base color. of Thethe plantfertile, arising from the mid point of the stalk B. virginianum with coiled spore capsules resembling the rattler of a rattlesnake, thus giving it its name. distinguishing it from . Sensitive Fern More ferns found at Ivy Creek Natural Area Onoclea sensibilis Ophioglossum vulgatum Woodsia obtusa Adder’s-tongue Fern Pteridium aquilinum Blunt-lobed woodsia this rather coarse but Phegopteris hexagonoptera Nearly as wide as it is tall, CinnamonBracken fern Fern Osmunda cinnamomea CommonBroad beech polypody fern Polypodium virginianum striking fern is found along Dryopteris intermedia muddy areas, such as the Osmunda claytoniana waterways and other moist, Intermediate woodfern Adrantum pedatum Interrupted Fern Dryopteris marginalis Red Trail by the reservoir and Maidenhair Fern Thelypteris oveboracensis parts of the White Trail. Marginal woodfern Dryopteris spinulosa New York Fern Asplenium rhizophyllum Spores are produced on stalks separate from the Spinulose woodfern green fronds; the fertile pinnae roll up at maturity Walking Fern into bead-like structures, suggesting another com- mon name “Bead Fern.” The name “Sensitive Fern” may stem from its rapid demise at the first frost. Fern Identification One way to begin to learn the common ferns is to familiarize yourself with the termsfrond, describingor blade, is its made basic up structure. of a central rachis pinna stipe orThe may fern not have scales , off of which grow the individual leaflets, called (e). The (lower stalk) may . sori (clusters of spores) However, it is the spore-producing organs, the that are the most characteristic and an important factor in classifying ferns. Fronds that have them are called fertile; those without are called sterile. Sori vary widely in their shape, size, and position. Most ferns bear spores on the backside of the pinnae of fertile fronds. Others, such as the grape ferns, send up a separate fertile frond looking quite different from the sterile frond. .
Recommended publications
  • Ferns of the National Forests in Alaska
    Ferns of the National Forests in Alaska United States Forest Service R10-RG-182 Department of Alaska Region June 2010 Agriculture Ferns abound in Alaska’s two national forests, the Chugach and the Tongass, which are situated on the southcentral and southeastern coast respectively. These forests contain myriad habitats where ferns thrive. Most showy are the ferns occupying the forest floor of temperate rainforest habitats. However, ferns grow in nearly all non-forested habitats such as beach meadows, wet meadows, alpine meadows, high alpine, and talus slopes. The cool, wet climate highly influenced by the Pacific Ocean creates ideal growing conditions for ferns. In the past, ferns had been loosely grouped with other spore-bearing vascular plants, often called “fern allies.” Recent genetic studies reveal surprises about the relationships among ferns and fern allies. First, ferns appear to be closely related to horsetails; in fact these plants are now grouped as ferns. Second, plants commonly called fern allies (club-mosses, spike-mosses and quillworts) are not at all related to the ferns. General relationships among members of the plant kingdom are shown in the diagram below. Ferns & Horsetails Flowering Plants Conifers Club-mosses, Spike-mosses & Quillworts Mosses & Liverworts Thirty of the fifty-four ferns and horsetails known to grow in Alaska’s national forests are described and pictured in this brochure. They are arranged in the same order as listed in the fern checklist presented on pages 26 and 27. 2 Midrib Blade Pinnule(s) Frond (leaf) Pinna Petiole (leaf stalk) Parts of a fern frond, northern wood fern (p.
    [Show full text]
  • The Ferns and Their Relatives (Lycophytes)
    N M D R maidenhair fern Adiantum pedatum sensitive fern Onoclea sensibilis N D N N D D Christmas fern Polystichum acrostichoides bracken fern Pteridium aquilinum N D P P rattlesnake fern (top) Botrychium virginianum ebony spleenwort Asplenium platyneuron walking fern Asplenium rhizophyllum bronze grapefern (bottom) B. dissectum v. obliquum N N D D N N N R D D broad beech fern Phegopteris hexagonoptera royal fern Osmunda regalis N D N D common woodsia Woodsia obtusa scouring rush Equisetum hyemale adder’s tongue fern Ophioglossum vulgatum P P P P N D M R spinulose wood fern (left & inset) Dryopteris carthusiana marginal shield fern (right & inset) Dryopteris marginalis narrow-leaved glade fern Diplazium pycnocarpon M R N N D D purple cliff brake Pellaea atropurpurea shining fir moss Huperzia lucidula cinnamon fern Osmunda cinnamomea M R N M D R Appalachian filmy fern Trichomanes boschianum rock polypody Polypodium virginianum T N J D eastern marsh fern Thelypteris palustris silvery glade fern Deparia acrostichoides southern running pine Diphasiastrum digitatum T N J D T T black-footed quillwort Isoëtes melanopoda J Mexican mosquito fern Azolla mexicana J M R N N P P D D northern lady fern Athyrium felix-femina slender lip fern Cheilanthes feei net-veined chain fern Woodwardia areolata meadow spike moss Selaginella apoda water clover Marsilea quadrifolia Polypodiaceae Polypodium virginanum Dryopteris carthusiana he ferns and their relatives (lycophytes) living today give us a is tree shows a current concept of the Dryopteridaceae Dryopteris marginalis is poster made possible by: { Polystichum acrostichoides T evolutionary relationships among Onocleaceae Onoclea sensibilis glimpse of what the earth’s vegetation looked like hundreds of Blechnaceae Woodwardia areolata Illinois fern ( green ) and lycophyte Thelypteridaceae Phegopteris hexagonoptera millions of years ago when they were the dominant plants.
    [Show full text]
  • 100 Years of Change in the Flora of the Carolinas
    Flora of the Carolinas, Virginia, Georgia, and surrounding areas Working Draft of 11 January 2007 by Alan S. Weakley University of North Carolina Herbarium (NCU) North Carolina Botanical Garden University of North Carolina at Chapel Hill Campus Box 3280 Chapel Hill NC 27599-3280 TABLE OF CONTENTS Table of Contents THE FLORA .................................................................................................................................................................................................................6 ACKNOWLEDGMENTS ............................................................................................................................................................................................9 FERNS AND “FERN ALLIES”............................................................................................................................................................................10 ASPLENIACEAE Frank 1877 (Spleenwort Family) ........................................................................................................................................17 AZOLLACEAE Wettstein 1903 (Mosquito Fern Family) .................................................................................................................................20 BLECHNACEAE (C. Presl) Copeland 1947 (Deer Fern Family) ...................................................................................................................21 DENNSTAEDTIACEAE Pichi Sermolli 1970 (Bracken Family) ....................................................................................................................22
    [Show full text]
  • Transformative Paleobotany
    Chapter 6 Lower Permian Flora of the Sanzenbacher Ranch, Clay County, Texas William A. DiMichele1, Robert W. Hook2, Hans Kerp3, Carol L. Hotton1,4, Cindy V. Looy5 and Dan S. Chaney1 1NMNH Smithsonian Institution, Washington, DC, United States; 2The University of Texas at Austin, Austin, TX, United States; 3Westfälische Wilhelms-Universität Münster, Münster, Germany; 4National Institutes of Health, Bethesda, MD, United States; 5University of California Berkeley, Berkeley, CA, United States 1. INTRODUCTION 1985; Broutin, 1986; Popa, 1999; Steyer et al., 2000; Wagner and Mayoral, 2007; Bercovici and Broutin, 2008; Since 1989, field parties supported by the U.S. National Barthel, 2009; Wagner and Álvarez-Vázquez, 2010; Museum of Natural History have obtained large collections Barthel and Brauner, 2015). Furthermore, because this of mainly Permian plant fossils from north central Texas. locality was collected on three occasions over a time period This work was undertaken to study known localities and to of 50 years and by different parties, comparative analysis of find new fossiliferous deposits that would contribute to a the Sanzenbacher collections provides a basis for assessing better understanding of floral and paleoenvironmental sites that have comparable histories. changes within the region during the early Permian. From the outset, the effort was interdisciplinary and grew, through the contributions of nearly 20 paleobotanists, 2. GEOLOGY palynologists, invertebrate and vertebrate paleontologists, Clay County is the only county in the Permo-Carboniferous and sedimentary geologists of several subdisciplines, to be outcrop belt of north central Texas that lacks marine rocks. quite comprehensive. Our reporting of results, however, has These alluvial sediments accumulated east of a broad been influenced by unexpected developments, including the coastal plain that bordered the Eastern Shelf of the Midland discovery of new plant-fossil assemblages in areas once Basin.
    [Show full text]
  • A Comparative Study of Lady Ferns and Japanese Painted Ferns (Athyrium Spp.)
    Plant Evaluation Notes Issue 39, 2015 A Comparative Study of Lady Ferns and Japanese Painted Ferns (Athyrium spp.) Richard G. Hawke, Plant Evaluation Manager and Associate Scientist Photo by Richard Hawke Athyrium filix-femina Lady ferns and Japanese painted ferns of the wood fern family (Dryopteridaceae) Japanese painted ferns has spawned an (Athyrium spp.) are among the most elegant and just a few of the nearly 200 species array of new colorful cultivars as well as a yet utilitarian plants for the shade garden. native to temperate and tropical regions few exceptional hybrids with the common Their lacy fronds arch and twist in a graceful worldwide. The common lady fern lady fern. manner, being both structural and ethereal (A. filix-femina) is a circumglobal species at the same time. Ferns stand on their found in moist woodlands, meadows, While common botanical terms such as foliar merits alone, having no flowers to and ravines throughout North America, leaf, stem, and midrib can be used to overshadow their feathery foliage. The lush Europe, and Asia, and is represented in describe fern foliage, specialized terminology green fronds of lady ferns are in marked gardens by a plethora of cultivars—many of further defines fern morphology. The fern contrast to the sage green, silver, and the oldest forms originated in England leaf or frond is composed of the stipe burgundy tones of the colorful Japanese during the Victorian era. Eared lady fern (stem), blade (leaf), rachis (midrib), and painted ferns. The delicate quality of their (A. otophorum) and Japanese lady fern pinna (leaflet). Crosier or fiddlehead fronds belies their stoutness—they are (A.
    [Show full text]
  • Ferns: the Final Frond-Tier in Plant Model Systems
    Ferns: The Final Frond-tier in Plant Model Systems Authors: Alaina R. Petlewski, and Fay-Wei Li Source: American Fern Journal, 109(3) : 192-211 Published By: The American Fern Society URL: https://doi.org/10.1640/0002-8444-109.3.192 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/American-Fern-Journal on 15 Oct 2019 Terms of Use: https://bioone.org/terms-of-use Access provided by Cornell University American Fern Journal 109(3):192–211 (2019) Published on 16 September 2019 Ferns: The Final Frond-tier in Plant Model Systems 1,2 1,2 ALAINA R. PETLEWSKI AND FAY-WEI LI * 1 Boyce Thompson Institute, Ithaca, New York, USA 14853 ORCID: 0000-0003-4516-1214, 0000-0002-0076-0152 2 Plant Biology Section, Cornell University, New York, USA 14853 Email: 1 [email protected], 2 fl[email protected] ABSTRACT.—Ferns are one of the most speciose lineages of land plants, and occupy an important phylogenetic position sister to seed plants.
    [Show full text]
  • Diversity and Evolution of the Megaphyll in Euphyllophytes
    G Model PALEVO-665; No. of Pages 16 ARTICLE IN PRESS C. R. Palevol xxx (2012) xxx–xxx Contents lists available at SciVerse ScienceDirect Comptes Rendus Palevol w ww.sciencedirect.com General palaeontology, systematics and evolution (Palaeobotany) Diversity and evolution of the megaphyll in Euphyllophytes: Phylogenetic hypotheses and the problem of foliar organ definition Diversité et évolution de la mégaphylle chez les Euphyllophytes : hypothèses phylogénétiques et le problème de la définition de l’organe foliaire ∗ Adèle Corvez , Véronique Barriel , Jean-Yves Dubuisson UMR 7207 CNRS-MNHN-UPMC, centre de recherches en paléobiodiversité et paléoenvironnements, 57, rue Cuvier, CP 48, 75005 Paris, France a r t i c l e i n f o a b s t r a c t Article history: Recent paleobotanical studies suggest that megaphylls evolved several times in land plant st Received 1 February 2012 evolution, implying that behind the single word “megaphyll” are hidden very differ- Accepted after revision 23 May 2012 ent notions and concepts. We therefore review current knowledge about diverse foliar Available online xxx organs and related characters observed in fossil and living plants, using one phylogenetic hypothesis to infer their origins and evolution. Four foliar organs and one lateral axis are Presented by Philippe Taquet described in detail and differ by the different combination of four main characters: lateral organ symmetry, abdaxity, planation and webbing. Phylogenetic analyses show that the Keywords: “true” megaphyll appeared at least twice in Euphyllophytes, and that the history of the Euphyllophytes Megaphyll four main characters is different in each case. The current definition of the megaphyll is questioned; we propose a clear and accurate terminology in order to remove ambiguities Bilateral symmetry Abdaxity of the current vocabulary.
    [Show full text]
  • Late Devonian Spermatophyte Diversity and Paleoecology at Red Hill, North-Central Pennsylvania, U.S.A. Walter L
    West Chester University Digital Commons @ West Chester University Geology & Astronomy Faculty Publications Geology & Astronomy 2010 Late Devonian spermatophyte diversity and paleoecology at Red Hill, north-central Pennsylvania, U.S.A. Walter L. Cressler III West Chester University, [email protected] Cyrille Prestianni Ben A. LePage Follow this and additional works at: http://digitalcommons.wcupa.edu/geol_facpub Part of the Geology Commons, Paleobiology Commons, and the Paleontology Commons Recommended Citation Cressler III, W.L., Prestianni, C., and LePage, B.A. 2010. Late Devonian spermatophyte diversity and paleoecology at Red Hill, north- central Pennsylvania, U.S.A. International Journal of Coal Geology 83, 91-102. This Article is brought to you for free and open access by the Geology & Astronomy at Digital Commons @ West Chester University. It has been accepted for inclusion in Geology & Astronomy Faculty Publications by an authorized administrator of Digital Commons @ West Chester University. For more information, please contact [email protected]. ARTICLE IN PRESS COGEL-01655; No of Pages 12 International Journal of Coal Geology xxx (2009) xxx–xxx Contents lists available at ScienceDirect International Journal of Coal Geology journal homepage: www.elsevier.com/locate/ijcoalgeo Late Devonian spermatophyte diversity and paleoecology at Red Hill, north-central Pennsylvania, USA Walter L. Cressler III a,⁎, Cyrille Prestianni b, Ben A. LePage c a Francis Harvey Green Library, 29 West Rosedale Avenue, West Chester University, West Chester, PA, 19383, USA b Université de Liège, Boulevard du Rectorat B18, Liège 4000 Belgium c The Academy of Natural Sciences, 1900 Benjamin Franklin Parkway, Philadelphia, PA, 19103 and PECO Energy Company, 2301 Market Avenue, S9-1, Philadelphia, PA 19103, USA article info abstract Article history: Early spermatophytes have been discovered at Red Hill, a Late Devonian (Famennian) fossil locality in north- Received 9 January 2009 central Pennsylvania, USA.
    [Show full text]
  • HARDY FERN FOUNDATION QUARTERLY the HARDY FERN FOUNDATION Quarterly Volume 8 • No
    THE HARDY FERN FOUNDATION P.O. Box 166 Medina, WA 98039-0166 [email protected] Web site darkwing, uoregon .edu/~sueman/ The Hardy Fern Foundation was founded in 1989 to establish a comprehensive collection of the world’s hardy ferns for display, testing, evaluation, public educa¬ tion and introduction to the gardening and horticultural community. Many rare and unusual species, hybrids and varieties are being propagated from spores and tested in selected environments for their different degrees of hardiness and orna¬ mental garden value. The primary fern display and test garden is located at, and in conjunction with, The Rhododendron Species Botanical Garden at the Weyerhaeuser Corporate Headquarters, in Federal Way, Washington. Satellite fern gardens are at the Stephen Austin Arboretum, Nacogdoches, Texas, Birmingham Botanical Gardens, Birmingham, Alabama, California State Univer¬ sity at Sacramento, Sacramento, California, Dallas Arboretum, Dallas, Texas, Denver Botanic Gardens. Denver, Colorado, Georgeson Botanical Garden, Uni¬ versity of Alaska, Fairbanks, Alaska, Harry P. Leu Garden, Orlando, Florida, Coastal Maine Botanical Garden, Wiscasset, Maine, Inniswood Metro Gardens, Colum¬ bus, Ohio, New York Botanical Garden, Bronx, New York, and Strybing Arbore¬ tum, San Francisco, California. The fern display gardens are at Lakewold, Tacoma, Washington, Les Jardins de Metis, Quebec, Canada, University of Northern Colorado, Greeley, Colorado, and Whitehall Historic Home and Garden, Louisville, KY. Hardy Fern Foundation members participate in a spore exchange, receive a quar¬ terly newsletter and have first access to ferns as they are ready for distribution. Cover Design by Willanna Bradner. HARDY FERN FOUNDATION QUARTERLY THE HARDY FERN FOUNDATION Quarterly Volume 8 • No. 3 • Editor Sue Olsen \ T *2 W4 g WS11 U President’s Message.47 Anne C.
    [Show full text]
  • SPECIES IDENTIFICATION GUIDE National Plant Monitoring Scheme SPECIES IDENTIFICATION GUIDE
    National Plant Monitoring Scheme SPECIES IDENTIFICATION GUIDE National Plant Monitoring Scheme SPECIES IDENTIFICATION GUIDE Contents White / Cream ................................ 2 Grasses ...................................... 130 Yellow ..........................................33 Rushes ....................................... 138 Red .............................................63 Sedges ....................................... 140 Pink ............................................66 Shrubs / Trees .............................. 148 Blue / Purple .................................83 Wood-rushes ................................ 154 Green / Brown ............................. 106 Indexes Aquatics ..................................... 118 Common name ............................. 155 Clubmosses ................................. 124 Scientific name ............................. 160 Ferns / Horsetails .......................... 125 Appendix .................................... 165 Key Traffic light system WF symbol R A G Species with the symbol G are For those recording at the generally easier to identify; Wildflower Level only. species with the symbol A may be harder to identify and additional information is provided, particularly on illustrations, to support you. Those with the symbol R may be confused with other species. In this instance distinguishing features are provided. Introduction This guide has been produced to help you identify the plants we would like you to record for the National Plant Monitoring Scheme. There is an index at
    [Show full text]
  • Xylem & Phloem Vascular Tissue
    VASCULAR TISSUE P XYLEM & PHLOEM XYLEM ROOT C.S. VASCULAR TISSUE ^ M XYLEM & PHLOEM XYLEM PHLOEM ROOT C.S. MORPHOLOGY + MORPHIOLOGY STUDY PLANT EXTERNAL STRUCTURE MORPHOLOGY MORPHOLOGY STUDY EXTERNAL PLANT STRUCTURE ^ TERMINAL BUD P LATERAL BUD TERMINAL BUD SCALE SCAR ANGIOSPERM TWIG MORPHOLOGY TERMINAL BUD SCALE SCAR BUD SCAR TERMINAL BUD SCALE SCAR BUNDLE SCARS PHYLOGENY + PHYLOGENY STUDY PLANT EVOLUTION PHYLOGENY PHYLOGENY STUDY PLANT EVOLUTION PLANT PHYLOGENY ^ T TRACHEOPHYTES TAXONOMY + TAXONOMY STUDY PLANT CLASSIFICATION TAXONOMY TAXONOMY STUDY PLANT CLASSIFICATION PLANTAE ^ MAGNOLIOPHYTA MAGNOLIOPSIDA MAGNOLIALES MAGNOLIACEAE LIRIODENDRON TULIP POPLAR TAXONOMIC CLASSIFICATION TULIPIFERA > PLANT DEFINITION > PLANT DEFINTION NO COMMON DEFINITION AMONGST BOTANISTS ^ PLANT DEFINITION SUBJECTIVE P PLANT CLASS DEFINITION PLANT PLANT ORGANISM THAT POSSESSES PLASTIDS PLANT PLANT CELL P PLASTID C.S. PLASTID + PLASTID P PLANT ORGANELLE ASSOCIATED WITH: PLASTID PLASTID PLANT ORGANELLE ASSOCIATED WITH: PHOTOSYNTHESIS PLASTID PHOTOSYNTHESIS LEAF CELL C PLASTID C.S. PLANTLEAF CELL CELL P CHLOROPLAST C.S. PHOTOSYNTHESIS ^ WATER CO2 P LIGHT EGY PHOTO ATMOSPHERE E- PHOTOLYSIS LT RXT CHEMICAL DK RXT ENERGY THYLAKOID STROMA CHEM EGY SYNTHESIS INPUT CHLOROPLAST ATMOSPHERE OXYGEN GLUCOSE + PLASTID S PLANT ORGANELLE ASSOCIATED WITH: PLASTID P PLASTID PLANT ORGANELLE ASSOCIATED WITH: STARCH STORAGE PLASTID PHOTOSYNTHESIS S WATER CO2 LIGHT EGY PHOTO ATMOSPHERE E- PHOTOLYSIS LT RXT CHEMICAL DK RXT ENERGY THYLAKOID STROMA CHEM EGY SYNTHESIS INPUT CHLOROPLAST ATMOSPHERE OXYGEN GLUCOSE PHOTOSYNTHESIS WATER CO2 LIGHT EGY PHOTO ATMOSPHERE E- PHOTOLYSIS LT RXT CHEMICAL DK RXT ENERGY THYLAKOID STROMA CHEM EGY SYNTHESIS INPUT CHLOROPLAST ATMOSPHERE OXYGEN STARCH STARCH STORAGE P STARCH GRAINS ROOT C.S. STARCH STORAGE L PLASTIDS ROOT C.S. STARCH STORAGE ^ T LEUCOPLASTS ROOT C.S.
    [Show full text]
  • Vol. 19(2) 2008 Summer
    New York Flora Association - New York State Museum Institute Gerry Moore and Steve Young, Editors Correspondence to NYFA, 3140 CEC, Albany, NY 12230 Vol. 19 No. 2 Summer 2008 e-mail: [email protected] Dues $20/Year website: ww.nyflora.org Report on the Election of Board Members 1. Michael Corey, private consultant, Minerva, NY By Andy Nelson 2. Ed Frantz, NYS DOT, Utica, NY 3. Gerry Moore, Brooklyn Botanic Garden, Brooklyn, NY Election of members of the Board of Directors 4. David Werier, private consultant, was announced in the spring 2009 Newsletter. Brooktondale, NY Voting began at the annual NYFA meeting, 5. Meg Wilkinson, NY Natural Heritage held during the Northeast Natural History Program, Albany, NY Conference (April 17-18), and continued by mail and email until June 15. This was the first For a term expiring in 2011: election under the newly adopted bylaws. The 1. Bruce Gilman, Finger Lakes Community names of all current board members as well as College, Canandaigua, NY those of potential new members were placed in 2. Joseph McMullen, Terrestrial Environmental nomination. The nominees were divided into Specialists, Inc., Phoenix, NY three classes with terms expiring in 2009, 2010, 3. Adam Ryburn, SUNY Oneonta, Oneonta, and 2011 respectively. In future years, one NY third of the board will be up for reelection each 4. Connie Tedesco, field botanist, year. Cooperstown, NY Voters approved the entire slate of nominees. 5. Priscilla Titus, SUNY Fredonia, Fredonia, The NYFA Board for the coming year is: NY For a term expiring in 2009: In addition, three names submitted as write-ins each received a single vote and one received 1.
    [Show full text]