2.4.3 Examining Skewness and Kurtosis for Normality Using SPSS We Will Analyze the Examples Earlier Using SPSS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Linear Regression in SPSS
Linear Regression in SPSS Data: mangunkill.sav Goals: • Examine relation between number of handguns registered (nhandgun) and number of man killed (mankill) • Model checking • Predict number of man killed using number of handguns registered I. View the Data with a Scatter Plot To create a scatter plot, click through Graphs\Scatter\Simple\Define. A Scatterplot dialog box will appear. Click Simple option and then click Define button. The Simple Scatterplot dialog box will appear. Click mankill to the Y-axis box and click nhandgun to the x-axis box. Then hit OK. To see fit line, double click on the scatter plot, click on Chart\Options, then check the Total box in the box labeled Fit Line in the upper right corner. 60 60 50 50 40 40 30 30 20 20 10 10 Killed of People Number Number of People Killed 400 500 600 700 800 400 500 600 700 800 Number of Handguns Registered Number of Handguns Registered 1 Click the target button on the left end of the tool bar, the mouse pointer will change shape. Move the target pointer to the data point and click the left mouse button, the case number of the data point will appear on the chart. This will help you to identify the data point in your data sheet. II. Regression Analysis To perform the regression, click on Analyze\Regression\Linear. Place nhandgun in the Dependent box and place mankill in the Independent box. To obtain the 95% confidence interval for the slope, click on the Statistics button at the bottom and then put a check in the box for Confidence Intervals. -
1 One Parameter Exponential Families
1 One parameter exponential families The world of exponential families bridges the gap between the Gaussian family and general dis- tributions. Many properties of Gaussians carry through to exponential families in a fairly precise sense. • In the Gaussian world, there exact small sample distributional results (i.e. t, F , χ2). • In the exponential family world, there are approximate distributional results (i.e. deviance tests). • In the general setting, we can only appeal to asymptotics. A one-parameter exponential family, F is a one-parameter family of distributions of the form Pη(dx) = exp (η · t(x) − Λ(η)) P0(dx) for some probability measure P0. The parameter η is called the natural or canonical parameter and the function Λ is called the cumulant generating function, and is simply the normalization needed to make dPη fη(x) = (x) = exp (η · t(x) − Λ(η)) dP0 a proper probability density. The random variable t(X) is the sufficient statistic of the exponential family. Note that P0 does not have to be a distribution on R, but these are of course the simplest examples. 1.0.1 A first example: Gaussian with linear sufficient statistic Consider the standard normal distribution Z e−z2=2 P0(A) = p dz A 2π and let t(x) = x. Then, the exponential family is eη·x−x2=2 Pη(dx) / p 2π and we see that Λ(η) = η2=2: eta= np.linspace(-2,2,101) CGF= eta**2/2. plt.plot(eta, CGF) A= plt.gca() A.set_xlabel(r'$\eta$', size=20) A.set_ylabel(r'$\Lambda(\eta)$', size=20) f= plt.gcf() 1 Thus, the exponential family in this setting is the collection F = fN(η; 1) : η 2 Rg : d 1.0.2 Normal with quadratic sufficient statistic on R d As a second example, take P0 = N(0;Id×d), i.e. -
On the Meaning and Use of Kurtosis
Psychological Methods Copyright 1997 by the American Psychological Association, Inc. 1997, Vol. 2, No. 3,292-307 1082-989X/97/$3.00 On the Meaning and Use of Kurtosis Lawrence T. DeCarlo Fordham University For symmetric unimodal distributions, positive kurtosis indicates heavy tails and peakedness relative to the normal distribution, whereas negative kurtosis indicates light tails and flatness. Many textbooks, however, describe or illustrate kurtosis incompletely or incorrectly. In this article, kurtosis is illustrated with well-known distributions, and aspects of its interpretation and misinterpretation are discussed. The role of kurtosis in testing univariate and multivariate normality; as a measure of departures from normality; in issues of robustness, outliers, and bimodality; in generalized tests and estimators, as well as limitations of and alternatives to the kurtosis measure [32, are discussed. It is typically noted in introductory statistics standard deviation. The normal distribution has a kur- courses that distributions can be characterized in tosis of 3, and 132 - 3 is often used so that the refer- terms of central tendency, variability, and shape. With ence normal distribution has a kurtosis of zero (132 - respect to shape, virtually every textbook defines and 3 is sometimes denoted as Y2)- A sample counterpart illustrates skewness. On the other hand, another as- to 132 can be obtained by replacing the population pect of shape, which is kurtosis, is either not discussed moments with the sample moments, which gives or, worse yet, is often described or illustrated incor- rectly. Kurtosis is also frequently not reported in re- ~(X i -- S)4/n search articles, in spite of the fact that virtually every b2 (•(X i - ~')2/n)2' statistical package provides a measure of kurtosis. -
Univariate and Multivariate Skewness and Kurtosis 1
Running head: UNIVARIATE AND MULTIVARIATE SKEWNESS AND KURTOSIS 1 Univariate and Multivariate Skewness and Kurtosis for Measuring Nonnormality: Prevalence, Influence and Estimation Meghan K. Cain, Zhiyong Zhang, and Ke-Hai Yuan University of Notre Dame Author Note This research is supported by a grant from the U.S. Department of Education (R305D140037). However, the contents of the paper do not necessarily represent the policy of the Department of Education, and you should not assume endorsement by the Federal Government. Correspondence concerning this article can be addressed to Meghan Cain ([email protected]), Ke-Hai Yuan ([email protected]), or Zhiyong Zhang ([email protected]), Department of Psychology, University of Notre Dame, 118 Haggar Hall, Notre Dame, IN 46556. UNIVARIATE AND MULTIVARIATE SKEWNESS AND KURTOSIS 2 Abstract Nonnormality of univariate data has been extensively examined previously (Blanca et al., 2013; Micceri, 1989). However, less is known of the potential nonnormality of multivariate data although multivariate analysis is commonly used in psychological and educational research. Using univariate and multivariate skewness and kurtosis as measures of nonnormality, this study examined 1,567 univariate distriubtions and 254 multivariate distributions collected from authors of articles published in Psychological Science and the American Education Research Journal. We found that 74% of univariate distributions and 68% multivariate distributions deviated from normal distributions. In a simulation study using typical values of skewness and kurtosis that we collected, we found that the resulting type I error rates were 17% in a t-test and 30% in a factor analysis under some conditions. Hence, we argue that it is time to routinely report skewness and kurtosis along with other summary statistics such as means and variances. -
A Family of Skew-Normal Distributions for Modeling Proportions and Rates with Zeros/Ones Excess
S S symmetry Article A Family of Skew-Normal Distributions for Modeling Proportions and Rates with Zeros/Ones Excess Guillermo Martínez-Flórez 1, Víctor Leiva 2,* , Emilio Gómez-Déniz 3 and Carolina Marchant 4 1 Departamento de Matemáticas y Estadística, Facultad de Ciencias Básicas, Universidad de Córdoba, Montería 14014, Colombia; [email protected] 2 Escuela de Ingeniería Industrial, Pontificia Universidad Católica de Valparaíso, 2362807 Valparaíso, Chile 3 Facultad de Economía, Empresa y Turismo, Universidad de Las Palmas de Gran Canaria and TIDES Institute, 35001 Canarias, Spain; [email protected] 4 Facultad de Ciencias Básicas, Universidad Católica del Maule, 3466706 Talca, Chile; [email protected] * Correspondence: [email protected] or [email protected] Received: 30 June 2020; Accepted: 19 August 2020; Published: 1 September 2020 Abstract: In this paper, we consider skew-normal distributions for constructing new a distribution which allows us to model proportions and rates with zero/one inflation as an alternative to the inflated beta distributions. The new distribution is a mixture between a Bernoulli distribution for explaining the zero/one excess and a censored skew-normal distribution for the continuous variable. The maximum likelihood method is used for parameter estimation. Observed and expected Fisher information matrices are derived to conduct likelihood-based inference in this new type skew-normal distribution. Given the flexibility of the new distributions, we are able to show, in real data scenarios, the good performance of our proposal. Keywords: beta distribution; centered skew-normal distribution; maximum-likelihood methods; Monte Carlo simulations; proportions; R software; rates; zero/one inflated data 1. -
Tests Based on Skewness and Kurtosis for Multivariate Normality
Communications for Statistical Applications and Methods DOI: http://dx.doi.org/10.5351/CSAM.2015.22.4.361 2015, Vol. 22, No. 4, 361–375 Print ISSN 2287-7843 / Online ISSN 2383-4757 Tests Based on Skewness and Kurtosis for Multivariate Normality Namhyun Kim1;a aDepartment of Science, Hongik University, Korea Abstract A measure of skewness and kurtosis is proposed to test multivariate normality. It is based on an empirical standardization using the scaled residuals of the observations. First, we consider the statistics that take the skewness or the kurtosis for each coordinate of the scaled residuals. The null distributions of the statistics converge very slowly to the asymptotic distributions; therefore, we apply a transformation of the skewness or the kurtosis to univariate normality for each coordinate. Size and power are investigated through simulation; consequently, the null distributions of the statistics from the transformed ones are quite well approximated to asymptotic distributions. A simulation study also shows that the combined statistics of skewness and kurtosis have moderate sensitivity of all alternatives under study, and they might be candidates for an omnibus test. Keywords: Goodness of fit tests, multivariate normality, skewness, kurtosis, scaled residuals, empirical standardization, power comparison 1. Introduction Classical multivariate analysis techniques require the assumption of multivariate normality; conse- quently, there are numerous test procedures to assess the assumption in the literature. For a gen- eral review, some references are Henze (2002), Henze and Zirkler (1990), Srivastava and Mudholkar (2003), and Thode (2002, Ch.9). For comparative studies in power, we refer to Farrell et al. (2007), Horswell and Looney (1992), Mecklin and Mundfrom (2005), and Romeu and Ozturk (1993). -
A Robust Rescaled Moment Test for Normality in Regression
Journal of Mathematics and Statistics 5 (1): 54-62, 2009 ISSN 1549-3644 © 2009 Science Publications A Robust Rescaled Moment Test for Normality in Regression 1Md.Sohel Rana, 1Habshah Midi and 2A.H.M. Rahmatullah Imon 1Laboratory of Applied and Computational Statistics, Institute for Mathematical Research, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia 2Department of Mathematical Sciences, Ball State University, Muncie, IN 47306, USA Abstract: Problem statement: Most of the statistical procedures heavily depend on normality assumption of observations. In regression, we assumed that the random disturbances were normally distributed. Since the disturbances were unobserved, normality tests were done on regression residuals. But it is now evident that normality tests on residuals suffer from superimposed normality and often possess very poor power. Approach: This study showed that normality tests suffer huge set back in the presence of outliers. We proposed a new robust omnibus test based on rescaled moments and coefficients of skewness and kurtosis of residuals that we call robust rescaled moment test. Results: Numerical examples and Monte Carlo simulations showed that this proposed test performs better than the existing tests for normality in the presence of outliers. Conclusion/Recommendation: We recommend using our proposed omnibus test instead of the existing tests for checking the normality of the regression residuals. Key words: Regression residuals, outlier, rescaled moments, skewness, kurtosis, jarque-bera test, robust rescaled moment test INTRODUCTION out that the powers of t and F tests are extremely sensitive to the hypothesized error distribution and may In regression analysis, it is a common practice over deteriorate very rapidly as the error distribution the years to use the Ordinary Least Squares (OLS) becomes long-tailed. -
Approximating the Distribution of the Product of Two Normally Distributed Random Variables
S S symmetry Article Approximating the Distribution of the Product of Two Normally Distributed Random Variables Antonio Seijas-Macías 1,2 , Amílcar Oliveira 2,3 , Teresa A. Oliveira 2,3 and Víctor Leiva 4,* 1 Departamento de Economía, Universidade da Coruña, 15071 A Coruña, Spain; [email protected] 2 CEAUL, Faculdade de Ciências, Universidade de Lisboa, 1649-014 Lisboa, Portugal; [email protected] (A.O.); [email protected] (T.A.O.) 3 Departamento de Ciências e Tecnologia, Universidade Aberta, 1269-001 Lisboa, Portugal 4 Escuela de Ingeniería Industrial, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile * Correspondence: [email protected] or [email protected] Received: 21 June 2020; Accepted: 18 July 2020; Published: 22 July 2020 Abstract: The distribution of the product of two normally distributed random variables has been an open problem from the early years in the XXth century. First approaches tried to determinate the mathematical and statistical properties of the distribution of such a product using different types of functions. Recently, an improvement in computational techniques has performed new approaches for calculating related integrals by using numerical integration. Another approach is to adopt any other distribution to approximate the probability density function of this product. The skew-normal distribution is a generalization of the normal distribution which considers skewness making it flexible. In this work, we approximate the distribution of the product of two normally distributed random variables using a type of skew-normal distribution. The influence of the parameters of the two normal distributions on the approximation is explored. When one of the normally distributed variables has an inverse coefficient of variation greater than one, our approximation performs better than when both normally distributed variables have inverse coefficients of variation less than one. -
Testing Normality: a GMM Approach Christian Bontempsa and Nour
Testing Normality: A GMM Approach Christian Bontempsa and Nour Meddahib∗ a LEEA-CENA, 7 avenue Edouard Belin, 31055 Toulouse Cedex, France. b D´epartement de sciences ´economiques, CIRANO, CIREQ, Universit´ede Montr´eal, C.P. 6128, succursale Centre-ville, Montr´eal (Qu´ebec), H3C 3J7, Canada. First version: March 2001 This version: June 2003 Abstract In this paper, we consider testing marginal normal distributional assumptions. More precisely, we propose tests based on moment conditions implied by normality. These moment conditions are known as the Stein (1972) equations. They coincide with the first class of moment conditions derived by Hansen and Scheinkman (1995) when the random variable of interest is a scalar diffusion. Among other examples, Stein equation implies that the mean of Hermite polynomials is zero. The GMM approach we adopt is well suited for two reasons. It allows us to study in detail the parameter uncertainty problem, i.e., when the tests depend on unknown parameters that have to be estimated. In particular, we characterize the moment conditions that are robust against parameter uncertainty and show that Hermite polynomials are special examples. This is the main contribution of the paper. The second reason for using GMM is that our tests are also valid for time series. In this case, we adopt a Heteroskedastic-Autocorrelation-Consistent approach to estimate the weighting matrix when the dependence of the data is unspecified. We also make a theoretical comparison of our tests with Jarque and Bera (1980) and OPG regression tests of Davidson and MacKinnon (1993). Finite sample properties of our tests are derived through a comprehensive Monte Carlo study. -
Nonparametric Multivariate Kurtosis and Tailweight Measures
Nonparametric Multivariate Kurtosis and Tailweight Measures Jin Wang1 Northern Arizona University and Robert Serfling2 University of Texas at Dallas November 2004 – final preprint version, to appear in Journal of Nonparametric Statistics, 2005 1Department of Mathematics and Statistics, Northern Arizona University, Flagstaff, Arizona 86011-5717, USA. Email: [email protected]. 2Department of Mathematical Sciences, University of Texas at Dallas, Richardson, Texas 75083- 0688, USA. Email: [email protected]. Website: www.utdallas.edu/∼serfling. Support by NSF Grant DMS-0103698 is gratefully acknowledged. Abstract For nonparametric exploration or description of a distribution, the treatment of location, spread, symmetry and skewness is followed by characterization of kurtosis. Classical moment- based kurtosis measures the dispersion of a distribution about its “shoulders”. Here we con- sider quantile-based kurtosis measures. These are robust, are defined more widely, and dis- criminate better among shapes. A univariate quantile-based kurtosis measure of Groeneveld and Meeden (1984) is extended to the multivariate case by representing it as a transform of a dispersion functional. A family of such kurtosis measures defined for a given distribution and taken together comprises a real-valued “kurtosis functional”, which has intuitive appeal as a convenient two-dimensional curve for description of the kurtosis of the distribution. Several multivariate distributions in any dimension may thus be compared with respect to their kurtosis in a single two-dimensional plot. Important properties of the new multivariate kurtosis measures are established. For example, for elliptically symmetric distributions, this measure determines the distribution within affine equivalence. Related tailweight measures, influence curves, and asymptotic behavior of sample versions are also discussed. -
Power Comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling Tests
Journal ofStatistical Modeling and Analytics Vol.2 No.I, 21-33, 2011 Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests Nornadiah Mohd Razali1 Yap Bee Wah 1 1Faculty ofComputer and Mathematica/ Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia E-mail: nornadiah@tmsk. uitm. edu.my, yapbeewah@salam. uitm. edu.my ABSTRACT The importance of normal distribution is undeniable since it is an underlying assumption of many statistical procedures such as I-tests, linear regression analysis, discriminant analysis and Analysis of Variance (ANOVA). When the normality assumption is violated, interpretation and inferences may not be reliable or valid. The three common procedures in assessing whether a random sample of independent observations of size n come from a population with a normal distribution are: graphical methods (histograms, boxplots, Q-Q-plots), numerical methods (skewness and kurtosis indices) and formal normality tests. This paper* compares the power offour formal tests of normality: Shapiro-Wilk (SW) test, Kolmogorov-Smirnov (KS) test, Lillie/ors (LF) test and Anderson-Darling (AD) test. Power comparisons of these four tests were obtained via Monte Carlo simulation of sample data generated from alternative distributions that follow symmetric and asymmetric distributions. Ten thousand samples ofvarious sample size were generated from each of the given alternative symmetric and asymmetric distributions. The power of each test was then obtained by comparing the test of normality statistics with the respective critical values. Results show that Shapiro-Wilk test is the most powerful normality test, followed by Anderson-Darling test, Lillie/ors test and Kolmogorov-Smirnov test. However, the power ofall four tests is still low for small sample size. -
Power Method Distributions Through Conventional Moments and L-Moments Flaviu A
Southern Illinois University Carbondale OpenSIUC Publications Educational Psychology and Special Education 2012 Power Method Distributions through Conventional Moments and L-Moments Flaviu A. Hodis Victoria University of Wellington Todd C. Headrick Southern Illinois University Carbondale, [email protected] Yanyan Sheng Southern Illinois University Carbondale Follow this and additional works at: http://opensiuc.lib.siu.edu/epse_pubs Published in Applied Mathematical Sciences, Vol. 6 No. 44 (2012) at http://www.m-hikari.com/ams/ index.html. Recommended Citation Hodis, Flaviu A., Headrick, Todd C. and Sheng, Yanyan. "Power Method Distributions through Conventional Moments and L- Moments." (Jan 2012). This Article is brought to you for free and open access by the Educational Psychology and Special Education at OpenSIUC. It has been accepted for inclusion in Publications by an authorized administrator of OpenSIUC. For more information, please contact [email protected]. Applied Mathematical Sciences, Vol. 6, 2012, no. 44, 2159 - 2193 Power Method Distributions through Conventional Moments and L-Moments Flaviu A. Hodis Victoria University of Wellington P.O. Box 17-310, Karori, Wellington, New Zealand fl[email protected] Todd C. Headrick∗ and Yanyan Sheng Section on Statistics and Measurement, Department EPSE, 222-J Wham Bldg. Southern Illinois University Carbondale, Carbondale, IL USA 62901-4618 [email protected] Abstract This paper develops two families of power method (PM) distribu- tions based on polynomial transformations of the (1) Uniform, (2) Tri- angular, (3) Normal, (4) D-Logistic, and (5) Logistic distributions. One family is developed in the context of conventional method of moments and the other family is derived through the method of L-moments.