A Robust Rescaled Moment Test for Normality in Regression

Total Page:16

File Type:pdf, Size:1020Kb

A Robust Rescaled Moment Test for Normality in Regression Journal of Mathematics and Statistics 5 (1): 54-62, 2009 ISSN 1549-3644 © 2009 Science Publications A Robust Rescaled Moment Test for Normality in Regression 1Md.Sohel Rana, 1Habshah Midi and 2A.H.M. Rahmatullah Imon 1Laboratory of Applied and Computational Statistics, Institute for Mathematical Research, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia 2Department of Mathematical Sciences, Ball State University, Muncie, IN 47306, USA Abstract: Problem statement: Most of the statistical procedures heavily depend on normality assumption of observations. In regression, we assumed that the random disturbances were normally distributed. Since the disturbances were unobserved, normality tests were done on regression residuals. But it is now evident that normality tests on residuals suffer from superimposed normality and often possess very poor power. Approach: This study showed that normality tests suffer huge set back in the presence of outliers. We proposed a new robust omnibus test based on rescaled moments and coefficients of skewness and kurtosis of residuals that we call robust rescaled moment test. Results: Numerical examples and Monte Carlo simulations showed that this proposed test performs better than the existing tests for normality in the presence of outliers. Conclusion/Recommendation: We recommend using our proposed omnibus test instead of the existing tests for checking the normality of the regression residuals. Key words: Regression residuals, outlier, rescaled moments, skewness, kurtosis, jarque-bera test, robust rescaled moment test INTRODUCTION out that the powers of t and F tests are extremely sensitive to the hypothesized error distribution and may In regression analysis, it is a common practice over deteriorate very rapidly as the error distribution the years to use the Ordinary Least Squares (OLS) becomes long-tailed. Furthermore, Bera and Jarque [1] method mainly because of tradition and ease of have found that homoscedasticity and serial computation. The assumption of normality, that is, the independence tests suggested for normal errors may data are a random sample from a normal distribution is result in incorrect conclusions under non-normality. It the most important assumption for many statistical may be also essential to have proper knowledge of the procedures. Under a normal assumption of regression error distribution in prediction and in confidence limits errors, the OLS method has many desirable properties of predictions. Most of the standard results of this in both estimation of parameters and in testing of particular study are based on the normality assumption hypotheses. But in practice we often deal with data sets and the whole inferential procedure may be subjected to which are not normal in nature. Non-normality may error if there is a departure from this. In all, violation of occur because of their inherent random structure or the normality assumption may lead to the use of because of the presence of outliers. Nevertheless, suboptimal estimators, invalid inferential statements evidence is available that such departures can have and inaccurate predictions and for this reason test for unfortunate effects in a variety of situations. In normality has become an essential part of regression regression problems, the effect of departure from analysis. normality in estimation was studied by Huber [12] . In Several methods have been suggested in the testing hypotheses, the effect of departure from literature for assessing the assumption of normality. normality has been investigated by many There are a considerable amount of written papers statisticians [15] . When the errors are not normally relating to the performance of various tests for distributed, the estimated regression coefficients and normality in regression [5,8,9,13,18,20]. Among them the estimated error variances are no longer normal and chi- Jarque-Bera (JB) test [14] for normality (also known in square and consequently the t and F tests are not statistics the Bowman-Shenton test) has become very generally valid in finite samples. Koenker [16] pointed popular with the statisticians. The JB test statistic is a Corresponding Author: Sohel Rana, Laboratory of Applied and Computational Statistics, Institute for Mathematical Research, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia 54 J. Math. & Stat., 5 (1): 54-62, 2009 sum of the sample coefficients of skewness and kurtosis where, E( ∈) = 0, V( ∈) = σ2I and I is an identity matrix and asymptotically follows a x2 distribution with two of order n. degrees of freedom. But the main shortcoming of the JB Now we establish general expressions for the test is that it possesses very poor power when the moments, coefficients of skewness and kurtosis of the sample size is small or moderate [21]. To overcome this true errors assuming only that the errors are problem Imon [13] modified this test by suitably rescaling uncorrelated, zero mean and identically distributed and the moment estimators obtained from the least squares the existence of their first four moments. Let us define residuals. His proposed Rescaled Moment (RM) test the k-th moment about the origin of the i-th error by: improves the estimation of moments, coefficients of µ= ∈k = skewness and kurtosis and gives better power than the kE( i ), k 1,2,... (3) JB test for normality. However, both the JB and the RM test statistics rely on coefficients of sample skewness As E( ∈) = 0, on the null model, we need not and kurtosis which are very sensitive to outliers. For distinguish here between moments about the origin and this reason some robust tests of normality are being those about the mean. Simple forms of the coefficients proposed by some authors [9,8]. Gel and Gastwirth [8] of skewness and kurtosis are given by: propose a modification of the JB test utilizing a robust µ µ estimate of spread, namely the average absolute β=3 β= 4 13 , 2 2 (4) deviation from the median (MAAD), in the µ 2 µ 2 2 denominators of skewness and kurtosis. This Robust Jarque-Bera (RJB) test statistic asymptotically follows a In practice population moments are often estimated 2 [8] x distribution with two degrees of freedom and by sample moments. We generally define the k-th provides higher or similar power in detecting heavy- sample moment by: tailed alternatives compared to the JB. Since the RJB is designed as a general statistical test for normality, we k ()∈=1 () ∈−∈ = mk∑ i ,k1,2,... (5) suspect that it may not perform well in regression n i analysis. In this study we propose a robust rescaled moment test (RRM) for normality designed for and hence the raw coefficients of skewness and kurtosis regression models extending the idea of Imon [13] and [8] can be defined as: Gel and Gastwirth . The main objective of the proposed method is to suggest a normality test that is m()∈ m() ∈ S()∈=3 ,K() ∈= 4 (6) fairly robust in the presence of outliers and also 3 ∈ 2 [m (∈ )] 2 [m2 ( )] performs best in general. The empirical evidence shows 2 that the proposed RRM test offers substantial improvements over the existing tests of normality. Much work has been done in producing omnibus tests for normality, combining S and K in one test MATERIALS AND METHODS statistic. So a large deviation either of S from 0 or K from 3 should give a significant result, regardless of The robust rescaled moments test: The simplest form which one deviates from normal values. D'Agostino [6] of the general linear model is given by: and Pearson first suggested this kind of test. However, it requires an assumption of independence y= xT β+∈ , i = 1,2,...,n (1) between S and K which is only asymptotically correct. i i i [2] Bowman and Shenton suggested a normality test, Where: popularly known as Jarque-Bera test, with the test yi = The i-th observed response statistic: xi = A p ×1 vector of predictors 2 ()K− 3 2 β = A p ×1 vector of unknown finite parameters =S + JB 2 2 (7) ∈ = Uncorrelated random errors with mean 0 and σ()S σ () K variance σ2 Where: T T 2 2 Writing Y = (y 1,y 2,….y n) , X = (x 1,x 2,…x n) and σ (S) = 6/n and σ (K) = 24/n are the asymptotic T ∈ = ( ∈1, ∈2,… ∈n) the model is: variance of S and K respectively S = Under normality asymptotically, is distributed Y = X β+∈ (2) as x2 distribution with 2 degrees of freedom 55 J. Math. & Stat., 5 (1): 54-62, 2009 Gel and Gastwirth [8] give a robust version of the The residual vector can also be expressed in terms Jarque-Bera test using a robust estimate of spread of unobservable errors as: which is less influenced by outliers in the denominators of the sample estimates of skewness and kurtosis. They ∈=ˆ [I − X(XX)T− 1 X] T ∈= H ∈ (12) consider the average absolute deviation from the [7] sample median (MAAD) proposed by Gastwirth and We shall follow Chatterjee and Hadi [3] by referring is defined by: to H= [I − X(XX)T− 1 X T ] as the residual hat matrix. The n elements hij of this matrix will be termed as residual hat =A − Jn∑ |XM| i (8) elements, which play a very important role in linear n = i 1 regression. The quantities (1− h ) are often referred to ii as leverage values which measure how far the input where, A = π / 2 . The robust sample estimates of vector x are from the rest of the data. Let the k-th skewness and kurtosis are mˆ / J 3 and mˆ / J 4 , where i 3 n 4 n moment of the i-th OLS residual be defined as: ˆ ˆ m3 and m4 are the 3rd and 4th order of the estimated sample moments respectively, which lead the µ∈=∈( ) k = kˆ iE( ˆ i ) , k 1,2,..
Recommended publications
  • Linear Regression in SPSS
    Linear Regression in SPSS Data: mangunkill.sav Goals: • Examine relation between number of handguns registered (nhandgun) and number of man killed (mankill) • Model checking • Predict number of man killed using number of handguns registered I. View the Data with a Scatter Plot To create a scatter plot, click through Graphs\Scatter\Simple\Define. A Scatterplot dialog box will appear. Click Simple option and then click Define button. The Simple Scatterplot dialog box will appear. Click mankill to the Y-axis box and click nhandgun to the x-axis box. Then hit OK. To see fit line, double click on the scatter plot, click on Chart\Options, then check the Total box in the box labeled Fit Line in the upper right corner. 60 60 50 50 40 40 30 30 20 20 10 10 Killed of People Number Number of People Killed 400 500 600 700 800 400 500 600 700 800 Number of Handguns Registered Number of Handguns Registered 1 Click the target button on the left end of the tool bar, the mouse pointer will change shape. Move the target pointer to the data point and click the left mouse button, the case number of the data point will appear on the chart. This will help you to identify the data point in your data sheet. II. Regression Analysis To perform the regression, click on Analyze\Regression\Linear. Place nhandgun in the Dependent box and place mankill in the Independent box. To obtain the 95% confidence interval for the slope, click on the Statistics button at the bottom and then put a check in the box for Confidence Intervals.
    [Show full text]
  • Testing Normality: a GMM Approach Christian Bontempsa and Nour
    Testing Normality: A GMM Approach Christian Bontempsa and Nour Meddahib∗ a LEEA-CENA, 7 avenue Edouard Belin, 31055 Toulouse Cedex, France. b D´epartement de sciences ´economiques, CIRANO, CIREQ, Universit´ede Montr´eal, C.P. 6128, succursale Centre-ville, Montr´eal (Qu´ebec), H3C 3J7, Canada. First version: March 2001 This version: June 2003 Abstract In this paper, we consider testing marginal normal distributional assumptions. More precisely, we propose tests based on moment conditions implied by normality. These moment conditions are known as the Stein (1972) equations. They coincide with the first class of moment conditions derived by Hansen and Scheinkman (1995) when the random variable of interest is a scalar diffusion. Among other examples, Stein equation implies that the mean of Hermite polynomials is zero. The GMM approach we adopt is well suited for two reasons. It allows us to study in detail the parameter uncertainty problem, i.e., when the tests depend on unknown parameters that have to be estimated. In particular, we characterize the moment conditions that are robust against parameter uncertainty and show that Hermite polynomials are special examples. This is the main contribution of the paper. The second reason for using GMM is that our tests are also valid for time series. In this case, we adopt a Heteroskedastic-Autocorrelation-Consistent approach to estimate the weighting matrix when the dependence of the data is unspecified. We also make a theoretical comparison of our tests with Jarque and Bera (1980) and OPG regression tests of Davidson and MacKinnon (1993). Finite sample properties of our tests are derived through a comprehensive Monte Carlo study.
    [Show full text]
  • Power Comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling Tests
    Journal ofStatistical Modeling and Analytics Vol.2 No.I, 21-33, 2011 Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests Nornadiah Mohd Razali1 Yap Bee Wah 1 1Faculty ofComputer and Mathematica/ Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia E-mail: nornadiah@tmsk. uitm. edu.my, yapbeewah@salam. uitm. edu.my ABSTRACT The importance of normal distribution is undeniable since it is an underlying assumption of many statistical procedures such as I-tests, linear regression analysis, discriminant analysis and Analysis of Variance (ANOVA). When the normality assumption is violated, interpretation and inferences may not be reliable or valid. The three common procedures in assessing whether a random sample of independent observations of size n come from a population with a normal distribution are: graphical methods (histograms, boxplots, Q-Q-plots), numerical methods (skewness and kurtosis indices) and formal normality tests. This paper* compares the power offour formal tests of normality: Shapiro-Wilk (SW) test, Kolmogorov-Smirnov (KS) test, Lillie/ors (LF) test and Anderson-Darling (AD) test. Power comparisons of these four tests were obtained via Monte Carlo simulation of sample data generated from alternative distributions that follow symmetric and asymmetric distributions. Ten thousand samples ofvarious sample size were generated from each of the given alternative symmetric and asymmetric distributions. The power of each test was then obtained by comparing the test of normality statistics with the respective critical values. Results show that Shapiro-Wilk test is the most powerful normality test, followed by Anderson-Darling test, Lillie/ors test and Kolmogorov-Smirnov test. However, the power ofall four tests is still low for small sample size.
    [Show full text]
  • A Quantitative Validation Method of Kriging Metamodel for Injection Mechanism Based on Bayesian Statistical Inference
    metals Article A Quantitative Validation Method of Kriging Metamodel for Injection Mechanism Based on Bayesian Statistical Inference Dongdong You 1,2,3,* , Xiaocheng Shen 1,3, Yanghui Zhu 1,3, Jianxin Deng 2,* and Fenglei Li 1,3 1 National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510640, China; [email protected] (X.S.); [email protected] (Y.Z.); fl[email protected] (F.L.) 2 Guangxi Key Lab of Manufacturing System and Advanced Manufacturing Technology, Guangxi University, Nanning 530003, China 3 Guangdong Key Laboratory for Advanced Metallic Materials processing, South China University of Technology, Guangzhou 510640, China * Correspondence: [email protected] (D.Y.); [email protected] (J.D.); Tel.: +86-20-8711-2933 (D.Y.); +86-137-0788-9023 (J.D.) Received: 2 April 2019; Accepted: 24 April 2019; Published: 27 April 2019 Abstract: A Bayesian framework-based approach is proposed for the quantitative validation and calibration of the kriging metamodel established by simulation and experimental training samples of the injection mechanism in squeeze casting. The temperature data uncertainty and non-normal distribution are considered in the approach. The normality of the sample data is tested by the Anderson–Darling method. The test results show that the original difference data require transformation for Bayesian testing due to the non-normal distribution. The Box–Cox method is employed for the non-normal transformation. The hypothesis test results of the calibrated kriging model are more reliable after data transformation. The reliability of the kriging metamodel is quantitatively assessed by the calculated Bayes factor and confidence.
    [Show full text]
  • Swilk — Shapiro–Wilk and Shapiro–Francia Tests for Normality
    Title stata.com swilk — Shapiro–Wilk and Shapiro–Francia tests for normality Description Quick start Menu Syntax Options for swilk Options for sfrancia Remarks and examples Stored results Methods and formulas Acknowledgment References Also see Description swilk performs the Shapiro–Wilk W test for normality for each variable in the specified varlist. Likewise, sfrancia performs the Shapiro–Francia W 0 test for normality. See[ MV] mvtest normality for multivariate tests of normality. Quick start Shapiro–Wilk test of normality Shapiro–Wilk test for v1 swilk v1 Separate tests of normality for v1 and v2 swilk v1 v2 Generate new variable w containing W test coefficients swilk v1, generate(w) Specify that average ranks should not be used for tied values swilk v1 v2, noties Test that v3 is distributed lognormally generate lnv3 = ln(v3) swilk lnv3 Shapiro–Francia test of normality Shapiro–Francia test for v1 sfrancia v1 Separate tests of normality for v1 and v2 sfrancia v1 v2 As above, but use the Box–Cox transformation sfrancia v1 v2, boxcox Specify that average ranks should not be used for tied values sfrancia v1 v2, noties 1 2 swilk — Shapiro–Wilk and Shapiro–Francia tests for normality Menu swilk Statistics > Summaries, tables, and tests > Distributional plots and tests > Shapiro-Wilk normality test sfrancia Statistics > Summaries, tables, and tests > Distributional plots and tests > Shapiro-Francia normality test Syntax Shapiro–Wilk normality test swilk varlist if in , swilk options Shapiro–Francia normality test sfrancia varlist if in , sfrancia options swilk options Description Main generate(newvar) create newvar containing W test coefficients lnnormal test for three-parameter lognormality noties do not use average ranks for tied values sfrancia options Description Main boxcox use the Box–Cox transformation for W 0; the default is to use the log transformation noties do not use average ranks for tied values by and collect are allowed with swilk and sfrancia; see [U] 11.1.10 Prefix commands.
    [Show full text]
  • Univariate Analysis and Normality Test Using SAS, STATA, and SPSS
    © 2002-2006 The Trustees of Indiana University Univariate Analysis and Normality Test: 1 Univariate Analysis and Normality Test Using SAS, STATA, and SPSS Hun Myoung Park This document summarizes graphical and numerical methods for univariate analysis and normality test, and illustrates how to test normality using SAS 9.1, STATA 9.2 SE, and SPSS 14.0. 1. Introduction 2. Graphical Methods 3. Numerical Methods 4. Testing Normality Using SAS 5. Testing Normality Using STATA 6. Testing Normality Using SPSS 7. Conclusion 1. Introduction Descriptive statistics provide important information about variables. Mean, median, and mode measure the central tendency of a variable. Measures of dispersion include variance, standard deviation, range, and interquantile range (IQR). Researchers may draw a histogram, a stem-and-leaf plot, or a box plot to see how a variable is distributed. Statistical methods are based on various underlying assumptions. One common assumption is that a random variable is normally distributed. In many statistical analyses, normality is often conveniently assumed without any empirical evidence or test. But normality is critical in many statistical methods. When this assumption is violated, interpretation and inference may not be reliable or valid. Figure 1. Comparing the Standard Normal and a Bimodal Probability Distributions Standard Normal Distribution Bimodal Distribution .4 .4 .3 .3 .2 .2 .1 .1 0 0 -5 -3 -1 1 3 5 -5 -3 -1 1 3 5 T-test and ANOVA (Analysis of Variance) compare group means, assuming variables follow normal probability distributions. Otherwise, these methods do not make much http://www.indiana.edu/~statmath © 2002-2006 The Trustees of Indiana University Univariate Analysis and Normality Test: 2 sense.
    [Show full text]
  • 2.4.3 Examining Skewness and Kurtosis for Normality Using SPSS We Will Analyze the Examples Earlier Using SPSS
    24 CHAPTER 2 TEsTing DATA foR noRmAliTy Finally, use the skewness and the standard error of the skewness to ind a z-score: Sk −0− 1.018 zS = = k SE 0. 501 Sk 2. 032 zSk = − Use the z-score to examine the sample’s approximation to a normal distribution. This value must fall between −1.96 and +1.96 to pass the normality assumption for α = 0.05. Since this z-score value does not fall within that range, the sample has failed our normality assumption for skewness. Therefore, either the sample must be modiied and rechecked or you must use a nonparametric statistical test. 2.4.3 Examining Skewness and Kurtosis for Normality Using SPSS We will analyze the examples earlier using SPSS. 2.4.3.1 Deine Your Variables First, click the “Variable View” tab at the bottom of your screen. Then, type the name of your variable(s) in the “Name” column. As shown in Figure 2.7, we have named our variable “Wk1_Qz.” FIGURE 2.7 2.4.3.2 Type in Your Values Click the “Data View” tab at the bottom of your screen and type your data under the variable names. As shown in Figure 2.8, we have typed the values for the “Wk1_Qz” sample. 2.4.3.3 Analyze Your Data As shown in Figure 2.9, use the pull-down menus to choose “Analyze,” “Descriptive Statistics,” and “Descriptives . .” Choose the variable(s) that you want to examine. Then, click the button in the middle to move the variable to the “Variable(s)” box, as shown in Figure 2.10.
    [Show full text]
  • Normality Tests (Simulation)
    PASS Sample Size Software NCSS.com Chapter 670 Normality Tests (Simulation) Introduction This procedure allows you to study the power and sample size of eight statistical tests of normality. Since there are no formulas that allow the calculation of power directly, simulation is used. This gives you the ability to compare the adequacy of each test under a wide variety of solutions. The reason there are so many different normality tests is that there are many different forms of normality. Thode (2002) presents that following recommendations concerning which tests to use for each situation. Note that the details of each test will be presented later. Normal vs. Long-Tailed Symmetric Alternative Distributions The Shapiro-Wilk and the kurtosis tests have been found to be best for normality testing against long-tailed symmetric alternatives. Normal vs. Short-Tailed Symmetric Alternative Distributions The Shapiro-Wilk and the range tests have been found to be best for normality testing against short-tailed symmetric alternatives. Normal vs. Asymmetric Alternative Distributions The Shapiro-Wilk and the skewness tests have been found to be best for normality testing against asymmetric alternatives. Technical Details Computer simulation allows one to estimate the power and significance level that is actually achieved by a test procedure in situations that are not mathematically tractable. Computer simulation was once limited to mainframe computers. Currently, due to increased computer speeds, simulation studies can be completed on desktop and laptop computers in a reasonable period of time. The steps to a simulation study are as follows. 1. Specify which the normality test is to be used.
    [Show full text]
  • The Classical Assumption Test to Driving Factors of Land Cover Change in the Development Region of Northern Part of West Java
    The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B6, 2016 XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic THE CLASSICAL ASSUMPTION TEST TO DRIVING FACTORS OF LAND COVER CHANGE IN THE DEVELOPMENT REGION OF NORTHERN PART OF WEST JAVA Nur Ainiyah1*, Albertus Deliar2, Riantini Virtriana2 1Student in Geodesy and Geomatics, Remote Sensing and Geographic Information System Research Division, Faculty of Earth Science and Technology, Institut Teknologi Bandung, Indonesia; [email protected] 2Lecturer in Geodesy and Geomatics, Remote Sensing and Geographic Information System Research Division, Faculty of Earth Science and Technology, Institut Teknologi Bandung, Indonesia; [email protected] Youth Forum KEY WORDS: Land Cover Change, Driving Factors, Classical Assumption Test, Binary Logistic Regression ABSTRACT: Land cover changes continuously change by the time. Many kind of phenomena is a simple of important factors that affect the environment change, both locally and also globally. To determine the existence of the phenomenon of land cover change in a region, it is necessary to identify the driving factors that can cause land cover change. The relation between driving factors and response variables can be evaluated by using regression analysis techniques. In this case, land cover change is a dichotomous phenomenon (binary). The BLR’s model (Binary Logistic Regression) is the one of kind regression analysis which can be used to describe the nature of dichotomy. Before performing regression analysis, correlation analysis is carried it the first. Both correlation test and regression tests are part of a statistical test or known classical assumption test. From result of classical assumption test, then can be seen that the data used to perform analysis from driving factors of the land cover changes is proper with used by BLR’s method.
    [Show full text]
  • Multiple Linear Regression Using STATCAL (R), SPSS & Eviews
    Multiple Linear Regression Using STATCAL (R), SPSS & EViews Prana Ugiana Gio Rezzy Eko Caraka Robert Kurniawan Sunu Widianto Download STATCAL in www.statcal.com Citations APA Gio, P. U., Caraka, R. E., Kurniawan, R., & Widianto, S. (2019, January 24). Multiple Linear Regression in STATCAL (R), SPSS and EViews. Retrieved from osf.io/preprints/inarxiv/krx6y MLA Gio, Prana U., et al. “Multiple Linear Regression in STATCAL (R), SPSS and Eviews.” INA-Rxiv, 24 Jan. 2019. Web. Chicago Gio, Prana U., Rezzy E. Caraka, Robert Kurniawan, and Sunu Widianto. 2019. “Multiple Linear Regression in STATCAL (R), SPSS and Eviews.” INA-Rxiv. January 24. osf.io/preprints/inarxiv/krx6y. i CONTENT 1.1 Data 1.2 Input Numeric Data in STATCAL 1.3 Multiple Linear Regression with STATCAL 1.4 STATCAL's Result 1.4.1 STATCAL’s Result: Normality Assumption Test Using Residual Data 1.4.2 STATCAL’s Result: Test of Multicolinearity 1.4.3 STATCAL’s Result: Test of Homoscedasticity Assumption 1.4.4 STATCAL’s Result: Test of Non-Autocorrelation Assumption 1.4.5 STATCAL’s Result: Multiple Linear Regression 1.4.6 STATCAL’s Result: Residual Check 1.5 Comparison with SPSS 1.6 Comparison with EViews ii In this article, we will explain step by step how to perform multiple linear regression with STATCAL. Beside that, we will compare STATCAL’s result with other software such as SPSS and EViews. 1.1 Data Table 1.1.1 is presented data of 10 persons based on score of variable Performance (풀), Motivation (푿ퟏ) and Stress (푿ퟐ). Table 1.1.1 Person Performance (푌) Motivation (푋1) Stress (푋2) 1 87 89 32 2 75 73 14 3 79 79 15 4 94 81 17 5 78 86 32 6 65 67 12 7 78 74 22 8 77 77 23 9 65 68 35 10 35 62 53 Based on the data in Table 1.1.1, variable Performance (풀) is dependent variable, while Motivation (푿ퟏ) and Stress (푿ퟐ) are independent variables.
    [Show full text]
  • Normality Tests
    STATISTICS COLUMN Normality tests Shengping Yang PhD, Gilbert Berdine MD I have completed a clinical trial with one primary to the right is also presented in Figure 1 (right panel). outcome and various secondary outcomes. The goal Note that, if the sample size is small, e.g., less than 10, is to compare the randomly assigned two treatments then such an assessment might not be informative. to see if the outcomes differ. I am planning to perform a two-sample t-test for each of the outcomes, and one (b) THE NORMAL Q-Q PLOT of the assumptions for a t-test is that data are normally distributed. I am wondering what the appropriate A Q-Q plot is a scatterplot created by plotting two approaches are to check the normality assumption. sets of quantiles—one is the data quantile, and the other is the theoretical distribution quantile-against The normal distribution is the most important dis- one another. If the two sets of quantiles came from the tribution in statistical data analysis. Most statistical same distribution, then the points on the plot roughly tests are developed based on the assumption that the form a straight line. For example, a normal Q-Q plot outcome variable/model residual is normally distrib- represents the correlation between the data and nor- uted. There are both graphical and numerical meth- mal quantiles and measures how well the data are ods for evaluating data normality (we will focus on modeled by a normal distribution. Therefore, if the univariate normality in this article). data are sampled from a normal distribution, then the data quantile should be highly positively corre- 1.
    [Show full text]
  • One-Way Analysis of Variance
    NCSS Statistical Software NCSS.com Chapter 210 One-Way Analysis of Variance Introduction This procedure performs an F-test from a one-way (single-factor) analysis of variance, Welch’s test, the Kruskal- Wallis test, the van der Waerden Normal-Scores test, and the Terry-Hoeffding Normal-Scores test on data contained in either two or more variables or in one variable indexed by a second (grouping) variable. The one- way analysis of variance compares the means of two or more groups to determine if at least one group mean is different from the others. The F-ratio is used to determine statistical significance. The tests are non-directional in that the null hypothesis specifies that all means are equal and the alternative hypothesis simply states that at least one mean is different. This procedure also checks the equal variance (homoscedasticity) assumption using the Levene test, Brown- Forsythe test, Conover test, and Bartlett test. Kinds of Research Questions One of the most common tasks in research is to compare two or more populations (groups). We might want to compare the income level of two regions, the nitrogen content of three lakes, or the effectiveness of four drugs. The first question that arises concerns which aspects (parameters) of the populations we should compare. We might consider comparing the means, medians, standard deviations, distributional shapes (histograms), or maximum values. We base the comparison parameter on our particular problem. One of the simplest comparisons we can make is between the means of two or more populations. If we can show that the mean of one population is different from that of the other populations, we can conclude that the populations are different.
    [Show full text]